
Efficient High Performance Collective Communication for
the Cell Blade ∗

Qasim Ali
School of Electrical and
Computer Engineering,

Purdue University
West Lafayette, IN 47907

qali@purdue.edu

Samuel P. Midkiff
School of Electrical and
Computer Engineering,

Purdue University
West Lafayette, IN 47907
smidkiff@purdue.edu

Vijay S. Pai
School of Electrical and
Computer Engineering,

Purdue University
West Lafayette, IN 47907

vpai@purdue.edu

ABSTRACT
This paper presents high-performance collective communication
algorithms and implementations that exploit the unique archi-
tectural features of the Cell heterogeneous multicore processor.
This paper specifically describes novel algorithms for the barrier,
broadcast, reduce, all-reduce, and all-gather collective operations,
and shows the efficiency of these by comparing them to the previ-
ous fastest known implementations of these operations targeting the
Cell. The new implementations are faster than the published state-
of-the-art, achieving up to 19.21 times the performance (95% re-
duction in latency) of the previous published collective communi-
cation work for the Cell [19, 25]. The results presented show per-
formance both within a chip and across the two Cell chips on a Cell
blade [10].

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Parallel programming

General Terms
Algorithms, Performance, Design,

Keywords
Collective communication, algorithms, reductions, Cell processor

1. INTRODUCTION
Accelerator-based computing has proven to be an effective

paradigm for achieving high performance, power-efficiency, and
space-efficiency, with examples such as the Roadrunner petascale
machine that includes Cell processors [1]. A Cell processor con-
tains a single general-purpose 64-bit PowerPC processor (the PPE),
which is a dual-issue in-order RISC core, along with eight special-
purpose high-performance SIMD processors called synergistic pro-

∗This work is supported in part by the National Science Foundation
under Grant Nos. CCF-0325603, CNS-0509390, CCF-0532448
and CNS-0751153.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICS’09, June 8–12, 2009, Yorktown Heights, New York, USA.
Copyright 2009 ACM 978-1-60558-498-0/09/06 ...$5.00.

cessing elements (SPEs). The first-generation Cell has a peak
performance of 204.8 Gflops for single-precision and 14.6 Gflops
in double precision mode [12]. The second-generation Cell has
102.4 Gflops peak performance in double precision mode [10].

Cell processor features that can affect the performance and struc-
ture of both communication operations and computations are the
limited storage that each SPE can directly access (the on-chip local
store, which has only 256 KB of SRAM per SPE), DMA opera-
tions that are the primary mechanism to transfer data, and dedi-
cated hardware communication registers called mailboxes and sig-
nal notification resigters [16]. We explore the use of these fea-
tures using collective communication operations, since achieving
high performance for both kernels and full-scale applications re-
quires efficient communication, and collective communication is
a particularly important and time-consuming class of communica-
tion [22]. Achieving efficient implementations of collective oper-
ations requires attention to algorithmic and hardware issues, and
their interplay. This paper shows how designing algorithms and
implementations to properly utilize unusual hardware features is
extremely important to achieve the highest levels of performance,
following in the vein of prior work on platforms like the Cell and
BlueGene/L [4, 19, 20].

This paper makes two broad contributions. First, the paper
presents detailed descriptions of five new algorithms and their im-
plementations, targeting the common collective communication
operations barrier, reduce, broadcast, all-gather and all-reduce.
These algorithms are tuned to architectural features and resource
limitations of the Cell so as to minimize communication latencies.
In describing the implementations in detail, the impact of the on-
chip and off-chip interconnects on both concurrency and data traffic
in each stage of all of the algorithms is considered. The algorithms
are designed keeping in mind the hierarchical network of the Cell
Blade, i.e., the fast on-chip network and relatively slower off-chip
network. The new strategies include mailbox-based barrier and re-
ductions, optimized binomial broadcast, hybrid segmented bino-
mial broadcast, and hybrid all-reduce and all-gather algorithms to
improve performance within the Cell’s constraints on concurrency
and data traffic. It is our intention that our algorithms (which are
currently the fastest we know of) and our use of Cell features will
be useful to developers of general applications on the Cell, and to
developers of other communication patterns on the Cell. We note
that as large numbers of even general-purpose cores are placed on
a chip, on-chip bandwidth between cores and bandwidth between
chips will increasingly be bottlenecks, leading to trade-offs similar
to those we explore on the Cell.

Second, the paper reports performance results for our new al-
gorithms, and compares them to earlier algorithms on the IBM
BladeCenters QS20, QS21, and QS22, all of which include two

Cell processors for a total of 16 SPEs [10]. The results also com-
pare the new schemes against the Cell Messaging Library (CML)
and Buffered Mode MPI (BMM), both of which target the Cell [19,
25]. The new algorithms achieve substantial performance improve-
ments against the existing schemes, with performance up to 19.21
times faster than CML (95% less latency) and up to 5.1 times faster
than BMM (80.4% less latency) both within a chip and in a blade
consisting of two Cell processors. Interestingly, our results also
show that mailbox and signal communication registers are not a
key to high performance since the Cell supports efficient DMA-
based communication between the local store memories of the var-
ious SPEs, each inbound mailbox only has a limited number of en-
tries (4), and the 32-bit size of each mailbox entry forces additional
messages and ordering constraints to support the 64-bit addresses
used in the Cell. The outbound mailboxes and signal registers can
hold one entry only. Our new hybrid all-reduce algorithm achieves
up to 15% less latency than the current state-of-the-art all-reduce.
Our new hybrid all-gather achieves up to 35% less latency than the
state-of-the-art all-gather algorithms. The results validate the new
communication strategies (including hybrid variants), showing that
it is important to consider both concurrency and data traffic when
designing on-chip or inter-chip communication algorithms. The
implementations described provide the fastest collective communi-
cation methods for the Cell at the time of writing this paper.

2. CELL ARCHITECTURE AND
COMMUNICATION OVERVIEW

This section describes the Cell and features that are germane to
designing efficient collective communication on the Cell. A sim-
plified illustration of the Cell architecture can be found in Figure 1.

2.1 Element Interconnect Bus and
Broadband Interface Unit

The PPE and all SPEs communicate through an on-chip high-
speed interconnect called the Element Interconnect Bus (EIB). The
EIB has a vast amount of data bandwidth (204.8 GB/s) and is
the communication path for commands and data between all pro-
cessor elements on the Cell processor and the on-chip controllers
for memory and I/O. It consists of a shared command bus and
a point-to-point data interconnect. The command bus distributes
commands, sets up end-to-end transactions, and handles coherency.
The data interconnect consists of four 16-byte-wide rings, with two
used for clockwise data transfers and two for counter-clockwise
data transfers. Each ring potentially allows up to three concurrent
data transfers, as long as their paths do not overlap. Therefore the
EIB can support up to 12 concurrent transfers. To initiate a data
transfer, bus elements must request data bus access. The EIB data
bus arbiter processes these requests and decides which ring will
handle each request.

