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Abstract
This paper presents and validates performance models for a vari-
ety of high-performance collective communication algorithms for
systems with Cell processors. The systems modeled include a sin-
gle Cell processor, two Cell chips on a Cell Blade, and a cluster of
Cell Blades. The models extend PLogP, the well-known point-to-
point performance model, by accounting for the unique hardware
characteristics of the Cell (e.g., heterogeneous interconnects and
DMA engines) and by applying the model to collective communi-
cation. This paper also presents a micro-benchmark suite to accu-
rately measure the extended PLogP parameters on the Cell Blade
and then uses these parameters to model different algorithms for
the barrier, broadcast, reduce, all-reduce, and all-gather collective
operations. Out of 425 total performance predictions, 398 of them
see less than 10% error compared to the actual execution time and
all of them see less than 15%.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming

General Terms Algorithms, Performance, Measurement

Keywords Collective communication, Algorithms, Modeling

1. Introduction
Collective communication is critical in many high performance ap-
plications. Recent advances in high performance microprocessors
like the Cell processor and GPUs, as well as advances in on-chip
and off-chip network technology, require improved design of col-
lective communication algorithms to effectively utilize the new ar-
chitecture [4]. Such systems also require new modeling techniques
for collective communication to accurately predict performance
and to intelligently select among various choices of algorithms
and implementations for any given operation, as many system and
workload parameters can affect the performance of any particu-
lar algorithm. Among existing models, the best known and stud-
ied model for point-to-point communication is LogP, which char-
acterizes communication performance in terms of message latency,
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message overhead, inter-message gap time, and the number of pro-
cesses in the system [9, 10]. Extensions to LogP include PLogP,
which makes the overhead and gap measures functions of the mes-
sage size, and LoGPC, which includes a term for network con-
tention [13, 15]. Other parameters that can shape the performance
of a collective communication operation include the number of pro-
cesses involved in the particular communication, the size of the data
buffers to be communicated, the pattern of communication, and the
scheduled order of data transfers.

Combining system parameters to accurately predict communi-
cation performance is difficult. The situation is worse for accelera-
tors such as the Cell processor because of its complex and unique
architecture. The on-chip Element Interconnect Bus (EIB), which is
the heart of the Cell processor’s communication infrastructure, can
support three concurrent DMA transfers on each of its four rings.
The off-chip broadband interface (BIF), which connects two Cell
processors on a Cell Blade, has an order of magnitude less band-
width than the EIB and thus can only handle a limited number of
messages without being overloaded. Modeling the contention re-
sulting from these limits is an issue for communication operations
that create large numbers of messages, such as broadcast or all-
reduce. Addressing these limits requires additional effort, as previ-
ous models have either ignored contention effects or considered the
effect of contention as it arises on a single uniform network.

This paper makes the following contributions:

• Modifies the PLogP model by adding a contention term, and
simplifies the model for Cell-based systems.

• Presents a novel suite of micro-benchmarks and a methodology
to accurately determine the parameters of the extended PLogP
model accounting for the unique characteristics of the Cell
processor and Cell Blades.

• Introduces basic collective communication patterns which are
used as building blocks for various collective communication
algorithms and develops models for them, in the context of the
Cell processor and its hardware features, using the parameters
determined above.

• Uses the above parameters to model advanced and efficient
collective communication algorithms for a single Cell processor
and the Cell Blade.

• Shows that the models can easily be plugged into existing
cluster-based models for collective communication

We claim and show that performance modeling of an indi-
vidual Cell processor and a Cell blade is different from other
systems because of their novel architectures. Generic models do
not work in the aforementioned systems as we show in our ex-
perimental section. We expand the abstract PlogP model to ac-
count for architecture-specific details of the Cell. We also show
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Figure 1: Cell architecture overview.

how this modeling can be extended to a cluster of Cell Blades or
Roadrunner-like systems by adapting the cluster-level models and
techniques previously proposed by Dongarra et al. and Kielmann et
al. [13, 17].

Empirical data shows that our models perform well: 94% of our
425 performance predictions show errors of less than 10% and all
of the predictions show errors less than 15%. The errors are small
enough that these predictions can be used to make correct decisions
about which algorithm to choose for a particular operation before
implementing the operation. This capability is particularly valuable
for systems, such as the Cell, that require architecture-specific
programming efforts. In contrast, using previous non-Cell-specific
methods to capture the inter-message gap parameter or ignoring
BIF contention would lead to large and highly variable errors,
ranging from no difference at all up to 140% error. Consequently,
these predictions cannot guide proper algorithm choices, further
validating the need for a new model and new methods to capture
the model parameters.

2. Cell Architecture and Communication
Overview

This section describes the Cell and features that are germane to the
design and modeling of efficient collective communication. Fig-
ure 1 gives a simplified illustration of the Cell architecture. The
Cell processor is a heterogeneous multicore chip consisting of one
general-purpose 64-bit Power processor element (PPE), eight spe-
cialized SIMD coprocessors called synergistic processor elements
(SPEs), a high-speed memory controller, and a high-bandwidth bus
interface, all integrated on-chip. Each SPE consists of a synergis-
tic processor unit (SPU) and a memory flow controller (MFC).
The MFC includes a DMA controller, a memory management unit
(MMU) to allow the SPEs to use virtual addresses when perform-
ing DMAs, a bus interface unit, and an atomic unit for synchroniza-
tion with other SPEs and the PPE. Each SPU includes a 256 Kbyte
local-store (LS) memory to hold its program’s instructions and
data; the SPU does not have any hardware-managed cache. The
SPU cannot access main memory directly, but it can issue DMA
commands to the MFC to bring data into local store or write com-
putation results to main memory.

