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The memory consistency model of a shared memory system
determines the order in which memory operations will appear
to execute to the programmer. The memory consistency model
for a system typically involves a tradeoff between performance
and programmability. This paper provides an overview of recent
advances in hardware optimizations, compiler optimizations, and
programming environments relevant to memory consistency mod-
els of hardware distributed shared memory systems.

We discuss recent hardware and compiler optimizations that
exploit the observation that it is sufficient to only appear as if
the ordering rules of the consistency model are obeyed. These
optimizations substantially improve the performance of the strictest
consistency model, making it more attractive for its programmabil-
ity. Recent concurrent programming languages and environments,
on the other hand, support more relaxed consistency models. We
discuss several such environments, including POSIX threads, Java,
and OpenMP.
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lelism, memory consistency, performance, programmability.

I. INTRODUCTION

The memory consistency model of a shared memory
system specifies the order in which memory operations
will appear to execute to the programmer. The memory
consistency model affects the process of writing parallel
programs and forms an integral part of the entire system
design including the architecture, the compiler, and the
programming language.

Fig. 1 shows a program fragment to illustrate how the
memory consistency model affects the programmer. The
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Fig. 1. Motivation for a memory consistency model.

figure shows processor P1 producing some data (
and ) that need to be consumed by processor P2.
The variable is used for synchronization. Processor
P1 writes the value 1 into to indicate that the data
are produced; processor P2 repeatedly reads until
it returns the value 1 indicating the data are ready to be
consumed. The program is written with the expectation that
processor P2’s reads of the data variables will return the
new values written by processor P1. However, in many
current systems, processor P2’s reads may return the old
values of the data variables, giving an unexpected result.
The memory consistency model of a shared memory system
is a formal specification that determines what values the
programmer can expect a read to return.

Uniprocessors provide a simple memory consistency
model to the programmer that ensures that memory
operations will appear to execute one at a time and in
the order specified by the program (or program order).
Thus, a read in a uniprocessor returns the value of thelast
write to the same location, wherelast is uniquely defined by
the program order. Uniprocessor hardware and compilers,
however, do not necessarily execute memory operations
one at a time in program order. They may reorder and
overlap memory operations; as long as data and control
dependences are maintained, the systemappearsto obey
the expected memory consistency model.

In a multiprocessor, the notion of alast write is not
as well defined, and a more formal specification of the
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memory consistency model is required. The most intuitive
model for multiprocessors is a natural extension of the
uniprocessor model. This model, sequential consistency
(SC), requires that memory operations appear to execute
one at a time in some sequential order, and the operations
of each processor occur in program order [1]. A read in a
sequentially consistent multiprocessor must return the value
of the last write to the same location in the above sequential
order.

Unlike uniprocessors, simply maintaining per-processor
data and control dependences is insufficient to maintain SC
in a multiprocessor. For example, in Fig. 1 there are no data
or control dependences among the memory operations of
processor P1. Thus, a uniprocessor could allow P1’s write to

to be executed before its writes to the data variables.
In this case, it is possible that P2 executes all its reads
before the data writes of P1, returning the old values for the
data variables and violating SC. This simple example shows
that SC imposes more restrictions than simply preserving
data and control dependences at each processor.

SC can restrict several common hardware and compiler
optimizations used in uniprocessors [2]. For this reason,
relaxed consistency models have been proposed that explic-
itly permit relaxations of some program orderings. These
models allow more optimizations than SC, but they present
a more complex model to the programmer. Thus, choosing
the memory consistency model of a multiprocessor system
has typically involved a tradeoff between performance and
programmability. A tutorial paper by Adve and Ghara-
chorloo gives a detailed description of the optimizations
restricted by straightforward implementations of SC as well
as relaxations permitted by several relaxed models [2].

This paper provides an overview of recent advances in
hardware optimizations, compiler optimizations, and pro-
gramming languages and environments relevant to memory
consistency models of hardware shared memory systems.
The advances in hardware and compiler optimizations seek
to narrow the performance gap between memory consis-
tency models, making stricter models more attractive for
their programmability. On the other hand, recent concurrent
programming languages and environments (e.g., POSIX
threads, Java, and OpenMP) support more relaxed consis-
tency models. We conclude with a discussion of the impact
of the above advances.

II. BACKGROUND

A. Hardware-Centric Models

We briefly describe key aspects of the memory consis-
tency models most commonly supported in commercial
systems: SC [1] (supported by HP PA-8000 and MIPS
R10000 processors), processor consistency (PC) [3] (similar
to Sun’s total store ordering and the model supported by
Intel processors), weak ordering (WO) [4], and release
consistency (RC) [3] (similar to Sun’s relaxed memory
ordering and the models supported by Digital Alpha and
IBM Power PC processors). More detailed descriptions of
these models and their features can be found in [2].