Each processor element has one on-ramp, and one off-ramp, to
the EIB. Processor elements can transmit and receive data simulta-
neously. Figure 1 shows the unit ID numbers of each element and
the order in which the elements are connected to the EIB. The con-
nection order is important to programmers seeking to minimize the
latency of transfers on the EIB, as transfers can range from nearest-
neighbor (e.g., SPE6 to SPE4) to 6-hop latencies (e.g., SPE1 to
SPE6).

The on-chip Cell Broadband Engine interface (BEI) unit pro-
vides two interfaces for external communication. One of the two
interfaces supports only a non-coherent I/O interface (IOIF) proto-
col, which is suitable for I/O devices. The other is the Broadband
interface (BIF), used for communication between two Cell proces-

������������	
����
���������������������

���

����	�

���

���� ���� ���� ����

���� ��� ���! ���"

��#

��$

�

�

�

" � % ��

� � �

��

�

�

!

���& ��'�	�(�
���)�*��������

���&����	��)���	+,
��
���	����	

���&�	�,-.,�-���*)���)���	+,
�

��$&�	�,-.,�-�)���	+,
�

�������

/��

��0�	�

��������

�0��

��,-��

��	1�	

Figure 1: Cell Architecture Overview.

sors on the same blade. The BIF multiplexes its bandwidth over
four rings of the EIB. The bandwidth of the BIF is 80% less than
the EIB, so inter-chip communications are much slower than intra-
chip communications.

2.2 Synchronization and communication
mechanisms

The Cell provides several mechanisms for inter-SPE communi-
cation and synchronization. The privileged software on the PPE
can map SPE local store addresses and certain MFC resources (e.g.,
mailboxes) to the main address space, enabling the PPE or other
SPEs in the system to access these resources [16]. Such mapping
allows each SPE to have knowledge of the other SPEs’ local store
addresses and can be used for efficient inter-SPE communication
or synchronization.

Each SPU also has a set of mailboxes that can function as a nar-
row (32-bit) communication channel to the PPE or another SPE.
Each SPU has a four-entry inbound FIFO mailbox. Reading an
empty mailbox will block; however, writing into a full mailbox of
another SPE will simply result in losing the last entry (the PPE can
opt to block on a write to a full mailbox). Each SPU also has signal
registers, which can also be used for communication.

Simple microbenchmarks show that inter-SPE communication is
equally fast for 32-bit quantities transferred using mailboxes, signal
registers or memory-mapped local store addresses, with a round-
trip time (RTT) of 150 ns. A 64-bit data transfer is equally fast
using memory-mapped local store but takes two messages (for a
300 ns RTT) when using mailboxes or signal registers. However,
an advantage of using mailboxes and signal registers is that they
use dedicated hardware registers, allowing all of the local store to
be used for program data rather than synchronization.

3. IMPLEMENTATION OF COLLECTIVE
COMMUNICATION ALGORITHMS

Targeting synchronization and collective communication opera-
tions for the Cell requires a careful consideration of the available
communication mechanisms, the concurrency allowed by any spe-
cific algorithm, and its impact on interconnect traffic. This section
describes, in detail, five new algorithms and and their implemen-
tations to support efficient barrier, reduce, all-gather, broadcast,
and all-reduce operations. We compare these, and other algorithms
we developed (but do not describe in detail for space reasons), to a
range of existing algorithms in Section 4.

3.1 Setup and Notifications
In all the algorithms, the PPE spawns the threads (using the

pthreads library) on the SPEs and then determines the physical
SPE ID for each running thread. All communication is based on the
physical SPE ID rather than the logical thread ID, since communi-

�����

���	
��

���	
��

���	
��

�
�

�

�

�����������	��	������	��

���	

�

�����������	��	�

������������	
�

�����	��������	�

����������

����

�

�
�

�� �������	��	�

�����	�����	

�� �������	��	�

������������	
�

��!���"�

�#

��!���"
���#
��!���"�� #

�$%

����� ����� �����

Figure 2: Local store based communication.

cation latencies depend on physical SPE assignment. This policy
ensures that an algorithm achieves consistent results regardless of
the resource allocation decisions made by the scheduler. In all the
figures, numbers inside a circle represent the physical SPE ID, cor-
responding to the locations on the chip shown in Figure 1.

Following the technique mentioned in Section 2, privileged PPE
software maps the SPE local stores and MFC resources into the
address space. The PPE code then sends these addresses to all of
the SPEs so that they can communicate via inter-SPE DMAs with-
out going through the PPE or main memory. The PPE is no longer
involved once the threads are initiated.

Almost all the algorithms require pairs of SPEs to establish some
notification protocol to announce when an SPE is ready to provide
data or when an SPE has completed a data transfer. Mailbox mes-
sages may be used for this purpose, with the caveats (mentioned
in Section 2) that the number of messages is limited and that each
message is only 32 bits. Alternatively, SPEs may maintain noti-
fication arrays in their local store. Each notification array has x
entries, where x is the number of SPEs participating in a partic-
ular collective. Each notification array entry uses 16 bytes and is
written into by atomic DMAs. These arrays are used for address
(ADDR) communication and acknowledgments (ACKs) between
the SPEs in a lock-free manner [9]. Figure 2(a) shows the work-
ing of these for a simple binomial-tree based reduce. Although
notification arrays allow general communication patterns, they do
consume a non-negligible amount of local store; each 16 SPE col-
lective typically requires an address array and an acknowledgment
array, for a total of 512 bytes. Codes with multiple, possibly over-
lapping, collective calls must have several such arrays, which can
be significant given the capacity limitations of the local store. In
contrast, mailbox and signal communication use dedicated hard-
ware registers and consume no local store.

3.2 Limitations of Mailbox and Signal
Communication

To explore the impact of mailbox and signal registers on collec-
tive communication, we implemented a barrier using signal regis-
ters and mailboxes and a reduction using mailboxes.