The PPE and SPEs communicate through an on-chip high-speed
interconnect called the Element Interconnect Bus (EIB). The EIB
has a vast amount of data bandwidth (204.8 GB/s) and is the com-
munication path for commands and data between all processor el-

ements and the on-chip controllers for memory and I/O. It consists
of a shared command bus and a point-to-point data interconnect.
The command bus distributes commands, sets up end-to-end trans-
actions, and handles coherency. The data interconnect consists of
four 16-byte-wide rings, with two used for clockwise data transfers
and two for counter-clockwise data transfers. Each ring potentially
allows up to three concurrent data transfers, as long as their paths
do not overlap. Therefore the EIB can support up to 12 concurrent
transfers. To initiate a data transfer, bus elements must request data
bus access. The EIB data bus arbiter processes these requests and
decides which ring will handle each request.

Each processor element has one on-ramp and one off-ramp to
the EIB. Processor elements can transmit and receive data simulta-
neously. Figure 1 shows the unit ID numbers of each element and
the order in which the elements are connected to the EIB. The con-
nection order is important to programmers seeking to minimize the
latency of transfers on the EIB, as transfers can range from nearest-
neighbor (e.g., SPE6 to SPE4) to 6-hop latencies (e.g., SPE1 to
SPE6).

The on-chip Cell Broadband Engine interface (BEI) unit pro-
vides two interfaces for external communication. One supports
only a non-coherent I/O interface (IOIF) protocol, suitable for I/O
devices. The other is the Broadband interface (BIF), used for com-
munication between two Cell processors on the same blade. The
BIF multiplexes its bandwidth over four rings of the EIB. The band-
width of the BIF is 80% less than the EIB, so inter-chip commu-
nications are much slower than intra-chip communications. More
details about the Cell can be found in [14].

3. Performance Modeling for the Cell
Performance models are a basis for the design and analysis of par-
allel algorithms. A good model includes a small number of param-
eters but can express the complexity of the underlying runtime and
hardware across a wide range of different scenarios. Since the col-
lective communication algorithms used are based on point-to-point
messages, we extend the standard PLogP model to model the Cell-
targeted collective communication algorithms we previously pre-
sented by carefully analyzing the communication characteristics of
each algorithm [4]. Since some of the collectives have both a com-
munication and computation part (e.g., all-reduce), we model both
the network and computation aspects of the Cell system.

3.1 The PLogP model and our extensions
To model the communication part of a collective, we extend the
popular PLogP model [13]. PLogP characterizes the network in
terms of latency L, send and receive overheads os and or , gap re-
quired between messages g, and the number of nodes (processors)
in the system, p. The latency, gap and overheads are dependent on
message size. In PLogP, the time to send a message between two
nodes is given by L + g(m).

As in other collective communication models (e.g., Dongarra
et al. [17]), we modify the p parameter to represent the number
of processors in a particular communication. The algorithms we
model only use SPE-to-SPE communication, so p is the number of
SPEs in the collective. Following the LoGPC model, we add a con-
gestion/contention term, C [15]. In our model, this is used only to
represent contention on the lower-bandwidth BIF and the method-
ology to measure it is different than LoGPC. Our C parameter de-
pends on the message size m and number of messages crossing the
BIF n. The parameters of our model are summarized as below:

• p: the number of SPEs participating in a collective opertaion;
• L: Communication delay (upper bound on the latency with no

contention from LS of one SPE to LS of another SPE);
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Figure 2: Local store based communication and synchronization for
simple binomial tree based reduce.

• g : Gap (indirect communication bandwidth, minimum interval
between consecutive messages; bandwidth ∼ 1

g
);

• C: Contention/Congestion (link contention on the BIF).

We model the computation time for a message of size m as γm,
where γ is computation time per byte.

3.2 Basic communication structure
Almost all of the collective communication algorithms that we
study require pairs of SPEs to establish some notification protocol
to announce when an SPE is ready to provide data or when an SPE
has completed a data transfer. The SPEs maintain notification ar-
rays in their local stores, where each notification array has x entries,
with x being the number of SPEs participating in a particular col-
lective. Each element of a notification array is 16 bytes long. These
arrays are used for address (ADDR) communication and acknowl-
edgments (ACKs) between the SPEs in a lock-free manner [8]. Fig-
ure 2 shows the working of these for a simple binomial-tree based
reduce. An SPE first does a dma put of the address of the data to
be communicated. Then the receiver does a dma get of the data,
and when the data is received it does a dma put of an ACK into the
sender’s local store.

3.3 Formulation and measurement of the extended PLogP
model parameters on the Cell Blade

Ainsworth and Pinkston formulated the latency of packets across
the EIB as Latency = Send Phase + Cmd Phase +
Data Phase+Recv Phase [2]. The sending phase primarily con-
sists of setting up the DMA transfer. The command phase consists
of command issue and snoop responses. Both of these are indepen-
dent of the message size. Hence the sender overhead is constant.
The data phase is the actual transit time of the DMA transfer. Fi-
nally, in the receiving phase, the data is moved from the bus inter-
face unit to the local store memory. The receiving phase is part of
the DMA transfer if IBM’s SDK3.0 library is used. Hence receiver
overhead can be assumed to be zero. Also because of the nature
of the communication structure used, the time to send a message
between two nodes is L(m) (with overheads inclusive), because
there is no g(m). g(m) appears only when an SPE tries to send a
message before the first one gets completed.

Using micro-benchmarks, we measure three model parameters
for the Cell processor: latency, gap and congestion, all of which
are message size dependent. Other parameters such as the sender
and receiver overhead are assumed to be constant and independent
of the message size [2]. Completely ignoring o is not feasible for

Sender:
dma put(ACK);
while(wait for ACK from receiver);
Receiver:
while(wait for ACK from sender);
dma put(ACK);

(a) RTT with ACK array.

Sender:
dma put(ADDR);
while(wait for ADDR from receiver);
dma get(DATA, ADDR);
Receiver:
while(wait for ADDR from sender);
dma get(DATA, ADDR);
dma put(ADDR);

(b) RTT with ADDR array.

Figure 3: Latency micro-benchmarks.

algorithms that use small messages (e.g., barrier collective), but we
combine o with L to keep the models simple.

