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ABSTRACT
Aspen is a programming language that relies on high-level mes-
saging to support communication among different program tasks
executing in parallel. Unlike MPI, the computational logic of As-
pen tasks is specified and developed independently of the global
communication structure of the program. A root module specifies
the communication structure of the program. The semantics and
generality of these specifications enable novel forms of collective
communication, including asynchronous and concurrent collective
operations and reduction type operations with subsets of the partic-
ipants being receivers of the reduced data, and with receivers that
do not provide data to the reduction. This paper describes efficient
implementations of these and other collective communication oper-
ations in Aspen. We demonstrate the ease-of-use of these features
using several code examples and quantify their performance impact
through both microbenchmarks and a quantum chemistry code used
in rubber chemistry. Aspen’s performance is competitive with, or
slightly better than, the performance of MPI implementations for
both the chemistry application and the microbenchmarks.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Parallel programming

General Terms
Algorithms, Performance, Design, Languages

Keywords
Parallel programming, programming languages, algorithms, reduc-
tions

1. INTRODUCTION
The dominance of multicore machines has made parallelism, and

the need to exploit parallelism in as many applications as possi-
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ble, more widespread than at any previous time. Applications with
high-performance requirements can now achieve those goals in a
cost-efficient fashion using a cluster of multicore-based computers.
Achieving good performance in such environments requires care-
ful application structuring to minimize communication whenever
possible, and efficient implementations of communication to min-
imize its cost when necessary. Collective communication forms a
particularly important class of operations. For example, a collec-
tive reduction operation takes input data from multiple participants,
performs some associative and commutative operation on the input
(e.g., addition), and then provides the results to one participant. Re-
duction is commonly used, for example, to compute a global sum
from per-node local sums. Previous studies have shown that such
collective operations consume most of the execution time in paral-
lel applications [21].

The Aspen programming language has been developed to allow
programmers skilled in sequential programming to be productive
in a parallel environment [23]. Programs in Aspen are expressed
as concurrently executing subtasks (called modules) that commu-
nicate via explicit communication channels. Aspen’s programming
model, based on high-level message passing and distributed mem-
ory semantics, solves many of the problems that plague parallel
programming. Aspen can take advantage of hardware shared mem-
ory for better performance, but it eliminates the race conditions that
make shared memory programming difficult. Modules communi-
cate using send and dequeue language primitives that are under-
stood by the Aspen compiler and runtime system. Unlike shared
memory functions in which any value in shared storage can change
without warning, updates to Aspen variables from external sources
are always tied to a dequeue. Aspen’s communication structure
is specified in a root module, allowing programmers of individual
tasks (or action modules) not to be concerned about the details of
communication, and to program their computational logic as they
would in a sequential setting.

Aspen’s global communication is specified as a flow graph in
which the nodes correspond to modules and the edges correspond
to communication channels. Depending on how the flow graph
is constructed, the send and dequeue operations may correspond
to point-to-point communication or collective operations. Because
the layout of a flow graph is relatively unrestricted, the collective
operations can be more general than MPI operations. Thus it is
possible for a module to be involved in multiple concurrently ex-
ecuting collective operations, or for the receivers of the result of a
collective reduction to be modules that did not provide data to the
reduction. Moreover, because all communication is via the same
general operations, it is essential that they be efficient.

In this paper, we describe Aspen’s support for, and use of, col-
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lective communication in a cluster environment. The contributions
include:

1. Support for collective communication operations that target
shared, distributed, and mixed environments. These include
a new reduce implementation, where the processor(s) receiv-
ing the reduced data may not be the same as the processors
providing the data, and an efficient reduce algorithm for mul-
tiple receivers.

2. Support for collective operations initiated by a single thread
to be overlapped with computation and other collective op-
erations;

3. Use in a real-world parallel chemistry simulation running on
clusters [11];

4. Performance competitive with, or better, than MPI on point-
to-point and collective communication in both shared mem-
ory and distributed environments using the chemistry appli-
cation and micro-benchmarks.

The remainder of the paper is organized as follows. Section 2 de-
scribes collective communication and the ways in which collective
operations are expressed in Aspen. Section 3 describes Aspen’s
efficient implementation of collective communication. Section 4
gives experimental results. Section 5 describes related work, and
Section 6 gives our conclusions.