Barrier implementation. To achieve a barrier, each SPE can
send an acknowledgment (ACK) message to one particular SPE,
say SPE 0. Once SPE 0 gets the ACKs from all participating SPEs,
it sends an ACK to the SPEs indicating that all the SPEs all syn-
chronized. Using mailboxes in this solution, however, will not
work with more than four SPEs because each SPE has only four
entries in its read inbound mailbox queue. Nevertheless, by per-
forming the barrier in steps, a barrier can be implemented over all
SPEs without overflowing any mailboxes. Figure 2(b) shows eight
SPEs synchronizing among themselves. The signal registers allow

����

����	�
���	������	�
������

Figure 3: Mailbox based Barrier algorithm for 8 SPEs.

�������

�������

������	

�
��
�

������������

�

	 �

������������������������

�
����
�������������

�������������

�
���

�

��������� ���������

��!"����

�������

�������

�������

Figure 4: Mailbox-based binomial reduce.

a method to avoid the mailbox overflow problem using their “wired
OR”-mode. Thus, we can implement a one-to-all (OTA) barrier
using signal registers.

Reduction implementation. We also implemented mailbox-
based (using inbound mailbox) reductions in which the ADDR and
ACK transfers described in Section 3.1 are done using mailboxes
rather than arrays in the local store. As shown in Figure 4, the ACK
is a single message, but the 64-bit address takes two mailbox mes-
sages; these are ordered using a fence. Beyond this, however, there
must also be some mechanism to enforce atomic 64-bit writes into
each mailbox. For example, if node ni writes 32 bits of an address
to a mailbox, but node nj writes into the same mailbox before ni

can write the other half of the address, the mailbox entries for the
address being specified by ni would be separated and the address
would be corrupted. Such interleavings can be avoided by adding
a barrier between each step of the reduction so that nodes that have
already completed a round will not advance to the next round and
possibly interfere with nodes that have not yet completed the ear-
lier round. This barrier also eliminates any possibility of mailbox
overflow since there are only two messages written to each mailbox

Figure 5: Recursive distance doubling (rdb) algorithm.

between barriers. The cost, however, is increased latency caused by
multiple barriers during a reduction.

Both mailbox-based implementations thus see additional con-
straints caused by mailbox capacity and ordering requirements
when compared to communication via local store. Section 4 eval-
uates the impact of these considerations. Signal registers have lim-
ited applicability and also have many of the same contraints as
mailboxes.

3.3 All-gather Algorithms
All-gather semantically consists of a gather followed by a broad-

cast. Implementing it as such would take 2 × log2 p communica-
tion rounds for a power-of-two number of nodes p. In contrast, the
highly concurrent recursive doubling (rdb) all-gather completes in
log2 p rounds by exploiting full-duplex communication [22]. Fig-
ure 5 shows rdb with 8 nodes, with each stage requiring 8 data mes-
sages. Note that for non-power-of-two p, rdb requires blog2 pc+ 2
rounds to pass information from and send results to the excess
nodes.

We have developed a hybrid version of the all-gather collective
for the sixteen SPE (two chip) scenario. In this case, rdb requires
sixteen data messages in each stage. If the lower-numbered SPEs
are on one chip and the higher-numbered ones are on another, the
last round will require sixteen data messages to cross the Broad-
band Interface (BIF), which has far less bandwidth than the on-chip
EIB. (If the SPE numbers are spread out between the chips, there
will be BIF traffic at every round.) In contrast, using gather plus
broadcast only requires two data messages to cross the BIF: one
at the end of the gather and one at the beginning of the broadcast.
Previous works argue that the number of BIF messages should be
minimized [5, 19]. However, doing so may result in a loss of con-
currency, resulting in more communication rounds and ultimately
poorer latencies.

This paper presents a hybrid algorithm that seeks to find an ideal
compromise between the concurrency of rdb and the low traffic
of the gather/broadcast combination. For simplicity, consider the
case of p nodes where p is a power of 2. This algorithm starts by
performing some k rounds of binomial gather, leaving p

2k evenly-
spaced node IDs in the communication structure. At this point, the
algorithm switches to rdb all-gather until all of those p

2k nodes have
the results of all-gather. This takes log2 p− k rounds and results in
p

2k messages across the BIF if the lower half and upper half of the
nodes are on separate chips. Now, each of the p

2k nodes with the
result act as the root of binomial broadcast trees, requiring k more
rounds to give the results to all nodes. Thus, the total number of
rounds are log2 p+k and there are p

2k BIF-crossing data messages.
Figure 6 shows this algorithm working with 16 SPEs and switch-

ing to the rdb algorithm in the fourth communication round (k =

����

����	

����	�

����	�

����	

����	�

����	�

��������� ������

��������	���	
������������

���	��	����

���� ���	��	���������	���

����������������������������

����	�

����� ����	
 ����� ����	

����� ����	
 ����� ����	

Figure 6: Hybrid 4-2 all-gather (switching round=4,data mes-
sages across BIF=2).

3). For simplicity, this figure only shows the data messages; the
address exchanges and acknowledgments are handled as described
in Section 3.1. This algorithm starts with three rounds of binomial
gather and then switches to the rdb algorithm in the fourth round.
The number of data messages crossing the BIF is two. At the end
of the third round, SPE 0 has the left half of its receive buffer filled
with data from SPE0 to SPE7 and the right half is empty. Similarly,
SPE 8 has its right half filled up. At the end of fourth round, SPEs
0 and 8 have the results of the all-gather (shown as dark circles in
the Figure 6), and each will act as the root of an eight node sub-
binomial-tree. An eight node binomial-tree broadcast finishes in
three rounds. Hence with a total of seven rounds and two data mes-
sages across the BIF, the all-gather is complete with all the nodes
having the result of the all-gather.

This paper evaluates three realizations of this hybrid algorithm,
for 16 SPEs and k = 1, 2, 3. We call these hybrid-2-8, hybrid-3-4,
and hybrid-4-2, respectively. The first number indicates the round
in which the algorithm switches from the binomial tree gather to the
rdb. The second number indicates the number of BIF-crossing data
messages. These three versions take five, six, and seven communi-
cation rounds, respectively. Note that hybrid-1-16 corresponds to a
full rdb algorithm.