L parameter micro-benchmark. We define L(m) to be half
of the round trip time (RTT) of a message of size m. We use two
micro-benchmarks to measure L(m). The latency from the first
benchmark is used to model synchronization algorithms that do not
transfer data; hence, they only use one synchronization array called
the ACK array. The second micro-benchmark is used to model
algorithms which transfer data and synchronize. These algorithms
use both ADDR and ACK arrays. As indicated in Section 3.2,
in order to transfer data the sender first sends the address of the
data via dma put, and the receiver gets it via dma get. In the first
micro-benchmark, shown in Figure 3(a), the sender directly sends
an ACK message to the receiver’s local store. When the receiver
gets the ACK, it returns an ACK. In the second micro-benchmark
(Figure 3(b)), the sender first sends the address of the data to be
sent into the receiver’s local store via dma put. Then the receiver
issues a dma get to get the data for the specified address and sends
the address of its data to the sender. Finally the sender also issues a
dma get to get the data. Both micro-benchmarks measure the RTT
of a message of size m. RTT is divided by two to get L(m).

g parameter micro-benchmark. The g parameter is calculated
in a completely different way than Kielmann et al. [13] do, which
is a standard way to compute g in the MPI community and used
by many, e.g., Dongarra et al. [17]. Ideally, the g parameter would
be measured as follows. Consider a number of SPEs that issue a
dma get command. The first dma command processed by the data
arbiter would be scheduled to do a data transfer. The time that
the second SPE dma command must wait to start the data transfer
would be the value of the g parameter.

Unfortunately, g cannot be measured like this on the Cell. In
order to understand why, consider the basic flow of a DMA trans-
fer [14]. The SPU first issues a DMA command queue which is pro-
cessed by the DMA controller. Next the DMA controller creates a
bus request to transfer the next block of data for the command. This
bus request can transfer up to 128 bytes of data. The controller then
queues this bus request to the Bus interface unit (BIU). The BIU
selects the request from its queue and issues the data transfer com-
mand to the EIB. The EIB consists of four 16-byte wide data rings
and the EIB’s data arbiter implements a round robin bus arbitration.
As all SPEs can issue a dma get command at the same time, each
of them will be posting requests for 128 bytes of data (if the total



requested data is equal to or more than 128 bytes, and less than 128
bytes if the requested data is less).

Because we cannot change the data arbiter policy, we employ
the following technique to measure the gap parameter. We desig-
nate one SPE as the root which has the data. All other (non-root)
SPEs issue a dma get of data from this root SPE. The time taken by
each SPE is measured, and these times are averaged over the num-
ber of SPEs issuing the dma get command. The value of g obtained
in this manner would be similar to what the value of g would be if
we changed the data arbiter policy to “first-come, first-served” and
let the bus requests issued by one SPE finish before the bus request
of another SPE is serviced. For two Cell processors on a blade,
there are two g parameters, the intra-chip g1 and inter-chip g2. We
only use the single g when a single Cell processor is involved in the
communication.

C parameter micro-benchmark. The congestion parame-
ter is calculated by the butterfly communication pattern micro-
benchmark, i.e., each SPE sends and receives data from another
distinct SPE. When two SPEs are engaged in the data transfer (both
sending and receiving) across the BIF, we denote this as BIF-2.
Thus, BIF-16 means 16 messages are crossing the BIF. BIF-2 la-
tency is the average of the time taken by the two SPE DMAs. We
use BIF-2 as the baseline since we have observed that BIF-1 equals
BIF-2; that is, the BIF can support two simultaneous messages
without any observable contention. We define the C parameter, for
a given message size m and number of BIF-crossing messages n,
as the excess latency observed by a BIF-n butterfly communication
pattern when compared to a BIF-2 pattern. As the values of n and
m increase, the congestion also increases.

Some other notation used in our models is L1(1) and L1(m),
which are the intra-chip latencies. The “1” inside the parentheses
indicates that the message size is a small constant; more specifi-
cally, it is 16 bytes long as this is the smallest DMA transfer possi-
ble on Cell and m is the message size in bytes. Similarly L2(1) and
L2(m) are latencies for inter-chip transfers. gAck is used to denote
the gap for ACKs.

4. Building Blocks for Collective Communication
Models

This section presents an overview of the three basic collective com-
munication patterns that serve as building blocks for the algorithms
used in this paper. We will briefly explain these patterns and de-
velop models for them in the context of the Cell processor and its
DMA engine. In Figure 4 the numbers in circles represent nodes,
and the arrows (both dotted and dark) represent communication.

0 1 32

0 1 32

0 1 32

0

21 3

(a) Simple One-to-all
(c) Recursive Distance

doubling (rdb)

0

1

3

2

Longest latency 

path

Acks

High priority Nodes

1 2

1

(b) DMA Ordered Tree

Figure 4: Different communication patterns and techniques.

Figure 4(a) shows a one-to-all (OTA) communication pattern in
which all nodes receive data from just one node. If all the nodes
simultaneously do a dma get, then a communication gap will arise
that depends on g. Let q be the number of inter-message gaps (g)
required. This value is based on the maximum out-degree of a node

at each level of the tree and is given by the following equation:

q =

h∑
k=1

(dk − 1)

where dk is the maximum out-degree of a node at level k and h
is the height of the tree. In the example of Figure 4(a), h is 1 and
d1 = 3, so there will be two gaps (q = 2).

Similarly, in the case of inter-chip SPE communication, two q’s
will be used, q1 for the number of g1 (on-chip gap) terms and q2

for the number g2 (inter-chip gap) terms given below:

q1 =

h∑
k=1

(dk − nk2 − 1)

q2 =

h∑
k=1

(dk − nk1 − 1)

where nk1 and nk2 are the number of messages at level k between
chips and across chips, respectively.