2. COLLECTIVE COMMUNICATION
AND ITS USE IN ASPEN

This section first presents an overview of collective communi-
cation and the current state-of-the-art. Next, this section provides
an overview of the Aspen programming language and how Aspen
specifies communication, including collective communication.

2.1 Collective Communication
Message-passing systems such as MPI provide a variety of col-

lective communication operations. The most commonly used are
reduce, broadcast, and all-reduce [21]. The reduce operation col-
lects data from all participants, performs some associative and com-
mutative operation on the data (e.g., addition), and then provides
the result to one participant. The broadcast operation sends a piece
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Figure 1: Communication graph of tree-structured reduce.

of data from one node to multiple participants. Both of these are
widely implemented using binary tree structures [18]. Figure 1 de-
picts the communication flow in an 8-node tree-structured reduce;

broadcast reverses these stages. The numbers in circles represent
nodes, and the arrows represent communication. At each stage in
the reduce, the node that receives data performs a reduction of its
current data and the data it has received; by the last stage, all data
has been processed.

����

Figure 2: Communication graph of all-reduce using Raben-
seifner’s algorithm.

The all-reduce operation is semantically a combination of reduce
and broadcast: the result of the reduction operation is provided to
all participants. Although all-reduce can actually be implemented
as reduce followed by broadcast, Rabenseifner presented a more
efficient algorithm known as recursive doubling or the butterfly al-
gorithm [21]. Figure 2 shows the butterfly algorithm in action. As
in the tree-structured reduce, the even-numbered nodes pass infor-
mation to the odd-numbered nodes in the first stage. However, the
odd-numbered nodes also pass information to their even partners
simultaneously. Both sides compute the reduction of their current
data and the received data in parallel, and this continues through
each successive stage until all nodes have processed all data by the
last stage. This algorithm specifically exploits full-duplex com-
munication links to collapse a reduce and broadcast into a single
operation.

If the number of nodes involved is not a power of 2, the first
stage communicates from the higher-numbered processors to the
lower-numbered processors within the next lower power of 2 [20].
The processors within the next lower power of 2 proceed using the
butterfly algorithm. After that, the lower-numbered processors feed
information back to the higher-numbered processors, for a total of
2 + blog2 pc steps for p cluster nodes in the all-reduce. Note that
there are anomalies: for example, a 9-node all-reduce needs 5 steps
while a 16-node all-reduce only needs 4. This problem arises be-
cause there is not enough aggregate send bandwidth using only 9
nodes to process all input and deliver results within 4 steps. Such
anomalies could be avoided if there were extra nodes that could be
added into the graph as auxiliaries, or if nodes could send to mul-
tiple other target nodes [9], although the resulting network traffic
would be higher.

2.2 The Aspen Language, Runtime and
Collective Communication

Aspen allows programmers to specify concurrency among tasks
and data flows by representing information processing and commu-
nication in the style of task flowcharts [23]. The nodes in the graph
represent instances of computational modules, while the edges are
explicit communication queues between modules. The graph is
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S1: Module Main is Root requires Module Chemical, Module Reduce {
S2: void initialize() {
S3: Chemical c[16];
S4: Reduce r;
S5: flow:
S6: c ||| r(sum);

}
}

S7: Module Chemical {
S8: void run() {
S9: optimization_fcn(. . . );

}
S10: void optimization_fcn (int error_vector_size, int parameter_size,. . . ) {
S11: QueueElement qs, qr;
S12: double *error_temp;

. . .
S13: for (i= 0; i < parameter_size+1; i++) {
S14: qs = QueueElement(new ChemicalPayload(

error_vectors[i], error_vector_size));
S15: send qs;
S16: qr = dequeue();
S17: error_temp = getPayload(qr);

. . .
}
. . .

}
}

(a) The Aspen version of the chemistry code

int main(int argc, char *argv[]) {
int id;
int p;
MPI_Init (&argc, &argv);
MPI_Comm_rank (MPI_COMM_WORLD, &id);
MPI_Comm_size (MPI_COMM_WORLD, &p);
optimization_fcn(. . . );

}
void optimization_fcn (int error_vector_size, int parameter_size,. . . ) {

double *error_temp;
. . .
for (i= 0; i < parameter_size+1; i++) {

if (p > 1) {
MPI_Allreduce(error_vectors[i], error_temp, error_vector_size,

MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD);
. . .

}
}

}

(b) The MPI version of the chemistry code

Figure 3: Aspen and MPI code for the chemistry application.

specified in the root module, while the actual computations are
specified in action modules. To support hierarchical design, root
modules themselves can be composed into graphs by other root
modules.