3.4 Broadcast Algorithms
We implemented optimized versions of two-to-all, binomial tree,

k-chains (k fanout followed by k chains [21]), segmented bino-
mial tree broadcast, and hybrid segmented binomial for the two-
chip (16 SPEs) scenario. Although there is nothing semantically
to stop a node from sending data addresses to all of its children
without waiting for acknowledgments, this may hurt performance.
In particular, it is important that child nodes with more successors
complete their DMAs before child nodes with fewer successors or
leaf nodes. Otherwise, an entire branch of the tree may have to
delay waiting for unrelated nodes to complete their DMAs. For
example, if SPEs 1, 2, and 4 in the binomial broadcast shown in
Figure 7, all get SPE 0’s address one after another, it is possible
that SPE 2 could tie up the DMA capacity of SPE 0’s local store
before SPE 1 gets a chance to perform its DMA. This in turn delays
SPEs 3, 5, and 7, all of which depend on SPE 1. To avoid this pri-
ority inversion problem, broadcast uses address-data-ACK phases
at each round as described in Section 3.1. As shown in Figure 7, at
the root level, SPE 0 first does a dma_put of the data address into
the dark-colored SPE 1 and waits for an ACK from it to indicate

��������	
������
��

������	��������

������������������

�
� �

��

Figure 7: Optimized priority-based binomial-tree broadcast

data transfer completion. After that SPE 0 does another dma_put
into the light-colored SPE 2, and so on. (Section 4 also evaluates
broadcast without waiting for ACKs at each round.) We also opti-
mized two-to-all, k-chains, and segmented binomial using the same
priority optimization.

Segmented binomial tree. For large data sizes, we implemented
a segmented binomial tree which consists of two phases. In the first
phase, the left half of the tree gets the left half of the data and the
right half of the tree gets the right half. In the second phase, the
left and right half nodes exchange their data. If the total number of
nodes is even, then the left subtree will have one more node than
the right subtree. In that case, the root node will provide the last
node on the left subtree with the right-half data.

For the 2-chip (16 SPE) scenario, for all the broadcast implemen-
tations the first communication round is between the root SPE on
one chip and a partner on the other chip; from that point on, each of
the two chips separately follows the broadcast tree for its 8 SPEs,
except for the segmented binomial, in which there are inter-chip
exchanges in the second phase.

Hybrid segmented binomial tree. For 16 SPEs, we imple-
mented a hybrid version of the optimized segmented binomial, in
which the root node sends all data to one representative node in the
second chip. Then the root node and the representative node on the
other chip do the same two-phase process as explained above for
the intra-chip (8 SPE) case. In Figure 8, the left half of the data
is shown as dark color (blue) and the right half is shown in light
color (red). Note that the number of messages crossing the BIF is
one in the first phase. In the second phase all the exchanges are
intra-chip. If the 16 SPE segmented binomial is implemented with-
out this optimization then the nodes on the left and right half would
exchange data in the second phase. All those data exchanges would
be inter-chip, resulting in 14 BIF-crossing messages.

3.5 All-reduce Algorithms
This paper considers three new forms of all-reduce. The first is

a specialized rdb that includes barriers to avoid overlapping data
transfers on the EIB. Then we also considered two novel forms of
all-reduce, HybridA and HybridB for 16 SPEs. HybridA is based
on binomial reduce, rdb all-reduce using a subset of the nodes, and

���

Figure 8: Phase 1 of hybrid segmented binomial-tree broadcast

binomial broadcast. HybridB is based on reduce-scatter (described
below) and hybrid all-gather.

A strictly rdb all-reduce completes in log2(p) steps since each
step has all nodes exchanging data with different partners. How-
ever, this causes a great deal of data traffic on the EIB and multiple
DMA accesses to the local stores of each SPE. EIB and local-store
contention can be controlled by inserting a barrier periodically. The
reason for choosing an inter-barrier separation of two rounds is as
follows: after the first round there are eight data messages over the
EIB (each SPE is doing a data transfer); after the second round
there are 16 = 8 + 8 data messages that have ever been initiated
on the EIB. Some of those transfers might not have been com-
pleted by the end of the second round, so there is a large proba-
bility that there would be more than twelve transactions in flight
or fewer than twelve but overlapping transactions. As indicated in
Section 2.1, the EIB only supports up to twelve concurrent non-
overlapping transfers. So, such a scenario will stress the EIB and
serialize the remaining data transfers. Note that ACK and address
messages also require time on the EIB; however, these messages
are small and finish early. Thus, they are unlikely to cause any
serious EIB contention.

We have developed two hybrid versions of the all-reduce collec-
tive for the sixteen SPE (two chip) scenario. We call these HybridA
and HybridB algorithms, and they are structured similarly to the
hybrid all-gather of Section 3.3.

Figure 9 shows HybridA algorithm working with 16 SPEs and
switching to the rdb algorithm in the third communication round
(k = 2). For simplicity, this figure only shows the data messages;
Section 3.1 describes address and acknowledgment handling. Hy-
bridA starts with two rounds of binomial reduce and then switches
to rdb all-reduce in the third round. The number of data messages
crossing the BIF is four. At the end of fourth round, SPEs 0, 4, 8
and 12 have the results of the reduction shown as dark circles in
the Figure 9, and each of them will act as the root of a four node
binomial-tree. A four node binomial-tree broadcast finishes in two
rounds. Hence the all-reduce is complete at all nodes with a total
of six rounds and four data messages across the BIF.

The HybridB algorithm first uses Rabenseifners reduce-
scatter [22], which is an efficient algorithm optimized for large
data sizes and is based on recursive vector and distance halving.

����

����	

����	�

����	�

����	

����	�

����	�

��������� ������

��������	���	
������������

���	�������

���� ���	��	���������	���

����������������������������

Figure 9: HybridA-3-4 all-reduce (switching round=3,data
messages across BIF=4).

Reduce-scatter effectively decreases the aggregate bandwidth re-
quirement by giving each node only a subset of the reduced data.
For a power-of-two number of nodes p, at every step k, the node
of rank r exchanges data with node of rank r XOR 2log2(p)−k

and the number of exchanged data blocks is halved at every step.
Then, HybridB invokes the hybrid all-gather algorithm dicussed in
Section 3.3. HybridB-x-y means that it uses hybrid-x-y all-gather.
Similar to hybrid all-gather, we have 3 realizations of hybridA and
hybridB all-reduce.

4. EXPERIMENTAL EVALUATION
We used IBM’s Cell SDK3.0 for coding all the algorithms. All

experiments reported here were performed on the IBM BladeCen-
ters QS20 at Georgia Tech (the same platform used for Buffered
Mode MPI [25]), as well as QS21 and QS22 blades [10]. The re-
sults obtained were similar on all of these servers as our imple-
mentations are based on inter-SPE data transfers only, do not use
the PPE after initialization, and do not use double-precision float-
ing point. Timings are measured using a fine-grained decrementing
register provided by the Cell blade. All latency numbers were av-
eraged over 100,000 iterations.