The second pattern is the optimized ordered tree pattern shown
in Figure 4(b). The gap parameter which arises in Figure 4(a)
can be eliminated by inserting ACKs to order the DMAs. The
ACKs are depicted in Figure 4 (b). To do this, the root node
first does a dma put into the dark colored node, because it is on
the longest latency path, and then into the white colored node.
The cost of the communication pattern shown in Figure 4(b) is
2× (L(m) + L(1)). If the DMAs were not ordered the cost would
have been 2×L(m) + g(m): one g term in the first level and no g
term in the second level of the tree.

The third pattern shown in Figure 4(c) is based on an efficient
algorithm known as recursive distance doubling or the butterfly al-
gorithm [19]. Figure 4(c) shows the butterfly algorithm in action.
Each node sends to, and receives from, a different partner node at
each stage of the algorithm: first with distance 1, then with dis-
tance 2, then 4, and so forth. At the end of the last stage all nodes
have received (reduction and gather operations) and, if necessary,
processed the data (reduction operations). When applied to all-
reduce, this algorithm specifically exploits full-duplex communica-
tion links to collapse a reduce and broadcast into a single operation.
Each round of the butterfly pattern requires L(m)+L(1) time (data
plus ACK) based on the interconnect parameters. If, however, the
BIF is the network used at any stage, sending too many messages
across it may lead to poor performance. In particular, if the number
of BIF messages is greater than two and the data size is greater than
256 bytes, the network starts to become congested and becomes a
bottleneck. We model the congestion on the BIF by a parameter C.
These thresholds were determined experimentally.

If the number of SPEs involved is not a power of 2, the first
stage communicates from the higher-numbered SPEs to the lower-
numbered SPEs within the next lower power of 2 [18]. The SPEs
within the next lower power of 2 proceed using the butterfly algo-
rithm. After that, the lower-numbered SPEs feed information back
to the higher-numbered SPEs, for a total of 2 + blog2 pc steps for
p numbers of SPEs in the all-reduce.

5. Modeling Collective Communication
Algorithms

Using the communication flow of each algorithm, the point-to-
point messages modeled using the standard PLogP parameters, our
modeling extensions described in Section 3 and the three basic
communication patterns discussed and modeled in Section 4, we
have developed models for different algorithms for the barrier, re-
duce, all-reduce, broadcast and all-gather collectives. All the algo-



rithms used in this paper are based on inter-SPE communication
and the data to be communicated resides in the local store, similar
to the Cell Messaging Library, which is an MPI implementation for
the Cell [16]. We will explain a few representative algorithms to
explain how the models are developed. The details of all the algo-
rithms can be found in our previous work [4].

For one-to-all (OTA) models (barrier and broadcast), the root
node is assumed to be on the first chip, without loss of generality.

5.1 Barrier models
We use the results of the micro-benchmark in Figure 3(a) to model
the barrier algorithms because they transfer no message data and
only use an ACK array. Note that if more than eight SPEs are in-
volved in a particular collective, the first eight SPEs are on the
first Cell processor and the rest are on the second. This arrange-
ment minimizes the number of BIF crossings. The cost of recur-
sive doubling follows from Section 4, except that the actual cost
of a recursive doubling round is only L(1), not L(m) + L(1),
because there is no data transfer. In Bruck, step k of the collec-
tive has an SPE of rank r sending a message to an SPE of rank
(r+2k) and receiving a message from an SPE of rank (r-2k) with
wrap around [7, 17]. Bruck always needs dlog2 pe rounds for p
nodes. In Bruck, 2round num inter-chip messages are exchanged at
each round, leading to higher latencies in higher numbered rounds.
round num is the total number of communication rounds/phases.
As there are at least two messages crossing the BIF in each round,
the overall latency in each round is max(L1(1), L2(1)), i.e., the
maximum of the inter-chip and intra-chip latency. Because there
are dlog2 pe steps, the overall communication time for two chips is
modeled as dlog2 pe × (max[L1(1), L2(1)]).

In a one-to-all barrier, the root node sends (p − 1) messages.
The first message reaches the first non-root SPE in time L(1), the
second message arrives in time g(1) because it has to wait g(1)
amount of time, and so on. Thus it takes a total of g(1)× (p−2)+
L(1) time to broadcast a message to p − 1 SPEs, thus the value
of q is p − 2. After all p − 1 SPEs get their messages, they send
an ACK back to the root node. In this phase, the time will be at
least L(1) plus some gap experienced by the ACKs. The total gap
is given by 0 ≤ g ≤ ((p − 2) × gAck(1)). Some of these ACKs
will be overlapped with the original messages in the first phase.
Other barrier algorithms were modeled similarly and are shown in
Table 1.

5.2 Broadcast models
We use the second latency micro-benchmark shown in Figure 3 to
model different broadcast algorithms and the other algorithms pre-
sented in the remainder of this paper. The “simple” suffix in Table 2
denotes a broadcast in which nodes do not wait for ACKs at the
end of each communication round, allowing later communication
rounds to complete their data transfers before earlier ones.In the
simple version of the binomial tree algorithm, the root node sends
the address of the data to be broadcast to all of its children and they
issue a dma get at approximately the same time. Because the DMA
requests are 128 bytes in length, each child will get 128 bytes of
data initially rather than SPE 1 getting all the data. The result of
this is that SPE 1 will get the data after L(m) + q × g(m) time,
not L(m) time. This in turn delays the children of SPE 1. Hence at
each level there is an additional delay, which we model by g(m).
We call such behavior a priority inversion.

We refer to an optimized version of broadcast that prevents
priority inversion of messages by ordering DMAs as “opt”. This
is the second communication pattern discussed in Section 4. To
avoid the priority inversion problem in the simple broadcast, our
optimized broadcast uses address-data-ACK phases at each round
as described in Section 3.2. Each round takes L(m)+L(1) time. By
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Figure 5: First phase of the segmented binomial algorithm.

using such ordered DMAs, the overall latency will not have g(m)
terms in the case of a power-of-two number of SPEs.