Fig. 2. Relaxations of program order allowed by different mem-
ory consistency models. (Only program order between memory
operations to different locations is considered.)

The relaxed models mentioned above have been re-
ferred to ashardware centricbecause they were primarily
motivated by hardware optimizations. In this paper, opti-
mizations regarding reordering a pair of memory operations
implicitly refer to operations on different locations.

Fig. 2 summarizes the relaxations in program order al-
lowed by the various memory consistency models discussed
in this paper. SC requires program order to be maintained
among all operations. PC allows reordering between a write
followed by a read in program order. WO requires dis-
tinguishing between data and synchronization operations.
Data operations can be reordered with respect to each other;
however, program ordering of all operations with respect to
synchronization operations must be maintained. RC further
categorizes synchronization operations into acquires and
releases. RC does not enforce ordering between two data
operations, between a data operation and a subsequent ac-
quire, or between a release and a subsequent data operation.
In this paper, we use the term RC to refer to the RCpc model
[3], which also does not enforce ordering between a release
and a subsequent acquire. The distinctions between various
categories of memory operations can be achieved in several
ways [2]. Current processors support a conservative method
through fence or memory barrier instructions. Typically, all
program orders with respect to a fence or memory barrier
instruction are enforced.

The examples in Fig. 3 further illustrate the differences
among the models from the programmer’s viewpoint [2].
Fig. 3(a) repeats the example in Fig. 1. With SC, since all
memory operations must appear to occur in program order,
it follows that P2’s reads of and do not occur
until P1’s writes to the data locations complete. Therefore,
P2’s reads of the data locations will return the newly written
values (64 and 55). PC ensures P1’s writes will occur in
program order and P2’s reads will occur in program order;
therefore, P2’s reads must again return the newly written
values. WO and RC, however, do not impose any such
restrictions. Therefore, with these models, P1’s writes to

and may occur after P1’s write to and
after P2’s reads to and . Consequently, P2’s
reads of the data locations may return the old values of
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(a) (b)

Fig. 3. Illustration of memory consistency models: SC; PC; WO; and RC.

zero, giving unexpected results. With a weakly ordered or
release consistent system, P2’s reads can be made to return
the new values if the programmer explicitly identifies all
accesses to as synchronization operations.

Fig. 3(b) illustrates a simplified version of Dekker’s
algorithm for implementing critical sections. SC prohibits
the reads of both and from returning zero in
the same execution. Thus, with SC, at most one processor
will enter the critical section. With PC, however, the reads
may execute before the writes of their respective processors
(e.g., if the write is sent to a write buffer and the read is
allowed to by pass the buffer). Therefore, both the reads
of and may return zero and both processors
may enter the critical section, an undesirable result. With a
weakly ordered or release consistent implementation also,
both reads may return zero. To prohibit both processors
from returning the value zero, the programmer must identify
all operations to and as synchronization
operations with WO and RC, and use read-modify-writes
with PC [2].

The choice of the consistency model may limit the use of
hardware and compiler optimizations that improve perfor-
mance by overlapping, reordering, or eliminating memory
operations (e.g., write buffers, lockup-free caches, out-of-
order execution, register allocation, common subexpression
elimination, compile-time code motion, and loop trans-
formations). In particular, reordering any pair of memory
operations can potentially lead to a violation of SC. WO
and RC allow the most optimizations since they allow
reordering of all data operations between consecutive syn-
chronization operations. However, these models are harder
to reason with since they require programmers to deal with
nonintuitive hardware and compiler optimizations. Thus,
the choice of the memory consistency model of a system
has typically involved a tradeoff between programmability
and performance.

B. Programmer-Centric Framework

The programmer-centric framework for specifying mem-
ory consistency models seeks to alleviate the tradeoff be-
tween programmability and performance seen by hardware-

centric models [3], [5]. The framework is based on the hy-
pothesis that programmers should not be required to reason
about nonsequentially consistent systems. The framework
guarantees SC if the programmer provides some informa-
tion about the program or obeys certain constraints. The
information and constraints relate only to the behavior
of the program on sequentially consistent systems. The
knowledge of this behavior is used by the system to
determine optimizations that will not violate SC for that
program.

The data-race-free [5] and properly labeled [3] models
illustrate the programmer-centric framework. These models
seek to provide the optimizations of the WO and RC
hardware-centric models, but without requiring the pro-
grammer to reason about those optimizations. The models
provide SC to data-race-free programs, which are defined
as follows.

Call two memory operationsconflicting if they are from
different processors, they access the same location, and at
least one of them is a write [6]. Assume the system provides
a mechanism for distinguishing memory operations as data
or synchronization.