These results compare the implementations described in Sec-
tion 3 to the publicly-available Cell Messaging Library (CML). The
code for the new implementations and benchmarks can be down-
loaded from http://www.ece.purdue.edu/∼qali/CellCode. These re-
sults also compare the new algorithms to the Buffered-Mode MPI
(BMM) numbers reported by Velamati et al. [25]. As their commu-
nication code is not available, the comparison charts in this section
use the quantitative results from the BMM papers, consisting of
only a few numbers for barrier, broadcast, and reduce [17, 18, 25].
All plots are shown on a log-log scale unless otherwise noted.

Barrier latency. A centralized atomic increment barrier has a la-
tency of 35 microseconds for 8 SPE’s. OTA barrier using OR-mode
signotify registers has a latency of 400 ns. For 8 SPEs, the cost of
rdb, One-to-all, and Bruck is only 225 ns, which is 25% less latency
than CML and 43.75% less than BMM. There is also little room for
further improvement, since a (non-tight) lower bound of the bar-
rier cost would be the RTT of 32-bit signals, DMAs, or mailbox
messages, which is already 150 ns. The CML barrier implementa-
tion uses rdb. In One-to-all, all nodes communicate directly with
the root SPE. The OTA signal register implementation is slightly
slower than the OTA DMA based implementation because of some
extra control and computation code, such as the OR operation. In
Bruck, at step k, process r sends a message to rank (r+2k) and re-

ceives message from rank (r-2k) with wrap around [8, 21]. Bruck
always has dlog2 pe rounds for p nodes. For non-power-of-two
number of SPEs less than eight, Bruck and One-to-all are the best,
since rdb’s cost increases due to an extra round. For 16 SPEs, the
rdb barrier is the best because inter-chip messages are exchanged
only in the last round of the algorithm. In Bruck, 2round_num inter-
chip messages are exchanged at each round, leading to higher per-
round latency. For 15 SPEs, both Bruck and rdb have the same
latency because the inter-chip message penalties of Bruck offset
the extra round seen in rdb. OTA performance is worse for more
than 8 SPEs because all of the BIF-crossing messages are coming
from a single source. Our rdb barrier implementations for 16 SPEs
complete in 525 ns, for 12.5% less latency than CML and 47.5%
less than BMM. Note that Figure 10(a) has a linear scaled Y-axis.

All-gather latency. Figure 10(b) shows the latency of various
all-gather implementations as a function of data size. For 8 SPEs,
all-gather by recursive doubling outperforms gather plus broadcast
for all data sizes, as the EIB can handle the data traffic generated
by the rdb all-gather. However for 16 SPEs, these two solutions
have similar performance for large data sizes (see 32K data point
in the Figure 10(b)). Although gather plus broadcast requires twice
as many communication rounds, it only requires two messages to
cross the inter-chip BIF (one in gather and one in broadcast). Rdb
requires 16 messages to cross the BIF in the last round as each
node communicates with its peer on the other chip. This cost be-
comes significant for larger data sizes, motivating the use of cus-
tomized hybrid all-gather algorithms as discussed in Section 3.3.
Figure 11(b) shows the performance of hybrid all-gather variants
for data sizes larger than 2 Kbytes; rdb performs best for smaller
data sizes, as shown in Figure 11(a). At 4 Kbytes Hybrid-2-8 beats
rdb as it cuts EIB traffic in half. After 4 Kbytes Hybrid-3-4 starts
performing better than all variants because it reduces the total BIF
traffic considerably and has the best level of concurrency. Recall
that we consider different variants of hybrid implementations to see
the point where the number of data messages crossing the BIF and
the concurrency (in terms of number of rounds) combine to form
the best result. Hybrid-3-4 achieves the best performance, with up
to 35% less latency than rdb-allgather. Note that Figure 11 has a
linear scaled Y-axis.

Reduce latency. Figure 12 shows reduce latency as a function
of the data size in bytes, for both 8 and 16 SPE systems. All reduc-
tion experiments use integer arrays and SIMD-ized vector addition
on the data. Both the local-store based and mailbox reduce imple-
mentations outperform CML and BMM. The CML implementation
uses a binomial tree reduce. Comparisons to BMM are available
only for 128 bytes and 1 KB; the new implementations are respec-
tively 5.1 and 3.5 times faster than BMM for 8 SPEs For 16KB and
32KB, the speedup relative to CML reaches a factor of 19. Similar
performance gaps are seen with 16 SPEs. The reason for CML’s
high latency in reductions is that CML has some additional data
copies not used by our implementation.

Rabenseifner’s approach of using reduce-scatter followed by
gather outperforms binomial tree reduce for larger data sizes
(greater than 1KB for 8 SPEs and 4KB for 16SPEs). Binomial tree
reduce has less concurrency in data traffic and computation with
each successive round; in contrast, reduce-scatter exploits link and
computational concurrency at each round as the data is recursively
halved. The following gather adds rounds and some latency, but is
offset by the increased concurrency during the reduce-scatter.

The latencies of the binomial local-store based and mailbox im-
plementations described in Section 3 differ only by a constant
amount of time regardless of data size: this is the cost of doing an
extra mailbox message for 64-bit addresses and cost of the barriers

�

���

�

���

�

���

� � �� ��

��������

�
�
��
�
�
�
�	

�
�
�
�
�

	
�

����
�������

����������

���������
����
���

���

���

�

��

���

�� �� ��� �	� 	�� �
 �
 �
 �
 ��
 ��

���������	
����

�
��
�
�

��
�
�
�
�
�

��������

������������������

���������

�������������������

(a) Latency of Barrier. (b) Latency of all-gather.
Figure 10: Performance of Barrier and all-gather.

�

�

�

�

�

�

�� ��� ��� ��� �	 �	

���������	
����

�
��
�
�

��
�
�
�
�
�

��

�����������

����������

����������

����������

�

�

�

�

�

��

��

��

��

��

�� �� ��� ���

���������	
����

�
��
�
�

��
�
�
�
�
�

	
�

����������

�����
����

�����
����

�����
����

(a) Latency for small data sizes (b) Latency for large data sizes
Figure 11: Comparison of hybrid all-gather with simple all-gather algorithms.

after every round. This gap makes up a relatively large fraction of
latency for small data sizes, but is nearly inconsequential for larger
data sizes. Thus, mailbox-based implementations may be viable for
large data sizes if local store capacity is already fully utilized. Oth-
erwise, however, the constraints imposed by mailboxes negate any
benefit of having dedicated hardware resources for communication.