A segmented binomial tree has a two-phase broadcast process.
In the first phase, the nodes in the left half of the tree get the left
half of the data and the nodes in the right half of the tree get the
right half. This step takes (log2 p − 1) × L(m/2) + L(1) time.
In the second phase, the left and right half nodes exchange their
data, which takes L(m/2) + L(1) time. (All of our segmented
trees assume the DMA ordering optimization.) In Figure 5, the
left half of the data is shown as a dark color (blue) and the right
half is shown as a light color (red). In the 16 SPE case, this
policy results in 14 inter-chip data exchanges in the last phase,
causing substantial congestion when larger messages are used. This
is shown by the C(m > 256) term in the segmented-binomial
model since sending more than two large messages across the
BIF will result in some congestion and delay, which is accurately
captured by our congestion micro-benchmark.

To reduce the number of BIF-crossing messages in the 16 SPE
case, we implemented a hybrid version of the segmented binomial,
where the root node sends all data to one representative node in the
second chip. This takes L2(m) for the data message and L2(1) for
the ACK, after which the two-phase broadcast times are all on-chip
and thus based on L1.

5.3 All-gather Models
In recursive distance doubling for all-gather, p messages are ex-
changed in each communication round and the data being commu-
nicated doubles at each stage. For the two chip scenario, in the first
log2 p − 1 rounds, data communication will take place on the EIB
and the communication cost in each round is L1(messagesize) +
L1(1). In the last round, all the data traffic will be on the BIF. Be-
cause the number of messages crossing the BIF interface is more
than two, the congestion C term is needed in the final equation
shown in Table 3.

Consider the hybrid algorithm called hybrid-x-y (shown in Fig-
ure 6) that seeks to find an ideal compromise between the concur-
rency of recursive doubling and the low traffic of gather followed
by broadcast. x is the round number where the switch to recursive
doubling occurs and y is the number of data messages crossing the
BIF. For simplicity, consider the case of p nodes where p is a power
of 2. This algorithm starts by performing x− 1 rounds of binomial
gather, leaving p

2x−1 evenly-spaced node IDs in the communica-
tion structure. The cost of each step is L1(messagesize)+L1(1),
where the message size depends on the round number, and is
2round number ×messagesize bytes. At this point, the algorithm
switches to recursive doubling until all p

2x−1 nodes have the re-
sults of the all-gather. This takes log2 p − (x − 1) rounds and re-
sults in p

2x−1 messages across the BIF when the lower half and
upper half of the nodes are on separate chips. The cost of each



Barrier One/Two
Cells

Model equation

Recursive doubling One T = log2 p × L(1), p is a power-of-two
T = (blog2 pc+ 2)× L(1), otherwise

Recursive doubling Two T = (log2 p − 1)× L1(1) + L2(1), p is a power-of-two
T = (blog2 pc+ 1)× L1(1) + L2(1), otherwise

Bruck One T = dlog2 pe × L(1)
Bruck Two T = dlog2 pe × (max[L1(1), L2(1)])
Gather-Broadcast One T = 2× dlog2 pe × L(1)
Gather-Broadcast Two T = max[2× (dlog2 pe − 1)× L1(1),

2× [L2(1) + (dlog2 pe − 1)× L1(1)]]
One-to-all One T = q × g(1) + L(1) + L(1) + X,

0 ≤ X ≤ (q × gAck(1)) and q = p − 2
One-to-all Two T = 2× (L1(1) + L2(1)) + q1 × g1(1) + q2 × g2(1) + X,

0 ≤ X ≤ q1 × g1Ack(1) + q2 × g2Ack(1) and q1 = 6, q2 = p − 9

Table 1: Models of different Barrier algorithms.

Broadcast One/Two
Cells

Model equation

One-to-all One T = q × g(m) + L(m) + L(1) + X,
0 ≤ X ≤ (q × gAck(1)) and q = p − 2

One-to-all Two T = L1(m) + q1 × g1(m) + L2(m) + q2 × g2(m)
+L1(1) + L2(1) + X, 0 ≤ X ≤
q1 × g1Ack(1) + q2 × g2Ack(1), p > 8 and q1 = 6, q2 = p − 9

Binomial-Tree-simple One T = blog2 pc × [L(m) + L(1)] + q
×g(m) + X , 0 ≤ X ≤ q × gAck(1)), and q = 3

Binomial-Tree-opt One T = log2 p × [L(m) + L(1)], where p is power-of-two
Binomial-Tree-simple Two T = (blog2 pc − 1)× [L1(m) + L1(1)] + L2(m) + L2(1)

+q1 × g1(m) + X , 0 ≤ X ≤ q
×g1Ack(1)), and q1 = 7, q2 = 0

Binomial-Tree-opt Two T = (dlog2 pe − 1)× [L1(m) + L1(1)] + L2(m) + L2(1)
Segmented-Binomial-opt One T = (log2 p + 1)× [L(m/2) + L(1)], p is a power-of-two
Segmented-Binomial-opt Two T = (log2 p − 1)× [L1(m/2) + L1(1)]+

2× [L2(m/2) + L2(1)] + C(m/2 > 256), p is a power-of-two
Hybrid-Seg-Binomial-opt Two T = log2 p × [L1(m/2) + L1(1)] + [L2(m) + L2(1)], p is a power-of-two

Table 2: Models of different Broadcast algorithms.

round would be the same as above, except that the cost should be
L2(messagesize)+L2(1) for rounds that cross the BIF. A C term
is added if the messages crossing the BIF are large and more than
two in number. Now, each of the p

2x−1 nodes with the result act as
the root of binomial broadcast trees, requiring x − 1 more rounds
to give the result to all nodes. The cost of each of these steps is also
L1(messagesize) + L1(1). Thus, the total number of rounds are
log2 p + (x − 1) and there are p

2x−1 BIF-crossing data messages.
In Table 3, m is the starting size of the send buffer and p · m is the
size of the final receive buffer.