Aspen module instances are similar to objects in C++: they con-
sist of the code and data necessary to implement a data structure
and the operations on that structure. Unlike C++ objects, mod-
ule instances do not include fields (e.g. “class variables”) shared
among multiple instances of the module. The module definition
contains the procedures that make up the functionality of the mod-
ule including the init procedure that initializes the module, the
run procedure that contains the computation to be executed by
this module as part of the application’s work flow, and the data
section, which specifies the variables associated with an instance
of the module. All of these components are coded in C++ with a
few Aspen-specific extensions.

Aspen also includes built-in modules for functionality that com-
monly appears across many applications, such as network I/O mod-
ules. Unlike standard libraries for traditional languages like Java
and C/C++, the semantics of the Aspen built-in modules are under-
stood by the compiler. This understanding can be exploited by the
compiler to aid in analysis, optimization and code generation.

Aspen supports collective communication using the built-in
modules Broadcast and Reduce. In addition to performing
a reduction on data from various module instances, Reduce can
send the result to one or more module instances that may or may
not contribute data to the reduction, or to all participants if no des-

tination module instances are specified. Thus the Aspen Reduce
generalizes and extends the common reduce and all-reduce collec-
tive operations that appear in MPI and other systems. Module in-
stances contribute to and receive data from collective modules us-
ing ordinary send and dequeue operations, respectively. Thus, the
action modules actually do not need any knowledge of the collec-
tive nature of the communication; the collective behavior is speci-
fied entirely in the root module.

We now illustrate Aspen’s features using the example of Fig-
ure 3, which shows the partial (for brevity) communication struc-
ture of the Aspen and MPI implementations of a chemistry code.
The chemistry application uses a non-linear Levenberg-Marquardt
optimizer to fit the solution of a system of ODEs to a collection of
experimental data by repeatedly adjusting parameters to the system.
Efficiently collecting global error and load balancing data requires
collective communication.

The root module (lines S1 - S6) connects multiple action mod-
ules using flow statements that describe communication between
module instances. The Aspen compiler implements flows as
shared-memory queues on a shared-memory platform and TCP
sockets on a cluster. Nodes in the cluster are specified using a con-
figuration file that specifies node names and the number of cores in
each. The compiler maps module instances to cluster nodes using
its own heuristics, but also allows the user to explicitly specify such
mappings.

Statement S3 declares a vector of module instances of type
Chemical. The vector notation allows large numbers of module
instances of the same type to be easily declared and manipulated.
Statement S4 instantiates a single built-in Reduce module.

The actual computation of the Aspen program is done in the
Chemical module instances. Every module instance contains
a copy of the run function which is invoked by the Aspen run-
time. The run function can perform the bulk of the computation,
or it can call other functions. In this case run calls the function
optimization_fcn to perform the actual computation.

Most of the statements will be recognized as typical C++
statements, however the QueueElement declaration, and the
send, getPayload and dequeue statements are of interest.
In S11, qs and qr are declared to be of type QueueElement,
which is the basic unit of communication in Aspen. In S14, a
QueueElement constructor wraps the ChemicalPayload ob-
ject (a user defined object) which contains the data and its size to
be enqueued.

In S15, the send operation places the object on the module in-
stance’s default output queue, at which point the Aspen runtime
delivers it to the default input queue of the reduction module in-
stance r, as described in the flow section of the root module.
Statement S16 shows an object being dequeued. Note that in
both cases the developer of the action module containing the send
and dequeue does not need to know what the external routine
will do with the object, how and where it is transmitted, or that
the object will be involved in collective communication. Instead,
the programmer only needs to follow the contract of the specifi-
cation for the output queues of the module instance being coded.
Thus the effects of the communication are encapsulated. Finally
in S17, the actual data is extracted from the Aspen’s envelope by
using getPayload.

Although not used in the above example, Aspen also supports
modules with multiple input and output queues. These must be
declared separately by name. Any output queue may be specified
as the source of a flow, and any input queue may serve as the sink.
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3. ASPEN’S IMPLEMENTATION OF
COLLECTIVE COMMUNICATION

This section describes the algorithms and implementations used
by Aspen for its collective communication operations. Because of
its flowchart-style of programming, Aspen naturally targets both
traditional and non-traditional collective communication uses and
algorithms. For example, Aspen naturally allows asynchronous
collective communication, as well as collective communication op-
erations where the data must be sent to nodes other than the partic-
ipants.