Broadcast latency. Figure 13 shows the latency of the broad-
cast collective, comparing several versions: CML and BMM repre-
sent the prior art, while One-to-all, Two-to-all (root first sends data
to another SPE and then those two SPEs send to all the others),
Binomial-Tree , k-chains (k fan-out followed by k chains) and seg-
mented binomial and their optimized versions represent the imple-
mentations described in Section 3.4. CML implements broadcast
using a binomial tree. For all new implementations, the broadcast
benchmark uses a barrier after every broadcast call to ensure that
the communication of successive broadcasts are not overlapped,
leading to overly optimistic performance measurements. The cost
of the barrier is included in the broadcast latency results. Barriers
were not needed in CML, as the CML implementation itself pre-
vents the overlapping of broadcasts.

For binomial tree, “simple” depicts a broadcast in which nodes
do not wait for acknowledgments at the end of each communication
round, possibly allowing later communication rounds to complete
their data transfers before earlier ones, while “opt” is the optimized
version that prevents priority inversion by ordering DMAs. De-
spite adding ordering requirements and acknowledgments, the opt
versions outperform simple for all broadcast variants (not all shown
to avoid graph clutter), achieving up to 42% less latency.

For both 8 and 16 SPEs, our best algorithms outperform CML
and BMM. For 8 SPE’s, one-to-all performs best for smaller data
sizes up to 2 KB, as these traffic sizes have little EIB contention
and thus benefit from the increased simplicity. One-to-all under-
performs the slightly more concurrent two-to-all for 4 KB data size,
but still outperforms binomial tree. Above 2–4 KB, the segmented-
binomial tree tree performs best. The first phase of segmented bi-
nomial has as many rounds as pure binomial, but each round has
less latency because its data size is only half the total. The sec-
ond phase has a single-round fully concurrent exchange between
the two subtrees; for large data sizes, the cost of this extra round is
less than the savings achieved by lower latency in the first phase.

���

�

��

���

����

� � �� �� �� ��� �	� 	�� �
 �
 �
 �
 ��
 ��

���������	
����

�
�
��
�
�
�
�	

�
�

�

��
���
��������
����������������
�������
�������
������������ !"����

�

��

���

����

� � �� �� �� ��� ��� ��� �	 �	 �	 �	 ��	 ��	

���������	
����

�
�
��
�
�
�
�	

�
�

�

��
��
�������
����������������
��
����
��
����
������������� !�����
��
����

(a) 8 SPE’s (b) 16 SPE’s

Figure 12: Reduce Latency

0.1

1

10

100

4 8 16 32 64 128 256 512 1K 2K 4K 8K 16K 32K

DataSize(Bytes)

L
a
te
n
c
y
(u
s
e
c
s
)

CML
BMM
One-to-all
Two-to-all-opt
Binomial-Tree-opt
Binomial-Tree-simple
2-Chain-opt
4-Chain-opt
Segmented-Binomial-opt

1

10

100

4 8 16 32 64 128 256 512 1K 2K 4K 8K 16K 32K

DataSize(Bytes)

L
a
te
n
c
y
(u
s
e
c
s
)

CML
BMM
One-to-all
Two-to-all-opt
Binomial-Tree-opt
Binomial-Tree-simple
2-Chain-opt
4-Chain-opt
8-Chain-opt
Hybrid-Segmented-Binomial-opt
Segmented-Binomial-opt

(a) 8 SPE’s (b) 16 SPE’s
Figure 13: Broadcast Latency

For 16 SPE’s, one-to-all is never the best; instead, two-to-all is
best for small message sizes. This is because in one-to-all, 15 data
messages are crossing the BIF, which has much lower bandwidth
than the EIB. Recall that in two-to-all (assuming spe0 is the root),
spe0 first sends the address of its data to spe8, which is across the
BIF, and waits for it to complete; after that, spe0 and spe8 do one-
to-all broadcasts within their respective processor chips. Above
2KB, the hybrid segmented binomial tree gives the best perfor-
mance and outperforms all other algorithms. This algorithm has
just one BIF-crossing message at the beginning of the first phase of
the broadcast. The remainder of the first phase and all of the sec-
ond phase use only intra-chip data exchanges. In contrast, a non-
hybrid 16 SPE segmented binomial would result in an exchange
of 14 messages over the BIF, including BIF transfers in both the
first and second phases. Its performance is thus worse than even an
unsegmented binomial tree.

All-reduce latency. Figure 14 shows all-reduce latency for dif-
ferent implementations: CML, rdb using local-store and mailbox
notification alternatives, rdb algorithm using barriers, reduce plus
broadcast, and reduce-scatter plus all-gather variants. CML’s all-

reduce implementation uses binomial reduce followed by binomial
broadcast.

As explained in Section 3, the mailbox implementation of all-
reduce has a barrier at the end of each round. Figure 14(a) shows
that the mailbox implementation has a constant overhead above lo-
cal store notification (the cost of an extra mailbox message for each
address plus 3 barriers for the 8 SPE case), but that this only applies
for data sizes up to 256 bytes. Beyond that point, the local-store
notification performance degrades, because the EIB is stressed for
data sizes larger than 256 bytes. This behavior does not arise
in the mailbox implementation because the barrier at the end of
each round naturally prevents EIB saturation. As explained in Sec-
tion 3.5, the EIB can only support 12 concurrent non-overlapping
data transfers, so it may be advantageous to include a barrier at the
end of every 2 rounds in the local-store version. This implementa-
tion is represented in Figure 14 as “Rdb-Barrier”.

All variants of all-reduce studied here outperform CML’s. They
are up to 19.21 times faster than CML in the 8 SPE case and up to
9.48 times faster in the 16 SPE case. For data sizes less than 512
bytes, rdb with local store notification yields the best performance
for both 8 SPE and 16 SPE systems. After that point, EIB con-

���

�

��

���

����

� � �� �� �� ��� �	� 	�� �
 �
 �
 �
 ��
 ��

���������	
����

�
�
��
�
�
�
�	

�
�

�

��

���

�����������

�����������

������������

��������������������� ��!��

��������������"��!����������� ��!��

�

��

���

����

� � �� �� �� ��� ��� ��� �	 �	 �	 �	 ��	 ��	

���������	
����

�
��
�
�

��
�
�
�
�
�

���
���
���	�
�����
����������
�����������
�������������������		������
��������������������������		������

(a) 8 SPE’s (b) 16 SPE’s

Figure 14: All-reduce Latency

�

��

� � �� �� �� ��� ��� ��� �	 �	 �	

���������	
����

�
��
�
�

��
�
�
�
�
�

����������

��������������
�����������
�����������
�����������

������������
������������

������������ ��������������������
�����������
�����������
�����������

�

��

��

��

��

��

��

�	 ��	 ��	

���������	
����

�
��
�
�

��
�
�
�
�
�

����������

��������������
�����������
�����������
�����������

������������
������������

������������ ��������������������
�����������
�����������
�����������

(a) Latency for small data sizes (b) Latency for large data sizes

Figure 15: Comparison of hybrid all-reduce with simple all-reduce algorithms.

tention becomes more important, and the barrier-enhanced rdb al-
gorithm starts to perform the best for a few data points. In the 8 SPE
case, for data sizes above 1KB, reduce-scatter plus rdb-allgather
starts to perform the best. Unlike the case of reduce, where reduce-
scatter improved link and computational concurrency, all-reduce
already has strong concurrency in every stage because of rdb. How-
ever, reduce-scatter reduces the aggregate banwidth demand at each
node by recursively halving the communication volume at each
round. Rdb-allgather builds the data volume back up, but the to-
tal amount is still less than rdb-allreduce. The 16 SPE case be-
haves similarly, except that reduce-scatter may be followed by ei-
ther rdb-allgather or gather-broadcast with similar performance for
data sizes of 32 Kbytes and above. This trend for 16 SPEs arises
because gather-broadcast has fewer BIF-crossing messages, moti-
vating the design of the hybrid algorithms.

Hybrid-all-reduce latency. Figure 15 compares the new hybrid
all-reduce algorithms with Rabenseifner’s all-reduce algorithms
and simple binomial reduce plus broadcast based algorithms. Both
of these plots are for 16 SPEs, as the hybrids target inter-chip com-

munication. Note that figure 15(a) shows the all-reduce latency for
small data sizes in log-log scale while figure 15(b) shows the all-
reduce latency for larger data sizes with a linear-scaled Y axis for
a better view of the data points. “Rdb-Barrier_512” in the legend
means the algorithm uses the barrier-enhanced rdb only for data
sizes of 512 bytes or more (thus combining the best data points of
the simple rdb and the barrier-enhanced rdb). Recall that hybridA-
x-y starts as a binomial reduce, switches to rdb at round number x
and has y BIF-crossing messages. HybridA-4-2 has the same num-
ber of BIF-crossing messages as reduce plus broadcast, but com-
pletes in 7 rounds rather than 8 because it collapses one round of
reduce and one round of broadcast into a single round. HybridA-4-
2 thus always outperforms reduce plus broadcast.

Among the all-reduce implementations, rdb performs best for
small data sizes (where BIF contention is negligible). As data sizes
inch upward, though, the hybrids start to outperform rdb. At a
256 byte data size, BIF contention starts to become an issue, and
hybridA-2-8 is best since it has almost all of the concurrency of
rdb but cuts BIF traffic in half. This trend continues until BIF

contention increases dramatically with data sizes above 2 KB. At
that point, HybridB-2-8 starts to perform the best. HybridB per-
forms the best because of the bandwidth reduction allowed by us-
ing reduce-scatter and all-gather. After 4Kb data sizes, HybridB-
3-4 is the best, just as in all-gather. Our hybridA-3-4 is up to 7.3
times faster than CML’s all-reduce. Note that the hybridB algo-
rithms start to yield benefits at large data sizes (above 2 Kbytes).
HybridB-3-4 is up to 15% better than Rabenseifner’s algorithms
and up to 11 times faster than CML.

5. RELATED WORK
Previous sections have discussed the works that are most closely

related to the algorithms and results of this paper. Several papers
describe implementations of collective communication operations
on the Cell [17, 18, 19, 25]. Although these other approaches also
strive to exploit the unique architectural features of the Cell for
efficient collective communication, there are important differences
between our work and the other approaches. We have compared
our algorithms against more algorithms than either CML or BMM,
including algorithms tuned for large data sizes that neither CML or
BMM consider. They have not considered hybrid algorithms, and
moreover have not considered the trade-offs between concurrency
and data traffic that our hybrid algorithms manage. CML, however,
was not optimized for Cell Blade collective communication, as it
was designed largely for hybrid clusters like Roadrunner [6]. It is
also used for transparent communication of SPEs across different
nodes on a cluster.

There has also been some work on hierarchical collective com-
munication [13, 14, 15]. The ideas that network characteristics
should be exploited for efficient design is similar, but the Cell Blade
is a fairly unique design and thus requires different approaches than
clusters on a LAN or WAN. For example, our efficient broadcast
starts with the same hierarchical design as in the work of Karonis
et al. [13]. However, it then adapts the algorithm to Cell-specific
constraints by optimizing the DMA ordering. Further, the previous
literature does not show hybrid designs for all-gather and all-reduce
as we show here.

Other architectures have special features for collective commu-
nication. IBM’s BlueGene/L has multiple networks, including a
torus for regular communication, a collective communication net-
work, and a global interrupt network [2]. The collective commu-
nication network actually performs reduction operations as data
packets pass through it rather than forcing the processing cores to
do the computation. Although the network performs fixed-point
operations, additional control software can be added at the proces-
sor cores to make it perform floating-point reductions with low la-
tency [3]. Implementing collectives on the torus requires careful
network routing to minimize hops, and the global interrupt wires
can support barriers using wired-OR logic [4]. Several other works
have proposed or implemented hardware support for barriers and
other collective communication operations [7, 11, 23, 24]. Al-
though the details vary, the common theme of these works is that
high performance requires both hardware and software support for
collective communication.

6. CONCLUSIONS AND FUTURE WORK
This paper presents new and efficient algorithms that exploit fea-

tures of the Cell architecture to provide high-performance collec-
tive communication. In particular, the algorithms for broadcast,
reduce, all-reduce, and all-gather are faster than any previous Cell
implementations of which the authors are aware, and up to 19.21
times faster than previously-presented algorithms. Our new hybrid

algorithms are faster than the previous well-known algorithms and
achieve up to 35% less latency. These algorithms achieve superior
performance both within a single Cell chip and across Cell chips
that are part of a blade.

The superior performance of these algorithms is not simply a
function of having heavily tweaked and hand-optimized implemen-
tations, but rather derives from fundamental consideration of trade-
offs that arise from the multiplicity of communication mechanisms
within the Cell – the overheads of these mechanisms, the effect on
concurrency within collective operations resulting from the choice
of communication mechanism, and the constraints of the Cell’s
intra-chip and inter-chip interconnects. This in turn leads to the
important conclusion – applicable not just to the Cell, but also to
the many complicated accelerators that are now available – that al-
gorithmic and implementation design choices must carefully con-
sider the global effects of decisions and how various components
of the hardware and software combine to shape the performance of
communication systems.