5.4 Reduce Models
The binomial reduce is the opposite of binomial broadcast. In this
case, however, there is a computation term γ included in the mod-
els. For large data sizes, we studied Rabenseifner’s reduce, which
is based on reduce-scatter and gather [19]. Reduce-scatter effec-
tively decreases the aggregate bandwidth requirement by giving
each node only a subset of the reduced data. The amount of data
to be communicated is halved at each stage along a binomial tree
and computation is performed on the communicated data. The
cost of each stage k is L(mk) + γmk + L(1), where the mes-
sage size mk depends on the round number k as (2log2p−k). In
the gather phase, the amount of data is doubled at each stage,

and the root node contains the total reduced data, with the cost
being L(messagesize) + L(1) for each stage. Thus the result-
ing overall time for reduce-scatter plus gather based reduction is∑log2 p−1

k=0
[2L(2km) + γ2km + 2L(1)]. For 16 SPEs, the con-

gestion (C) term is added since in the first round of reduce-scatter
there will be 16 messages crossing the BIF. In Table 4, the reduce-
scatter model assumes that the total size of the reduced data is p·m,
with m being the size of the data at each node when the reduce-
scatter is done.

5.5 All-reduce Models
The Reduce-scatter plus recursive distance doubling all-gather is
similar to reduce-scatter plus gather-based reduce with the addition
of another congestion term (C). When 16 SPEs are participating in
the all-reduce, the reduce-scatter phase has 16 messages crossing
the BIF and so does the all-gather phase.

HybridA-3-4 switches to recursive doubling in the third com-
munication round (x− 1 = 2). HybridA-3-4 starts with x− 1 = 2
rounds of binomial reduce with the cost of each round being
L1(m) + L1(1) + γ · m and then switches to recursive doubling
all-reduce in round x = 3. The number of data messages cross-
ing the BIF is 4. The cost of each round is the same as above,
but L2(messagesize) + L2(1), if x > 3 and a C term added



All-gather One/Two
Cells

Model equation (p is a power-of-two)

Recursive doubling One T =
∑log2 p−1

k=0
[L(2km) + L(1)]

Recursive doubling Two T =
∑log2 p−2

k=0
[L1(2

km) + L1(1)]
+L2(2

log2 p−1m) + L2(1) + C(2log2 p−1m > 256)

Hybrid-x-y Two T =
∑x−1

k=1
[L1(2

k−1m) + L1(1)]+∑log2 p

k=x
[Lz(2

k−1m) + Lz(1) + C(2k−1m > 256 and y > 2 and z = 2)]
+(x − 1)[L1(p · m) + L1(1)]
, where z =2, if k > 3 and z = 1 otherwise

Table 3: Models of different All-gather algorithms.

Reduce One/Two
Cells

Model equation

Binomial One T = blog2 pc × [L(m) + L(1) + γm]
Binomial Two T = (dlog2 pe − 1)× [L1(m) + L1(1) + γm]+

L2(m) + L2(1) + γm

ReduceScatter+gather One T =
∑log2 p−1

k=0
[2× L(2km) + γ2km + 2× L(1)], p is a power-of-two

ReduceScatter+gather Two T =
∑log2 p−2

k=0
[2× L1(2

km) + γ2km + 2× L1(1)]
+2× [L2(2

log2 p−1m) + L2(1)] + γ2log2 p−1m
+C(2log2 p−1m > 256), p is a power-of-two

Table 4: Models of different Reduce algorithms.
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Figure 6: Hybrid 4-2 all-gather (switching round=4, data messages
across BIF=2).

when the number of messages crossing the BIF is greater than 2.
At the end of fourth round, SPEs 0, 4, 8 and 12, will have the re-
sults of the all-reduce, and each of them will act as the root of a
four node binomial-tree. Each round of this four-node binomial-
tree takes L1(m) + L1(1) time and finishes in two rounds. Hence
the all-reduce is complete at all nodes with a total of six rounds
and four data messages across the BIF. In HybridA-x-y all-reduce,
the binomial reduce takes x− 1 rounds, the recursive doubling all-
reduce takes log2 p − (x − 1) rounds and the binomial broadcast
takes another x − 1 rounds.

The HybridB algorithm first uses Rabenseifner’s reduce-scatter
to reduce traffic. Then, HybridB invokes the hybrid all-gather al-
gorithm discussed in Section 5.3. HybridB-x-y means that it uses
hybrid-x-y all-gather.

6. Extending the Model to a Cluster of Cell-based
Systems

In this section we show Our performance models can be extended
to a cluster of Cell based systems and complex hybrid systems like
the Roadrunner [6].

6.1 Model extension for a cluster of Cell Blades
Let Lspe−ppe(m) be the latency from an SPE to a PPE or vice
versa on a Cell Blade, and gspe−ppe(1) be the ACK from an
SPE to the PPE and vice versa. These parameters can be mea-
sured using benchmarks similar to those used to measure inter-
SPE parameters. Define Lnode(m) and gnode(m) as the latency
and gap from one Cell Blade to another Cell Blade (i.e., a different
node). We measure these parameters using the traditional PLogP
micro-benchmarks [10, 13] using the logp mpi software. We used
MPICH2-1.1 for inter-node communication [1].

Cluster Barrier Implementation and Modeling. Consider a
hybrid barrier implementation for N Cell Blades. We use a re-
cursive doubling barrier implementation on the individual Cell
Blades. The cost of 16 SPEs synchronizing on one Cell Blade is
3 · L1(1) + L2(1). One PPE on each Blade will receive ACKs
from 16 local SPEs; the cost of this will be the latency from SPE
to PPE and the gap, Lspe−ppe(1) + gspe−ppe(1). There will be
some overlap in the above two phases and the overall cost will be
the maximum of the two. After receiving ACKs, the PPEs on each
Cell Blade will participate in an MPI Barrier. The MPICH2-1.1
uses Bruck for their barrier implementation. The cost of this would
be dlog2 Ne[Lnode(1) + gnode(1)]. There will be some overlap in
the inter-SPE recursive doubling on the SPEs and the inter-node
Bruck barrier cost. Hence the cost will be the maximum of these
two. When each Cell Blade (one PPE) is finished with the Bruck
Barrier, it will send an ACK to one other SPE and that SPE will
send an ACK to other SPEs in a binomial fashion. The cost of this
step would be Lppe−spe(1) + 3 · L1(1) + L2(1).