3.1 All-reduce Implementation
The program in Figure 3(a) is compiled with a hostfile contain-

ing names of 8 nodes, binding two Chemicalmodule instances to
each node. After parsing the flow statement S6 and the hostfile,
the compiler inserts a Reduce module on each node and connects
that to the Chemical module instances and the network I/O mod-
ules. Within a cluster node, Aspen performs an all-reduce using
either a serial reduction or a local reduction using the algorithm of
section 2.1, depending on whether the number of cores or proces-
sors in a node makes the binary tree algorithm worthwhile1. Across
nodes, Aspen uses the butterfly algorithm of Section 2.1.

3.2 Reduce Algorithm
Because collective reductions in Aspen can take many forms,

Aspen requires an efficient general algorithm to deal with vari-
ous cases. The algorithm specified here deals only with reductions
across the cluster nodes; operations within a node are processed lo-
cally on that node. Figure 4 illustrates the general algorithm below
using a specific example.

Call P the set of nodes that are participants in the reduction and
R the set of receivers. Further split R into Rp and Rnp to represent
the receivers that are participants and receivers that are not partic-
ipants. Note that for a traditional collective reduction, R consists
of just one element of P , while traditional all-reduce has R = P .
Aspen allows R to include not only arbitrary subsets of P , but also
members that are not in P . The participants should be assigned
numbers from 1 to |P | so that participants in Rp have lower num-
bers than those that are not receivers. Any receivers that are not
in P should be assigned successively higher numbers. In Figure 4,
the participants are the nodes numbered 1 to 8, while the receivers
are nodes 1, 2, 9, 10, and 11.

If |P | is not a power of 2, calculate the value ρ which is the great-
est power of 2 less than |P | (ρ = 2blog2 |P |c). Have the elements
of P with a number greater than ρ send to the lowest-numbered
nodes in the system, as in the all-reduce algorithm. That is, each
node with number X greater than ρ should send its data to the node
numbered X − ρ so that the lower-numbered node can perform a
reduction of its own data and the higher-numbered node’s data. Re-
move the higher-numbered participants from P . If any members of
Rp are removed from P , remove them from Rp as well and add
them to Rnp.

At this point, |P | is a power of 2. The following steps will
perform the reduction algorithm, providing the results first to re-
ceivers in Rp and then to receivers in Rnp. While |P | ≥ 2 ×
max(|Rp|, |Rnp|), the higher-numbered half of the participants
should communicate to the lower-numbered ones. The higher-
numbered participants should then be removed from P , and this
step should repeat until |P | is less than the desired threshold.
Round 1 of Figure 4 shows this stage of the algorithm.

1Our current implementation uses a serial algorithm.

At this point, the remaining nodes in P should perform the but-
terfly algorithm among themselves. In the last step of the butterfly
algorithm, keep only the links leading to the first max(|Rp|, |Rnp|)
number of nodes (or |P |, whichever is less). The rest are unneces-
sary, since they lead to non-receivers and will not be used to provide
data to non-participant receivers. Rounds 2 and 3 of Figure 4 show
this stage. Note that the butterfly algorithm would normally include
a link from node 2 to node 4 in the last stage, but this is eliminated
here.

At this point, all receivers in Rp have their needed results; addi-
tional nodes may also have the values as needed to propagate them
efficiently to Rnp. The nodes in Rnp should receive their values
from the nodes that have the result values, either directly or through
concurrent tree-structured broadcasts starting from each node that
has the value. Round 4 of Figure 4 shows Rnp directly receiving
values from participant nodes; additional sends in a tree-structured
broadcast fashion would be needed if Rnp had more members than
P .

The algorithm specified here generalizes to any arbitrary partic-
ipants and receivers, forming a simple tree-structured reduction if
there is only one receiver or a butterfly if R = P . In general, the
maximum number of stages is 2 + log2b|P |c if |Rnp| ≤ |P | (1 for
the initial reduction to a power of 2, log2b|P |c for the reduction,
and 1 for sending to non-participants), or 2 + log2b|Rnp|c when
|Rnp| > |P | (to account for additional steps in propagating results
to members of Rnp).

3.3 Concurrent Reduction.
The above examples show the syntax for specifying collective

communication operations in Aspen, but do not show the full power
of Aspen collective communication. We now illustrate by means of
an example some of the advanced functionality of Aspen collective
communication.