A program is data-race-free if in every sequentially
consistent execution of the program, any two conflicting
memory operations, are either separated by synchronization
operations or are both distinguished as synchronization
operations. Alternatively, if two conflicting operations oc-
cur one after another (without any intervening memory
operations), then the programmer should distinguish them
as synchronization operations (also called race operations);
other operations may be distinguished as either data or
synchronization.

For example, in Fig. 3(a), the operations accessing
and are always separated by the operations on
(in any sequentially consistent execution). Therefore, the
operations on and may be distinguished as
data or synchronization. However, the write of and the
final read of are not separated by any other operations
and must be distinguished as synchronization.

The optimizations of WO and RC can be applied to data-
race-free programs without violating SC. The mechanism
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for distinguishing operations as data or synchronization
may vary based on the programming language support (see
Section V).

III. H ARDWARE ADVANCES

Straightforward hardware implementations of consis-
tency models directly enforce their ordering constraints
by prohibiting a memory operation from entering
the memory system until the completion of all previous
operations for which must appear to wait. For example,
a straightforward implementation of SC will not issue a
memory operation until the preceding memory operation
of its processor is complete. However, certain features
in recent processors, described as follows, permit more
optimized implementations of consistency models.

1) Out-of-Order Scheduling: A processor with out-of-
order scheduling simultaneously examines several
consecutive instructions within an instruction win-
dow. The processor issues an instruction from the
instruction window to its functional units or the mem-
ory hierarchy once the instruction’s data dependences
are resolved, even if previous instructions are still
blocked. To maintain precise exceptions, however,
instructions are retired from the instruction window
and all changes to architectural state (e.g., registers
and memory) are made in program order [7].

2) Nonblocking Loads: Many current processors do not
block on a load but can continue executing indepen-
dent instructions (including other loads) while one or
more loads (including cache misses) are outstanding.
To maintain precise interrupts, a load does not leave
the instruction window until it returns a value. There-
fore, the effectiveness of this technique is limited
by the instruction window size, which determines
the maximum number of instructions that will be
overlapped with the load.

3) Speculation: Current processors support speculative
execution in several forms, the most common of
which is branch prediction. Instructions after the
speculation point (e.g., a branch) continue to be
decoded, issued, and executed as ordinary instruc-
tions. However, these instructions are not allowed
to commit their values into the architectural state of
the processor until all prior speculations have been
resolved. If any speculation is determined to be incor-
rect (e.g., a mispredicted branch), the execution rolls
back to the state at the point of the (mispredicted)
speculation, and all later speculated instructions are
squashed.

4) Prefetching: Many processors provide support for
nonbinding prefetch requests for cache lines that are
likely to be accessed in the future. Such a request is
expected to bring the accessed line in the processor’s
cache before the processor issues the actual demand
access, thereby overlapping the memory latency with
other work. Prefetch requests can either be initiated

by software (through explicit prefetch instructions) or
by hardware (using run-time prediction).

We next describe optimizations that use the above fea-
tures to improve the performance of consistency models
and are supported in current commercial systems. These
optimizations exploit the observation that it is sufficient
to only appearas if the ordering rules of the consistency
model are obeyed. Each of these techniques assumes a
hardware cache-coherent system.

A. Hardware Prefetching from the Instruction Window

In straightforward implementations, a processor’s in-
struction window may contain several decoded memory
instructions that are not issued to the memory system due to
consistency constraints. For example, a decoded load is not
issued in a sequentially consistent system until the previous
memory operation of the processor completes. The proces-
sor can issue nonbinding prefetches for such instructions
without violating the consistency model, thereby hiding
some memory latency [8].

The latency that can be hidden using this technique
is limited by the instruction window size. Additionally,
prefetches that are issued too early may sometimes degrade
performance by fetching data before they are ready. Such a
degradation may result due to extra network traffic and due
to extra memory latency seen at processors that lose their
cache lines prematurely to early prefetches.

B. Speculative Load Execution

The hardware prefetching technique described in
Section III-A does not allow a load to consume its value
until the completion of preceding memory operations
ordered by the consistency model, even if the load’s value
is already in the cache. Speculative load execution extends
the benefits of prefetching by speculatively consuming
the value of loads brought into the cache, regardless
of consistency constraints [8]. If the accessed location
does not change its value until the load could have been
nonspeculatively issued, then the speculation is successful.
However, if the location does change its value, then the
processor rolls back its execution until the incorrect load.
The rollback can be achieved using the same mechanisms
as used for flushing incorrectly executed instructions after
a branch misspeculation or an exception.