For future work, we are working on performance modeling of
these algorithms for Cell-based systems. These models will serve
as a guideline for developers working with collective communica-
tion on the Cell Blade and other Cell platforms. Algorithm de-
velopers can thereby focus on the design of an algorithm and de-
termine its efficiency using the model equations rather than going
through the tedious process of writing the algorithm code itself us-
ing the Cell SDK and with the architecture-specific constraints on
Cell programs.

7. ACKNOWLEDGMENTS
We acknowledge Georgia Institute of Technology, its Sony-

Toshiba-IBM Center of Competence, and the National Science
Foundation, for the use of Cell Broadband Engine resources that
have contributed to this research. We thank IBM for providing ac-
cess to their Cell blades under the VLP program. We would also
like to thank Scott Pakin at LANL for helping with CML.

8. REFERENCES
[1] 30th TOP500 List, June 2008.
[2] N. R. Adiga et al. An overview of the BlueGene/L

supercomputer. In Proceedings of the 2002 ACM/IEEE
Conference on Supercomputing, pages 1–22, Nov 2002.

[3] G. Almási, G. Dózsa, C. C. Erway, and B. D.
Steinmacher-Burow. Efficient implementation of Allreduce
on BlueGene/L collective network. In Recent Advances in
Parallel Virtual Machine and Message Passing Interface,
volume 3666 of Lecture Notes in Computer Science, pages
57–66. Springer Berlin, 2005.

[4] G. Almási, P. Heidelberger, C. Archer, X. Martorell, C. C.
Erway, J. E. Moreira, B. D. Steinmacher-Burow, and
Y. Zheng. Optimization of MPI collective communication on
bluegene/l systems. In ICS, pages 253–262, 2005.

[5] P. Altevogt et al. Evaluating IBM Blade Center QS21
hardware performance.
http://www.ibm.com/developerworks/library/pa-
qs21perf/index.html.

[6] K. Barker, K. Davis, A. Hoisie, D. J. Kerbyson, M. Lang,
S. Pakin, and J. C. Sancho. Entering the petaflop era: The
architecture and performance of roadrunner. In IEEE/ACM
Supercomputing (SC08), November 2008.

[7] C. J. Beckmann and C. D. Polychronopoulos. Fast barrier
synchronization hardware. In Supercomputing ’90:
Proceedings of the 1990 ACM/IEEE conference on

Supercomputing, pages 180–189, Washington, DC, USA,
1990. IEEE Computer Society.

[8] J. Bruck, S. Member, C. Ho, S. Kipnis, E. Upfal, S. Member,
and D. Weathersby. Efficient algorithms for all-to-all
communications in multi-port message-passing systems. In
IEEE Transactions on Parallel and Distributed Systems,
pages 298–309, 1997.

[9] D. Buntinas, G. Mercier, and W. Gropp. Data transfers
between processes in an SMP system: Performance study
and application to MPI. Parallel Processing, International
Conference on, 0:487–496, 2006.

[10] B. Flachs et al. PowerXCell 8i: A Cell Broadband Engine
implementation enhanced for supercomputing. Presented at
HotChips 20, August 2008.

[11] A. Gottlieb, R. Grishman, C. P. Kruskal, K. P. McAuliffe,
L. Rudolph, and M. Snir. The NYU
Ultracomputer—designing a mimd, shared-memory parallel
machine (extended abstract). SIGARCH Computer
Architecture News, 10(3):27–42, 1982.

[12] H. P. Hofstee. Power efficient processor architecture and the
Cell processor. In HPCA, pages 258–262, 2005.

[13] N. T. Karonis, B. R. de Supinski, I. Foster, E. Lusk, and
W. Gropp. Exploiting hierarchy in parallel computer
networks to optimize collective operation performance. In
IPDPS ’00: Proceedings of the 14th International
Symposium on Parallel and Distributed Processing, page
377, Washington, DC, USA, 2000. IEEE Computer Society.

[14] T. Kielmann, H. E. Bal, and S. Gorlatch. Bandwidth-efficient
collective communication for clustered wide area systems. In
In Proc. International Parallel and Distributed Processing
Symposium (IPDPS 2000), Cancun, pages 492–499, 2000.

[15] T. Kielmann, R. F. H. Hofman, H. E. Bal, A. Plaat, and
R. A. F. Bhoedjang. Magpie: Mpi’s collective
communication operations for clustered wide area systems.
SIGPLAN Not., 34(8):131–140, 1999.

[16] M. Kistler, M. Perrone, and F. Petrini. Cell multiprocessor
interconnection network: Built for speed. IEEE Micro, 26(3),
May-June 2006.

[17] M. Krishna et al. A synchronous mode MPI implementation
on the Cell BETM architecture. In ISPA, pages 982–991,
2007.

[18] A. Kumar et al. A buffered-mode mpi implementation for the
Cell BEtm processor. In International Conference on
Computational Science (1), pages 603–610, 2007.

[19] S. Pakin. Receiver-initiated message passing over RDMA
networks. In 22nd International Parallel and Distributed
Processing Symposium (IPDPS 2008).

[20] F. Petrini, G. Fossum, J. Fernández, A. L. Varbanescu,
M. Kistler, and M. Perrone. Multicore surprises: Lessons
learned from optimizing Sweep3D on the Cell Broadband
Engine. In IPDPS, pages 1–10, 2007.

[21] J. Pjesivac-Grbovic, T. Angskun, G. Bosilca, G. E. Fagg,
E. Gabriel, and J. Dongarra. Performance analysis of MPI
collective operations. In IPDPS, 2005.

[22] R. Rabenseifner. Optimization of Collective Reduction
Operations. In Proceedings of the International Conference
on Computational Science, June 2004.

[23] L. Rudolph. Hardware support for collective communication
operations. In Parallel Architectures and Their Efficient Use,
volume 678 of Lecture Notes in Computer Science, pages
110–118. Springer Berlin, 1993.

[24] J. A. Test, M. Myszewski, and R. C. Swift. The Alliant
FX/Series: A language driven architecture for parallel
processing of dusty deck Fortran. In PARLE Parallel
Architectures and Languages Europe, volume 258 of Lecture
Notes in Computer Science, pages 345–356. Springer Berlin,
1987.

[25] M. K. Velamati et al. Optimization of collective
communication in intra-Cell MPI. High Performance
Computing, HiPC, 4873:488–499, 2007.