Figure 5 shows how Aspen allows two reduces to be performed
concurrently, and on overlapping sets of module instances, without
needing to use different communicators or groups, as would be the
case in MPI. Statements S6 and S7 specify input and target modules
for the reduction, unlike the all-reduce r shown in Figure 3. State-
ment S6 specifies that all the module instances of the Parallel
module are inputs to the reduce r1, with the result of the reduce
sent to the default input queues of module instances p[0] and
p[2]. Statement S7 specifies that module instances p[1] and
p[2] are participants in reduce r2, with the results of r2 being
sent to the default input queue of module instance p[3]. Specify-
ing a reduction target that is not a participant in the reduction, as we
have done here, would be very cumbersome in MPI. Statement S12
declares an output queue named outQueue1, and each instance
of Parallel has its own private outQueue1.

The receivers of the value produced by the reduction can differ in
both the number of instances and in the type of the instances from
the modules that feed into the reduce operation. Because Aspen
communication is specified as a unified global operation rather than
being constructed piece-wise from many specifications distributed
throughout the program, and because the compiler understands the
semantics of the communication operations, it is not necessary to
specify something analogous to an MPI Communicator. Instead
of needing a global object to specify this, the Aspen compiler can
compute the module instances involved in the communication on
an operation-by-operation basis. The programmer does not need
to know any concepts of group communication or membership; the
programmer simply needs to send the appropriate data on an output
queue.

The reductions in this example are initiated in the run procedure
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Figure 4: Aspen’s Reduce Algorithm.

S1: Module Main is Root requires Module Parallel,Module Reduce {
S2: void initialize() {
S3: Parallel p[4];
S4: Reduce r1, r2;
S5: flow :
S6: p ||| r1(sum) ||| p[0], p[2];
S7: p[1:2].outQueue1 ||| r2(multiply) ||| p[3];

}
}

S8: Declare Module Parallel {
S9: data_section {
S10: double *send_buffer1, *send_buffer2;

}

S11: Output:
S12: Output Queue is outQueue1;

}
S13: Module Parallel {
S14: void run() {
S15: QueueElement qs1, qs2, qr1, qr2;

. . .
S16: qs1 = QueueElement(new ChemicalPayload(send_buffer1, count));
S17: qs2 = QueueElement(new ChemicalPayload(send_buffer2, count));
S18: send qs1;

. . .
S19: send qs2 on outQueue1;

. . .
S20: qr1 = dequeue();

. . .
}

}

Figure 5: Example of concurrent reduces in Aspen

of the Parallel function. An instance of Parallel will join,
or initiate, the reduction r1 by executing statement S18, whose
syntax is similar to that of statements S14 and S16 in Figure 3.
The instance of Parallel will join, or initiate, the reduce r2
by executing statement S19, which sends data on the user defined
outQueue1. Aspen knows what reduce is being initiated be-
cause it knows, from the flow statement in the root module, which

����

Figure 6: Communication graph of Concurrent Reduce.

queues are bound to which reduce operation. Statement S20 ob-
tains the result of the reduction r1 for p[0] and p[2] and result
of the reduction r2 for p[3]. Note that the syntax of the send
and dequeue statements are the same regardless of the type of
collective or point-to-point communication being performed. This
is part of Aspen’s encapsulation of parallelism.

Because sending data to a reduce and receiving data from a re-
duce are performed as two different operations, the operation is
inherently asynchronous. This allows a programmer to insert inde-
pendent computation between the enqueue and dequeue operations,
thus overlapping collective communication with computation in a
natural, syntactically clean way. Although some proprietary and
research MPI implementations support this feature (for example,
IBM’s iReduceAll operation, or Open Systems Laboratory’s
LibNBC [14]), we know of no widely-used implementation that
does.
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Figure 7: Aspen Module-Dependence Graph.

Aspen also tries to load balance the communication graph using
a greedy heuristic that keeps track of the number of edges coming
in and out of a node. For example in Figure 6, after building the
communication graph for reduction r1, either node 1 can send data
to node 2 or node 2 can send data to node 1. If node 2 sends data to
node 1, communication at both nodes is serialized and node 2 has
to do more computation. If node 2 sends data to node 1, then we
have an efficient graph because node 1 can send and receive data
at the same time using the duplex communication channel. This
load-balance heuristic is evaluated in the experimental section.