To detect whether a value speculatively consumed by a
load changes before the load is allowed to issue nonspecula-
tively, the processor exploits the coherence mechanisms of
hardware cache-coherent multiprocessors. In these systems,
a change of a cache line by another processor will trigger
an external coherence action (e.g., invalidate or update) to
other caches holding the data, as long as the data remain in
the cache. Thus, the processor monitors coherence requests
to and replacements from its caches; either action to a cache
line with speculatively consumed data triggers a rollback.

As with nonblocking loads in general, the latency tol-
erance potential of speculative load execution is limited

448 PROCEEDINGS OF THE IEEE, VOL. 87, NO. 3, MARCH 1999



by the size of the instruction window. In addition, con-
suming speculative values too early can result in increased
rollbacks, potentially degrading performance.

Speculative load execution and hardware store prefetch-
ing from the instruction window are supported by the HP
PA-8000, Intel Pentium Pro, and MIPS R10000 processors.

C. Cross-Window Prefetching

Prefetches may also be issued for instructions that are
not currently in the instruction window but are expected to
be executed in the future. Either the compiler may insert
explicit software prefetch instructions in the program or the
hardware may issue such requests at run time. Although
this technique is applicable even in uniprocessor systems,
use of cross-window prefetching to hide latency may also
impact the relative performance of consistency models.
This technique alleviates the limitations imposed by a
small instruction window size for the hardware prefetching
technique described in Section III-A, but it requires the
compiler or hardware to predict future accesses. Most
current processors support a software prefetch instruction,
and there has been significant compiler work for effective
insertion of such prefetches (e.g., [9]). Several hardware
techniques for predicting future data accesses have also
been proposed (e.g., [10]), but are not yet commonly
implemented.

D. Simulation Studies

There have been several simulation studies that ana-
lyze the performance differences between different memory
consistency models. Earlier studies have analyzed straight-
forward implementations of consistency models [11], [12]
and the optimization of hardware prefetching from the
instruction window with single-issue, in-order processors
[13]. More recent studies have examined the optimized
implementations discussed in this section for multiproces-
sors built from state-of-the-art processors. These processors
aggressively exploit instruction-level parallelism (ILP) with
features such as multiple instruction issue, out-of-order
scheduling, nonblocking reads, and speculative execution
[14]–[16]. This section summarizes results found in the
latter studies; however, the quantitative data reported here
are based on a new set of simulations with a uniform set
of system parameters for all experiments, a more recent
(and aggressive) compiler, and a more aggressive cache
coherence protocol (a four-state MESI protocol versus a
three-state MSI protocol).

We report results for five scientific applications from
the Stanford SPLASH and SPLASH-2 suites [17], [18]
on a simulated hardware cache-coherent shared memory
multiprocessor system. The simulations are performed with
the Rice Simulator for ILP Multiprocessors (RSIM), a
detailed execution-driven simulator [19]. RSIM models
an out-of-order superscalar processor pipeline, a two-level
cache hierarchy, a split-transaction bus on each processor
node, and an aggressive memory and multiprocessor inter-
connection network subsystem, including contention at all

Fig. 4. Base system parameters.

Fig. 5. Applications, input sizes, and system sizes.

resources. The modeled systems implement an invalidation-
based four-state MESI directory cache coherence protocol.
Fig. 4 summarizes the values of the parameters for the base
systems simulated. The cache sizes are chosen following
the working set characterizations of Wooet al. [18]. We
also performed experiments that double and quadruple all
the miss latency components in the system; our results hold
qualitatively even in this configuration.

The applications, their input sizes, and the number of pro-
cessors in the system for each application are summarized in
Fig. 5. A 16-processor system is simulated for applications
that scale well (FFT and Water), while an eight-processor
system is simulated for LU, MP3D, and Radix.

1) Hardware Prefetching from the Instruction Window and
Speculative Load Execution:Fig. 6 shows, for each applica-
tion, the execution time for the straightforward implementa-
tions of SC, PC, and RC, normalized to the time for SC. (We
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Fig. 6. Performance of straightforward implementations of memory consistency models.

Fig. 7. Impact of hardware prefetching and speculative execution on consistency models (nor-
malized to straightforward SC).

do not consider WO separately as our applications see very
little synchronization overhead; therefore, we expect few
differences between WO and RC.) Fig. 7 shows, for each
application, the execution times for the best implementation
of the three consistency models normalized to the time
for the straightforward implementation of SC in Fig. 6.
Comparing the corresponding bars of Figs. 6 and 7 shows
the impact of the hardware optimizations.

The optimizations of hardware prefetching from the in-
struction window and speculative load execution provide
significant benefits for the more constrained consistency
models (SC and PC) but do not significantly impact RC.
The optimizations greatly narrow the performance gap be-
tween the various models for all applications. Nevertheless,
PC and RC continue to show sizable performance benefits
compared to SC for two of our five applications in all of the
configurations studied (RC shows 25% or more reduction
in execution time for Radix and MP3D). The differences
in performance between the various models seen in Fig. 7
stem primarily from: 1) limited hardware resources (mainly
the instruction window), which limit the extent to which the
optimizations can be exploited and 2) the negative effects
of early store prefetches, which lead to additional exposed
latencies in the stricter models.