As in this example for barriers, the performance models of other
collectives could also be extended to work on cluster of Cell Blades.



All-reduce One/Two
Cells

Model equation (p is power-of-two)

Recursive doubling One T = log2 p × [L(m) + 2× L(1) + γm]
Recursive doubling Two T = (log2 p − 1)× [L1(m) + 2× L1(1) + γm]+

L2(m) + 2× L2(1) + γm + C(m > 256)

ReduceScatter+rd-allgather One T =
∑log2 p−1

k=0
[2× L(2km) + γ2km + 2× L(1)]

ReduceScatter+rd-allgather Two T =
∑log2 p−2

k=0
[2× L1(2

km) + γ2km + 2× L1(1)]
+2× [L2(2

log2 p−1m) + L2(1)] + γ2log2 p−1m
+2× C(2log2 p−1m > 256)

ReduceScatter+gather+Bcast One T =
∑log2 p−1

k=0
[2× L(2km)+

γ2km + 2× L(1)] + log2 p × [L(m) + L(1)]

ReduceScatter+gather+Bcast Two T =
∑log2 p−2

k=0
[2× L1(2

km)
+γ2km + 2× L1(1)]
+2× [L2(2

log2 p−1m) + L2(1)] + γ2log2 p−1m+
C(2log2 p−1m > 256) + (log2 p − 1)× [L1(m) + L1(1)]+
L2(m) + L2(1)

HybridA-x-y Two T = 2× (x − 1)[L1(m) + L1(1)] + (x − 1)× γm∑log2 p

k=x
[Lz(m) + Lz(1)+

γm + C(m > 256 and y > 2 and z = 2)]
, where z =2, if k > 3 and z = 1 otherwise

HybridB-x-y Two T =
∑log2 p−2

k=0
[L1(2

km) + γ2km + L1(1)]
+L2(2

log2 p−1m) + L2(1) + γ2log2 p−1m
C(2log2 p−1m > 256) + Hybridall-gather-x-y

Table 5: Models of different All-reduce algorithms.

6.2 Model extension for Cell-based hybrid systems
Similarly these models can be extended to work on hybrid systems
like the Roadrunner, by accounting for the additional levels of hier-
archy and interconnect. Roadrunner has a deep communication hi-
erarchy, including an Element Interconnect Bus (EIB), BIF (Broad-
band interface), PCI Express, Hypertransport, and Infiniband. Each
of these interconnects has a different latency. Define L3(m) and
g3(m) as the latency and gap from a Cell blade to an Opteron
blade on the triblade Roadrunner node (over PCIe) and L4(m)
and g4(m) as the latency and gap from one Opteron to another
Opteron (different node). Note that the third and fourth level pa-
rameters could be benchmarked using the traditional LogP/PlogP
measures as these are more appropriate for conventional networks.

Roadrunner Barrier Modeling. Consider a recursive doubling
barrier for N triblade nodes. The cost of 16 SPEs synchronizing
on one Cell Blade is 3 · L1(1) + L2(1). One PPE on each Blade
will receive ACKs from 16 local SPEs; the cost of this will be the
latency from SPE to PPE and 15 times the gap. There will be some
overlap in the above two phases and the overall cost will be the
maximum of the two. After receiving ACKs, the two PPEs will
send an ACK to the Opteron in approximately L3(1) time, because
each Cell blade has an independent PCI Express link. Finally the
Opterons will engage in the global recursive doubling phase and
this step will take log2 N steps when N is a power of two. Each step
will have a cost of L4(1). When each Opteron blade is be done with
recursive doubling, it will send ACKs to two PPEs (one per Cell
blade), costing another L3(1)+g3(1). Each PPE will then forward
the ACK to one representative SPE and that SPE will do a one-to-
all broadcast or binomial broadcast of the ACKs to all other SPEs.
The model for this is already covered in the previous section 6.1.
As in this example for barriers, the performance models of other
collectives can be extended to account for the additional levels of
hierarchy and interconnect in the Roadrunner.

7. Experimental Evaluation
All experiments reported here were performed on the IBM Blade-
Centers QS20 and QS22 at Georgia Tech. The QS2x organizes two
3.2Ghz Cell processors into an SMP configuration, connected by
the BIF inter-chip interconnect. All code shown here uses IBM’s
SDK3.0 and were compiled using 64-bit gcc with optimization
level -O3. Timings are measured using the fine-grained decrement-
ing register provided by the Cell blade. All latency numbers were
averaged over 100,000 iterations. These results are compared with
the predictions of the performance models of Section 5.

7.1 Model parameters.
We measured the parameters L(m) and g(m) using our micro-
benchmarks. We calculated RTT across both the EIB and the BIF
by averaging the RTT for communications between SPE0 and all
other SPEs. Recall that for 16 SPEs (Cell Blade), there are two gap
parameters: one for EIB messages, g1 and one for BIF messages,
g2. Figure 7 shows the gap parameter values for various message
sizes. The g1 value is different from g because there are additional
SPEs across the BIF posting bus requests to the data arbiter. There-
fore the waiting time for each SPE request is increased, Recall that
we use g when only one Cell processor is involved in the commu-
nication.

The congestion parameter (C), is calculated by the butterfly
communication pattern micro-benchmark, with each SPE sending
and receiving data from another distinct SPE. Note that in Figure 8,
there is almost no congestion up to a data size of 256 bytes. The
latency starts to climb as the data size increases above 256 bytes
and as the number of data messages crossing the BIF increases
above two. The latency increase caused by congestion is up to
218% of the latency when there is no contention.
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7.2 Analysis of Collective Communication performance
models

All of the execution times predicted by the performance models
are very close to the experimental results. Figure 9 shows the ex-
perimentally measured and predicted values of each barrier imple-
mentation. In the gather-broadcast barrier, the actual performance
is slightly worse than the model because of some control code in
the implementation; in the Bruck barrier, the actual performance is
slightly better due to message pipelining effects not captured by the
model. These errors are small enough that these predictions can be
used to make correct decisions about which algorithm to choose.