If each node runs one instance of the Parallel module, the
compiler uses the optimized communication graph plus the flow
statement to generate a module-dependence graph as shown of Fig-
ure 7 for the parallel reduce example in Figure 5. Aspen also op-
timizes this graph by eliminating reduce modules that simply pass

information from one input to one output; for example, node 1 sim-
ply has module p[1] directly connected to N’s input queue. The
messages are tagged with the destination reduction (i.e. r1) so that
the message can be routed appropriately. Eliminating modules re-
duces the number of threads in a program and can greatly reduce
the context-switch overhead.

Applications whose MPI implementations use inter-
communicators would be natural fits for the advanced collectives
in Aspen; an example is 3-D FFT. A 3-D FFT can be split into
three one-dimensional FFT’s performed along all data points.
The data can be distributed block-wise (blocks of xy-planes). A
pipeline scheme can be used for the communication. In Aspen,
as soon as the first data elements, i.e. planes, are ready, their
communication is started in a non-blocking way. Also, as shown
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in [32], non-blocking collective communication can give up to
34% better performance for conjugate gradient.

4. EXPERIMENTAL EVALUATION
This section reports the performance achieved by the distributed

Aspen implementation. The first set of results demonstrates
application-level performance, while the second set allows the
analysis of the performance of various point-to-point and col-
lective communication operations in Aspen. Both sets of re-
sults compare Aspen with MPI; the MPI implementation tested
is MPICH 2-1.0.5, and both Aspen and MPI communicate across
cluster nodes using TCP sockets. MPI was configured to use the
shared memory channel for the shared memory tests (using the
-with-device=ch3:shm option) and to use the default chan-
nel (-with-device=ch3:sock) for distributed tests.

The application-level and microbenchmark tests all consider per-
formance on both shared-memory systems with up to 4 cores and
distributed-memory cluster systems with up to 16 cores (2 cores
per node). The shared-memory tests use a system with 2 AMD
Opteron dual-core processors (4 cores total) running at 2.2 GHz
and with 4 GB of DRAM. The cluster tests use several identically-
configured machines with a dual-core 2.8 Ghz Intel Xeon proces-
sor with 4 GB of DRAM. The cluster is interconnected using Gi-
gabit Ethernet, the most commonly-deployed cluster interconnect
(including 40% of the Top500 list [1]). All machines use Linux 2.6
and the x86-64 architecture. All tests use the Aspen compiler, and
the resulting C++ code is compiled by g++ compiler.

4.1 Application-level Performance
This section discusses the results of testing the distributed Aspen

system using the rubber chemistry modeling application. This sys-
tem is used to model the vulcanization process of rubber [33, 11].
The total execution time of the runtime phase is recorded to evalu-
ate the performance. The models used were developed as part of an
ongoing project in predicting the properties of rubber compounds.

We implemented the chemical application using the distributed
Aspen system described in Section 3 and tested it both on shared
memory and distributed memory systems. This application spends
almost 80 percent of its time in a routine that solves ordinary
differential equations (ODE), and has a high computation-to-
communication ratio. The performance results seen by Aspen are
comparable to those achieved with MPI, showing that Aspen’s in-
creased level of abstraction and generality of allowed communica-
tion patterns does not exact a performance penalty.

On a single core of the shared-memory platform described
above, the ODE solver routine took 53 microseconds per call in
the MPI implementation at the highest optimization level that im-
proved performance (-01), and 128 microseconds without opti-
mization. Architecture specific optimization flags did not help per-
formance. The Aspen implementation took 54 microseconds per
call to this routine when compiled using gcc without optimization,
and no optimization level for gcc reduced this time.

Figure 8 (a) shows how the application scales with an increasing
number of threads. The graph shows three configurations: MPI-O0,
MPI-O1, and Aspen; the MPI suffixes are the gcc optimization
levels used to compile the application. Aspen was always com-
piled at -O0, as stated above. This graph shows speedup relative
to a single thread running MPI-O0 as a function of the number of
threads. The Aspen implementation has performance indistinguish-
able from that of the MPI-O1 version. Both of these versions have
linear speedup with up to 4 threads.

When tested on a single core of the distributed memory platform,
the ODE solver routine took 177 microseconds per call in the MPI

implementation with no optimization, 118 microseconds with ei-
ther of the “-O1” or “-march=nocona” optimization flags, and
62 microseconds with both general and architecture-specific tun-
ing. The Aspen implementation took 58 microseconds and was
unaffected by general purpose and architecture-specific optimiza-
tions.