2) Increasing the Instruction Window Size:The instruc-
tion window size largely determines the effectiveness of the
optimizations of hardware prefetching from the instruction
window and speculative load execution. Increasing the size
of the instruction window and memory queue generally
narrows the remaining performance gap between memory
consistency models. For example, doubling the instruction
window and memory queue sizes reduces the difference in
execution time between the best SC and RC versions to
16 and 19% for MP3D and Radix, respectively (compared

to 24 and 28% with the base configuration). However, in
a few cases, larger increases in the instruction window
and memory queue sizes lead to performance degradations
in SC and PC, widening the performance gap with RC.
This degradation occurs because fundamental limitations
of hardware prefetching and speculative loads (caused by
negative effects of early prefetches and rollbacks with
speculative loads) were exposed or exacerbated with larger
instruction window sizes.

3) Cross-Window Software Prefetching:Software pre-
fetches were inserted in the applications by hand [15], fol-
lowing a state-of-the-art prefetching algorithm [9]. Software
prefetching improves the performance of all the consistency
models (with and without the optimizations of hardware
prefetching from the instruction window and speculative
load execution) [15]. However, MP3D and Radix continue
to see significant improvements with PC and RC compared
to SC (more than 20% reduction in execution time with
RC).

Limitations of software prefetching on multiprocessors
with aggressive processors (due to late or early prefetches,
or resource contention) and memory latencies that are
not amenable to prefetching (due to limitations of the
software prefetching algorithm and contention at processor
resources) are responsible for the remaining gap between
the consistency models.

E. Other Optimizations

We have focused on optimizations implemented in cur-
rent commercial systems at the processor level. Several
other processor-centric optimizations have also been pro-
posed and evaluated in the literature for hardware shared
memory systems. These include techniques to overlap both
data and synchronization latency (e.g., multithreading [20],
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cross-window hardware prefetching [10], speculative re-
tirement [16], and fuzzy selective acquires [14]). The
simulation studies described above found that data la-
tency is far more dominant than synchronization latency
for the applications and systems studied; therefore, future
techniques that target data latency appear to be more
likely to benefit performance for this class of systems and
applications.

System design decisions below the processor level also
influence the performance of memory consistency models.
For example, the cache write policy and cache coherence
protocol can impact the relative performance of consistency
implementations [14]. These policies affect the overhead
of writes and thus generally have a greater influence on
consistency models where write latencies are not already
completely overlapped (SC and PC). RC is less sensitive
to these choices. This paper uses the best practical config-
urations for all models (i.e., writeback caches and MESI
protocol).

Finally, even if a processor supports a strict consistency
model, the underlying system design decisions may result in
a more relaxed model. For example, even if the processor
supports SC, the memory controller may acknowledge a
data store to the processor before it is actually globally
visible. The net result is a system that is more aggressive
than the consistency model supported by the processor, but
somewhat more conservative than one in which the pro-
cessor supports a relaxed consistency model. The Convex
SPP 2000 system is an example of a commercial system
that includes a WO mode even though its processors (HP
PA-8000) support SC. The Stanford FLASH system also
uses a similar approach.

F. Summary

In summary, recent hardware optimizations result in
a significant narrowing of the performance gap between
consistency models, virtually eliminating the gap for three
of the five applications studied on our base system. Never-
theless, PC and RC show significant performance benefits
over SC for two of our applications on all the system config-
urations we studied. Thus, for the class of applications and
systems studied here, the choice of the consistency model
for future systems will depend on the importance of the
remaining hardware performance gap to system vendors,
as well as the impact of relaxed consistency models on
compiler optimizations and programming language support
for relaxed consistency models. The rest of the paper
discusses the latter two issues.

IV. COMPILER ADVANCES

SC and PC restrict the direct application of several
uniprocessor compile-time optimizations that may involve
reordering or eliminating memory operations (including
register allocation). In their pioneering work, Shasha and
Snir developed a compile-time analysis to identify memory
operations that can be reordered without violating SC [6].

Fig. 8. Execution graph corresponding to Fig. 1.

To understand the analysis by Shasha and Snir, consider
an execution of a parallel program represented as a graph
with the following properties. The vertices of the graph
are the memory operations in the execution. There is an
edge from operation A to operation B in the graph if
either: 1) A precedes B in program order or 2) A precedes
B in the execution and A and B conflict.1 Call the two
categories of edges program order (po) and conflict order
(co) edges, respectively, and call the graph the execution
graph. Fig. 8 illustrates an execution graph for an execution
of the program in Fig. 1 in which the data read by processor
P2 return the new values written by processor P1.