Figure 10 shows the error rate for different algorithms for
all-gather, broadcast, reduce and all-reduce. Considering all algo-
rithms, implementations, and data sizes, we have a total of 425 data
points. Of those, 398 (94%) have a discrepancy between the model
and the actual execution of less than 10% and all of them see er-
rors less than 15%. The algorithms not shown in this figure have
error rates less than 5%. All of the error rate graphs show data sizes
from 64 bytes to 32 KB. Performance of data sizes less than 64
bytes is the same as the performance at 64 bytes. Again, the er-
rors are small enough that the predictions can still be used to make
correct decisions when selecting algorithms. We also modeled and
tested Barrier and Broadcast up to 64 SPEs (4 Cell Blades) to show
that our models can be easily plugged into cluster-based collective
communication models. The error rates were within 13%.

We attribute the general accuracy of the models to two factors:
first, the accurate micro-benchmarks and methodology we devel-

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

8 16

NUM_SPES

L
a
te

n
c
y
 (

u
s
e
c
s
)

Rdb-exp

Rdb-pred

Bruck-exp

Bruck-pred

One-to-all-exp

One-to-all-pred

Gather-broadcast-exp

Gather-broadcast-pred

Figure 9: Performance predictions and actual latencies for various
barrier implementations.

oped to capture latency, gap and congestion parameters on the Cell;
and second, the breaking down of each algorithm into fundamen-
tal components that could be represented using 3 basic and easily
modeled communication patterns. Almost all the algorithm predic-
tions are very accurate, with a correlation factor of over 0.98 across
all algorithms and implementations.

Figure 11 shows the error rates using non-Cell-specific model-
ing representative of the prior state-of-the-art. These models do not
incorporate BIF contention, and they use non-Cell-specific micro-
benchmarks for defining and measuring g, following the methods
of Kielmann et al. [13]. For some of the algorithms and data sizes
shown, errors are below 1%. However, in other cases, errors go as
high as 140% as a result of using the old gap parameters or 56%
from ignoring BIF contention. Because the errors are both large
and variable, these models cannot be used to select appropriate al-
gorithms before implementing the collective operations.
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8. Related work
Several approaches have been proposed in the literature to model
collective communication, especially in the context of MPI collec-
tive communication.

Kielmann et al. have presented work on modeling hierarchi-
cal collective communication and discussed the limitations in ex-
isting performance models that motivated their new model called
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Figure 10: Predictions of various algorithms.

PLogP [13]. Our work is similar in that our models must account
for the interconnect characteristics of the design and the ways in
which algorithms use that interconnect; however, the Cell Blade
is a unique design and thus requires a different approach than the
modeling of clusters on a LAN or WAN.

Besides LogP and PLogP, several other performance models
exist, such as LogGP and the Hockney model [3, 12]. Thakur et
al. use the Hockney model to analyze the performance of various
collective communication algorithms [20, 21]. Moritz et al. use
the LoGPC model to model contention in message passing pro-
grams [15]. Unfortunately, its complexity makes it hard to apply
such a model in practical situations. It also assumes k-ary n-cube
networks which might not be true in some cases, such as the BIF
in Cell Blades. Barchet et al. use PlogP to model all-to-all commu-
nication and extend it to include a congestion parameter [5] similar
to what we do. Our methods to capture gap and contention are dif-
ferent from all of the above methods. Pjesivac-grbovic et al. have
evaluated the Hockney, LogP, LogGP, and PLogP standard mod-
els for collective communication [17]. Their approach consists of
modeling each collective communication using many different al-
gorithms, and they give an optimal/optimized algorithm for differ-
ent communication models. They all ignore contention, and this
may lead to inaccurate results in environments, such as the Cell
blade, that heavily stress the interconnect.

Faraj et al. propose an automatic generation and tuning of MPI
collective communication routines using the Hockney model [11].
Their modeling accounts for network contention but also requires a
large number of parameters, many of which are difficult to measure
for some networks and processor architectures.

Despite the various related efforts, there is currently no commu-
nication model in the literature that targets collective communica-
tion on accelerator-based processors such as the Cell.

9. Conclusions
This paper presents performance models for some advanced col-
lective communication algorithms that exploit features of the Cell
architecture. In particular we provide an extension to the PLogP
performance model to predict the performance of various collective
communication operations. This modeling is achieved by break-
ing down the collective communication algorithms into three basic
communication patterns that can be analyzed and modeled directly.
Expressing and modeling collectives in this fashion enables the ex-
tension of this work to incorporate other algorithms that can also
be built on top of those three primitives. The predictions from these
performance models are accurate and the errors are within 10% for
nearly all of the algorithms modeled, both within a single Cell chip
and across Cell chips that are part of a blade. We show how these
models can be extended for a system that consists of a cluster of
Cell Blades. We also discuss how these models can be extended for
Roadrunner-like systems.

The future of HPC depends on efficient communication algo-
rithms and the models presented in this paper will serve as a guide-
line for future developers of any collective communication pattern
for Cell-based systems. There exists a myriad of algorithms for any
given collective communication operation, and selecting, tuning,
and coding the best algorithm for a given platform requires sub-
stantial development time. Using the model equations to predict
performance and communication efficiency allows developers to
focus on the design of an algorithm rather than going through the
tedious process of implementing the algorithm. Although this is
true of modeling in general, it is even more so for modeling the
Cell since Cell programming is often substantially different from,
and more complicated than, general-purpose programming. Mod-
eling can thus play an important role in bridging the gap between
algorithm design and performance programming.
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