Figure 8(b) shows the performance speedup of the application
running on up to 8 cluster nodes; each cluster node has two threads
running on it (one for each core). There are five configurations
shown on this chart, one for Aspen and four for MPI (based on
whether or not each of general or architecture-specific optimiza-
tions were turned on). The Y axis is normalized to the performance
of MPI with no optimizations running on two cores (one node).
For Aspen and the fully-optimized MPI, this application sees per-
formance scalability linear in the number of threads, with Aspen
performing slightly better than the fully-optimized MPI because of
the smaller time spent in the ODE solver routine.

4.2 Microbenchmark Performance
Microbenchmarks were implemented to test basic send/recv

type communication, and collective communication. AllReduce
was used to test collective communication because it is widely used
and is part of our chemistry application. All parameters of the hard-
ware and software (including the operating system) were identical
for the MPI and Aspen tests. The Microbenchmarks are:

• Ping-pong latency test: measures the round-trip latency by
timing how long it takes for a message to arrive at node A
after being sent from node A to node B, and then back to
node A;

• AllReduce latency test: measures the latency of the
AllReduce collective operation;

• Bandwidth test: measures the effective bandwidth of a com-
munication channel by having one node send and one node
receive as fast as possible.

• Concurrent Reduce and Load-Balancing test: measures the
efficiency of the concurrent reduce and the load balancing
heuristic proposed in Section 3.3

Figures 9 (a) and (b) show the ping-pong latency test on shared
memory and cluster environments, respectively. The latency re-
ported is the round-trip time as a function of the message size in
bytes. The latency of both MPI and Aspen are indistinguishable in
the cluster environment. However, the latency seen with Aspen is
substantially lower than that seen with MPI in the shared-memory
environment since Aspen is able to communicate using a more effi-
cient threaded implementation with shared-memory queues, while
MPI uses a process model and inter-process communication, since
that is its only way to enforce distributed-memory semantics.

Figures 10 (a) and (b) show the AllReduce latency as a func-
tion of the data size in bytes for both shared-memory and cluster
environments, respectively. In the case of shared memory, Aspen
sees slightly lower latencies because of its faster inter-thread com-
munication. For distributed memory platforms, Aspen performs
competitively with MPI.

The bandwidth test is performed only in the cluster environment,
with Gigabit Ethernet connections. Figure 11 shows the bandwidth
achieved by MPI and Aspen as a function of the message sizes in
bytes. Aspen and MPI have almost the same performance. MPI
sees a small dip in bandwidth for 256 KB messages because of
the protocol switch from eager (short message protocol) to ren-
dezvous (long message protocol) where data is sent to the receiver
only when the receiver asks for it.

Figure 12 shows the performance achieved by Aspen’s ability
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Figure 9: Ping Pong Latency

to specify concurrent reductions and the load balancing technique.
There are four plots: MPI is the example in Figure 5 coded in MPI.
MPI-style Aspen is an Aspen program coded in MPI-style. Both
of those versions use blocking tree-based Reduce algorithms fol-
lowed by a broadcast if there are multiple receivers. Aspen-parallel
is the program in Figure 5 with load balancing disabled and Aspen-
parallel-load-balanced is the same program with load-balancing
enabled. The Aspen-parallel program is more than twice as fast as
the MPI or MPI-Style Aspen programs. The load-balancing opti-
mization in particular provides a maximum performance improve-
ment of 25%

5. RELATED WORK
Section 2 discusses the works most closely related to this paper.

5.1 A sampling of related collective
communication research.

The development of efficient collective communication opera-
tions has a long history. Much of the work has been guided by
the MPI and MPI-like libraries. Collective operations are critical
for high performance computing [20, 22, 8, 21]. The references
in [20] covers much of the major work done in collective com-
munication optimization. However none of those works deal with
asynchronous collective communications. Brightwell et al. provide
useful data to show the importance of non-blocking collective com-
munication but do not describe an implementation [4]. Hoefler et
al. describe LibNBC, which implements non-blocking collective
operations for MPI as a library [14]. An earlier work by the same
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authors presents some transformations to MPI programs to achieve
the computation-communication overlap that can be naturally ex-
pressed with Aspen [13].