Shasha and Snir observed that if the execution graph is
acyclic, then the execution appears sequentially consistent
(since all memory operations can be totally ordered in
an order consistent with program order). For example,
the execution graph in Fig. 8 is acyclic and the depicted
execution is sequentially consistent.

To ensure the execution graph is acyclic, it is sufficient
to ensure that if there is a program order edge from A
to B on a potential cycle in the graph, then A and B are
not reordered. Operations on all other program order edges
can be reordered without violating SC. For the program in
Fig. 8, potential cycles in the execution graph are:

1) Write, Data1 Write, Flag Read, Flag
Read, Data1 Write, Data1;

2) Write, Data2 Write, Flag Read, Flag
Read, Data2 Write, Data2;

3) Write, Data1 Write, Data2 Write, Flag
Read, Flag Read, Data1 Write, Data1;

4) Write, Data2 Write, Flag Read, Flag
Read, Data1 Read, Data2 Write, Data2.

With the analysis so far, all program order edges shown in
Fig. 8 could be on a potential cycle, prohibiting meaningful
optimizations. Shasha and Snir further formalized a mini-
mal set of cycles, called critical cycles, and showed that it is
sufficient to consider only program order edges on critical
cycles. Operations that are not ordered by such critical
program order edges can be reordered without violating

1Recall that two operations conflict if they are from different processors,
they access the same location and at least one is a write.
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SC. Applying their formalization (not discussed here further
due to lack of space), only the first two cycles mentioned
above for Fig. 8 are critical. Therefore, program ordering
needs to be maintained only with respect to accesses to
Flag; the accesses to the data locations can be reordered
with respect to each other.

At compile time, it is difficult to predict or analyze all
executions and their execution graphs. Therefore, Shasha
and Snir apply their analysis to a graph where the vertices
are the static memory operations in the program, and a
bidirectional conflict order edge is introduced for every
pair of static memory operations that could conflict in any
execution.

More recently, Krishnamurthy and Yelick showed that
Shasha and Snir’s algorithm for detecting critical cycles
has exponential complexity in the number of processors.
They developed an algorithm for SPMD programs with
polynomial complexity [21]. They also evaluated the effect
of certain optimizations using their algorithm, on array-
based Split-C programs run on a CM-5 (message passing)
multiprocessor. They found reductions in execution time of
20 to 50%. They further improved their algorithm to reduce
the impact of bidirectional conflict order edges [22], using
some information from the programmer. This improvement
reduced the number of critical cycles for which program
order needs to be enforced, and gave additional reductions
in execution time of 20 to 35% for Split-C programs on a
CM-5 multiprocessor.

It is not yet known how effective the above analyses and
optimizations are for general programs on native shared
memory machines, or how they compare to compile-time
optimizations enabled by a relaxed consistency model such
as RC.

V. PROGRAMMING LANGUAGES

Until recently, most memory consistency models were
developed primarily by computer architects for the hard-
ware interface. Many common high-level programming
languages did not include standard support for explicitly
parallel shared memory programs and did not explicitly
consider the issue of the memory consistency model. Pro-
grammers typically relied on parallelizing compilers or used
nonstandard vendor specific extensions to generate shared
memory parallelism and synchronization. Recent languages
and programming environments, however, deal with shared
memory parallelism and the issue of memory consistency
models more explicitly. Below, we discuss commonly used
languages and environments that are currently supported by
multiple system vendors and conclude with a discussion on
the implications for the compiler.

A. POSIX Threads

POSIX is an IEEE standard [23] that includes a threads
interface for the C language. It specifies several synchro-
nization functions, e.g., functions to implement mutual
exclusion locks and condition variables. For memory con-
sistency, POSIX requires applications to use the provided

synchronization functions to separate conflicting accesses
to the same memory location. Such applications can rely
on sequentially consistent results. Applications that syn-
chronize in other ways (as in the examples in Fig. 3)
or that include races among user data structures (e.g.,
asynchronous algorithms) may get unexpected results.

The POSIX threads model is like the data-race-
free/properly-labeled model described in Section II-B in
that it requires synchronization to be explicit to ensure
reliable results. However, it does not provide the full
flexibility of the data-race-free/properly labeled model
since it restricts synchronization to only the provided
synchronization functions. The provided synchronization
functions may be overkill for certain cases [e.g., Fig. 3(a)],
potentially resulting in a loss of performance. The data-
race-free/properly labeled model conceptually permits
any memory operation (including races in asynchronous
programs) to be distinguished as synchronization.

B. The Declaration

The ANSI C, C++, and Java languages support the
declaration to suppress certain optimizations.