5.2 Languages for parallel programming

Program composition languages and models.
There have been a variety of languages and models that com-

pose programs out of concurrently executing components. Lan-
guages include StreamIt [28, 29] which targets streaming media
applications. Like Aspen it communicates via channels and has
been ported to a cluster environment. Unlike Aspen, which deals
with unpredictable latencies and work arrival rates, StreamIt is syn-
chronous. StreamIt also does not directly include collective opera-
tions.

Aspen was originally developed for network servers, as were
Flux and SEDA [6, 31]. Aspen allows back-edges in the flow graph,
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Figure 12: Concurrent Reduce and Load Balancing perfor-
mance

unlike Flux. Aspen is programmed in a sequential fashion, and only
Aspen has a cluster implementation or collective operations.

Dataflow languages and languages for distributed computing tar-
get the expression of parallelism (e.g. [2, 12, 25, 26] or commu-
nication across processes (e.g. [26, 27, 30]. However, they do not
address the issues of changing communication primitives to accom-
modate and optimize for different execution environments, nor do
they abstract the communication structure from the logic of the pro-
gram.

Languages for data parallelism.
Brook targets graphics applications and hardware, allowing pro-

grammers to explicitly specify vector data types and arithmetic op-
erations, as well as explicit communication primitives [5]. Pro-
grams include parallel functions (called kernels), primitives, and
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user-specified reductions, but use function calls rather than a flow
graph to specify parallelism. Brook has not been ported to a cluster.

HPF [16, 17] allows a programmer to specify a sequential pro-
gram with distribution primitives, but the compiler was responsible
for detecting parallelism. Consequently, HPF does not expose col-
lective operations to the user.

5.3 Shared-address space models
Cluster OpenMP [15] allows specification of parallelism with

a shared memory, relaxed consistency model on a cluster. Like
OpenMP, Cilk [3, 10] targets shared memory machines, communi-
cation is implicit, and through shared memory. Parallelism is cre-
ated by spawning new threads, and Cilk has support for algorithm
analysis. Linda [7] communicates through a tuple space, with tuple
keys potentially accessible to all threads. UPC and Co-Array For-
tran represent PGAS (partitioned global-address space) languages,
with inter-thread communication enabled by explicitly identified
shared-memory operations and affinity of data to threads [19, 24].
Like OpenMP, they facilitate the incremental parallelization of
large-scale codes and suffer from the problems of shared memory.
Aspen differs from all of these in having a shared-nothing program-
ming model and parallelism expressed as a flow graph.

6. CONCLUSIONS
Aspen provides high-level communication abstractions that al-

low concrete descriptions of communication patterns to be made
available to the compiler, runtime, and developer doing code main-
tenance. Additionally, programmers of the sequential logic of the
program can be oblivious to these concrete patterns, only needing
to know that a desired data object can be found on a named queue.

Aspen’s communication semantics allow for direct and efficient
implementation of asynchronous, concurrent, and arbitrary collec-
tive communication operations. The computational logic of any
given subtask of the program need not know whether it is connected
to a collective communication module or any other, so code may be
reused in different contexts as long as it obeys the basic software
contract associated with the sends and receives on the module’s
explicit communication channels. The underlying collective oper-
ations may be implemented using any arbitrary algorithm without
affecting user code. In particular, this paper presents a new and ef-
ficient algorithm for collective reduction operations with arbitrary
participants and arbitrary receivers, as well as optimizations that
target concurrent reduction operations.

This paper evaluates Aspen’s support for collective communi-
cation using a chemical simulation code and microbenchmarks.
The results show performance competitive with, or better than
MPI on point-to-point and collective communication in both shared
memory and distributed environments using the chemistry appli-
cation and micro-benchmarks. Additionally, the results show that
a load-balancing optimization targeting concurrent reductions can
improve performance by up to 25%.

Aspen’s collective communication semantics allow operations
that are (i) more flexible than the MPI communication primitives
in allowing computation and collective communication to be easily
overlapped, (ii) are simpler than MPI 2 in allowing different sets
of processes to be producers and consumers of data in collective
operations, and (iii) provide a higher level of encapsulation of the
sequential logic within a procedure from the overall structure of a
program than does MPI. All of these benefits come without loss of
portability since the same code can be used in both shared-memory
nodes and distributed-memory clusters, with the compiler deciding
how to allocate module instances to different nodes and how com-
munication channels should actually be implemented. Further, this

additional flexibility, portability, and maintainability comes with-
out any degradation in performance in our tested benchmarks.
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