A key motivation for this declaration was to inhibit op-
timizations in codes such as device drivers and interrupt
handlers. The declaration is often also used for enforcing
data consistency in shared memory programs.

The Java language specification provides the most precise
specification for the semantics of the declaration
[24]. Every access to a variable must result in a
memory access, i.e., values of such variables cannot be
cached in registers and accesses to such variables can-
not be eliminated through optimizations such as common
subexpression elimination. Furthermore, program-ordered
accesses to variables cannot be reordered with
respect to each other. There is no restriction on the ordering
between an access to a variable and an access to
a non variable. For example, for the program in
Fig. 3(a), the variables , , and must all be
declared to ensure that the reads of and

will return the new values written in the program.
This, however, unnecessarily precludes optimizations on
accesses to and .

The above example illustrates that the current specifi-
cation is not restrictive enough to use as the
sole mechanism for enforcing consistency, while enabling
common optimizations. An additional constraint of preserv-
ing program order between non and
accesses would have provided a model similar to WO and
RC. Java provides another mechanism to overcome this
deficiency, as discussed next.

C. The Java Programming Language

This section discusses the high-level Java programming
language, as opposed to the Java virtual machine. The
formal memory consistency model for Java is defined as a
set of rules on an abstract representation of the system [24].
The abstraction consists of a main memory (containing the
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master copy of all variables) and a working memory per
thread. A thread’s instructions result in and/or
operations on the values in its working memory. The
and operations (and the lock and unlock operations
described below) occur in program order. The underlying
implementation transfers data between the working and
main memories, subject to several ordering rules. The
current Java model is complex and hard to interpret. Only
the key ordering rules are informally described below.

A Java program must use the or
keywords to enforce memory ordering.

is common to C and C++ and is discussed in
Section V-B. The keyword results in a
lock access on the associated object before executing the
corresponding statement or method, and an unlock access
afterward. The key ordering rules are: 1) a lock access
must appear to flush each variable from its thread’s
working memory before the next use of, unless the
thread makes an assignment tobetween the lock and the
next use of and 2) before an unlock access, all values
previously assigned by that thread must be copied to main
memory. Thus, a thread’s load following a lock will either
get a value assigned by that thread after the lock, or a
value that is at least as recent as in the master copy at the
time of the lock. After an unlock, all the values from the
thread’s preceding assignments will be in the master copy.

Referring to Fig. 3(a), the keyword need
be applied only to the accesses to to ensure that
the reads of the data locations will return the correct
values. In contrast to the use of the declara-
tion discussed in Section V-B, the use of
allows the writes (and reads) of and to
be reordered with respect to each other without affecting
the result of the execution. To prevent excessive spinning
on locks, Java also provides and primi-
tives for producer–consumer synchronization. Nevertheless,
these primitives also require lock accesses for effective use,
which appears to be overkill for interactions such as in
Fig. 3(a).

The ordering rules for Java are almost similar to those
for RC.2 Java is also accompanied by a programming
style recommendation similar to the data-race-free/properly
labeled model. It states that “if a variable is ever to be
assigned by one thread and used or assigned by another,
then all accesses to that variable should be enclosed in

methods or statements.”

D. OpenMP

OpenMP is a recently proposed application programming
interface for portable shared memory programs [25]. It

2There are two subtle differences between Java and RC. First, in a Java
thread, the presence of a lock between a write and a read to the same
location requires that the write appear to be serialized at main memory
before the read, unless there is another write to the same location between
the lock and the read [24]. RC does not require such a serialization.
Second, unlike RC, Java does not allow program-ordered reads to the
same location to be reordered [24]. As mentioned earlier, this paper does
not discuss ordering constraints betwen memory operations to the same
location.

provides relatively high-level directives to specify parallel
tasks or loops, and various synchronization constructs (e.g.,
critical sections, atomic updates, and barriers). For memory
consistency, it supports a directive that must be
used to ensure all preceding writes of a processor are seen
by the memory system and subsequent reads return new
values. A is also implicitly associated with many of
the synchronization constructs. The description of
in the current specification is fairly informal (e.g., it does
not explicitly state the impact of a on preceding
reads or subsequent writes), but it appears to provide a
model similar to WO and RC and has semantics similar
to memory barrier or fence instructions supported by most
current processors. Thus, to obtain the expected result for
the example in Fig. 3(a), the application needs to simply
include es with the accesses to . Additionally,
OpenMP allows a to be explicitly applied to only a
specified list of variables.

E. Message Passing Interface (MPI)

The issue of the memory consistency model is generally
not relevant to traditional message passing applications
because synchronization is implicit with every data trans-
fer message. The new message passing interface (MPI-2)
standard [26], however, also includes support for one-
sided communication, which has similarities with shared
memory and must consider the consistency model. We
briefly discuss relevant aspects of MPI-2 below.

The key primitives for one-sided communication are
and . These allow a processor to load or store

a data buffer from a remote processor’s memory with-
out any corresponding or by the remote
processor’s program. Special synchronization mechanisms
are provided to ensure that the loads return, and stores
deposit, appropriate values at the appropriate time. Ordering
rules analogous to RC are enforced, e.g., the user cannot
rely on the completion of s and s until appropriate
synchronization has occurred.

F. High Performance Fortran (HPF)

The High Performance Fortran (HPF) language [27]
provides various constructs to expose data parallelism to the
system but provides sequential semantics to the program-
mer. Each HPF data parallel construct (including Fortran 90
array statements, the FORALL statement, and HPF intrin-
sics) has equivalent sequential semantics. Therefore, HPF
programmers need not be concerned with the traditional
notion of a shared memory consistency model. One distinct
aspect of the sequential model provided by HPF is that the
data parallel array statements and the FORALL statement
have copy-in/copy-out semantics, where all locations on
the right-hand side of an assignment are read before any
locations on the left-hand side are assigned. This provides
straightforward deterministic sequential semantics even for
a statement that may appear to have dependences among
its various computations.
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HPF also provides EXTRINSIC procedures to invoke
other parallelism paradigms not directly supported in HPF
(e.g., explicitly parallel code for branch-and-bound par-
allelism). Such a procedure may have an independent
memory consistency model; the language requires all pro-
cessors to appear to enter and exit such a procedure
together.

G. Implications for the Compiler

The consistency model supported by the programming
language influences the optimizations a compiler can per-
form. From the compiler’s viewpoint, most recent program-
ming environments support models similar to data-race-
free/properly labeled, allowing significant flexibility [2].
For example, with POSIX, Java, and OpenMP, the compiler
can reorder any pair of operations to different locations
between two synchronization/ / operations,
as well as allocate memory in registers in this interval.

In addition, the compiler has the responsibility to ensure
that the parallel program it generates runs correctly for
the memory consistency model supported by the hard-
ware. This is fairly straightforward for the languages and
environments discussed in this section and for current
commercial systems. For example, most current processors
(and systems) support memory barriers or fences. For
such systems, the special synchronization constructs in the
above environments must include fences at all points in the
construct where a memory operation may be involved in a
race [2]. Typically, these fences would be inserted by library
writers for the synchronization constructs, and the compiler
simply must ensure that it maintains these fences and their
orderings with respect to other memory operations in the
final program. Similarly, the directive of OpenMP
must be replaced by a hardware fence. For HPF, the par-
allelizing compiler itself inserts synchronization and must
insert hardware fences at these points. A more compre-
hensive description of how to port data-race-free/properly
labeled programs to common hardware memory consistency
models appears in [28] and [29].

VI. CONCLUDING REMARKS

This paper provides an overview of recent advances
in memory consistency models, covering hardware, com-
pilers, and programming environments. Recent hardware
optimizations have significantly narrowed the hardware
performance gap between various consistency models, vir-
tually eliminating the gap for three of the five applications
studied on our base system. Nevertheless, PC and RC show
significant benefits over SC for two of our applications on
all the system configurations we studied.

Compiler optimizations relevant to consistency models
have not been as extensively studied as hardware opti-
mizations. Recent work has shown that it is possible to
implement reordering optimizations in the compiler without
violating SC. However, these optimizations have been
evaluated for restricted programs and systems and have not
been compared with the benefits of relaxed models. The

importance of relaxed models to compilers remains one of
the key open questions in this area.

Recent programming languages and environments for
explicitly parallel shared memory programs (e.g., POSIX
threads, Java, and OpenMP) support relaxed consistency
models. For many programs, some of these languages
(e.g., POSIX threads and Java) require that for expected
results, system-provided synchronization constructs be used
to prevent data races. While such an approach encourages
good programming practice, the provided constructs may
be overkill or inappropriate for some cases, leading to a
performance loss compared to more flexible approaches.
OpenMP provides more flexibility, allowing synchroniza-
tion through arbitrary reads and writes; data consistency is
achieved by using the directive at the appropriate
(synchronization) points in the program.

High-level languages with relaxed models eliminate the
programmability advantage of supporting SC in the com-
piler or hardware, from the perspective of programmers of
such languages. However, hardware and compiler designers
must consider the programmability/performance tradeoff
for programmers of other languages (either high level or
assembly level) before deciding the consistency model.
This tradeoff will depend on results of future studies on
compiler optimizations, and the importance of the remain-
ing hardware performance gap to system vendors. Finally,
the memory consistency model must be chosen to last
beyond current implementations since it is an architectural
specification visible to the programmer.
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