
Achieving Structural and Composable Modeling of Complex Systems

David I. August Sharad Malik Li-Shiuan Peh
Princeton University

Princeton, NJ
�august,sharad,peh�@princeton.edu

Vijay Pai
Rice University

Houston, TX
vijaypai@rice.edu

Abstract

This paper describes a recently-released, structural and
composable modeling system called the Liberty Simula-
tion Environment (LSE). LSE automatically constructs sim-
ulators from system descriptions that closely resemble the
structure of hardware at the chosen level of abstraction.
Component-based reuse features allow an extremely diverse
range of complex models to be modeled easily from a core
set of component libraries. This paper also describes a set
of such libraries currently under development. With LSE
and these component libraries, students will be able to learn
about systems in a more intuitive fashion, researchers will
be able to collaborate with each other more easily, and de-
velopers will be able to rapidly and meaningfully explore
novel design candidates.

1. Motivation and Direction

There is an increasing need to rapidly and accurately
model a diverse set of hardware systems. Ideally, in the
creation of hardware systems, researchers and developers
would build prototypes of each design candidate for evalua-
tion. Prototype building can yield extremely accurate mod-
els, and the process of building the prototype itself can be
informative. Of course, prototype building is impractical in
almost all situations, but practical modeling methodologies
that engineers employ should mimic the positive aspects of
prototype building as much as possible.

The most prevalent modeling methodology employed to-
day is hand-writing monolithic simulators in sequential pro-
gramming languages such as C or C++. While writing a
simulator in this way, the simulator writer must map sys-
tems, which are inherently structural and concurrent, to a
sequential programming language with functional compo-
sition. Though much more cost effective than prototype
construction, this mapping process is still quite laborious,
often consuming many person-years of effort. The manual
mapping process is also prone to error, and because the re-

sulting simulator code does not resemble the design or op-
eration of actual systems, errors introduced tend to go unno-
ticed [9, 6, 11]. Further, unlike prototype construction, little
understanding of the system is gained during the mapping
process.

The manual mapping problem has broader negative ef-
fects. These effects are most pronounced in the following
three areas:

� Collaboration. There exist many correct ways to
map a concurrent, structural system to a sequential
language. Unfortunately, unless a common mapping
scheme can be adopted, the resulting simulators cannot
interoperate. Collaboration between and among mem-
bers of academia and industry often stalls because of
this tool incompatibility. Collaboration between do-
mains is hardest hit for lack of common multi-domain
solutions.

� Novel Research. Radical and disruptive research is
often difficult to achieve with the current modeling
methodology. Publicly available simulators provide a
model only for systems similar to those preconceived
by the tool’s authors. High risk ideas requiring a new
simulator are often discarded because of the poten-
tially enormous cost of failure.

� Rapid Reuse. Monolithic simulator tools tend to be
“one-off” items often rewritten from scratch for each
project. Models of the same single component may be
written many times to fit each simulation system used.
Researchers and developers should not have to con-
tinue paying the price of these unnecessary recurring
costs.

These negative effects have been identified and much
work has been performed to address them. Some have
proposed the creation of standard simulator tool sets upon
which extensions could be built [20, 14, 5], but the diversity
of needs requires that no monolithic simulator standard be
adopted. Tools have been created to rapidly produce a simu-
lator, but these tools typically speed the process by making

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

domain-specific assumptions about the system to be mod-
eled [18, 21, 23, 13]. In other cases the tools are too generic
and do not provide the necessary mapping constraints to en-
sure component interoperability [4, 19, 10, 16]. In all these
cases, the root cause of these negative effects, the mapping
problem, was not directly addressed and one or more of
these problems remain [25].

The ideal modeling solution is a system that enables a
methodology approximating prototype building. The spec-
ification of the model should resemble the hardware itself;
it should be structural and concurrent, eliminating the need
to map the candidate design to sequential code. Like pro-
totyping, the specification process should force designers
and researchers to think about the hardware, not to worry
about simulator implementation issues. The specification
should involve reusable components at various levels of ab-
straction. To facilitate collaboration, a domain independent
component contract should be used to ensure that compo-
nents and specifications from any domain can interact with-
out prior planning. The system should also be free of any as-
sumptions that would limit the exploration of radical ideas.
We intend to deliver such a system to the modeling commu-
nity.

Our goal is to research, develop, and disseminate a com-
plete simulation environment that supports a structural and
composable modeling methodology. This simulation sys-
tem consists of the Liberty Simulation Environment (LSE)
and an initial set of robust component libraries.

LSE automatically constructs simulators from system
descriptions that closely resemble the structure of hardware
and component libraries. This structural resemblance to the
hardware provides confidence in the model and frees sys-
tems researchers to think about systems, not simulator cod-
ing concerns. LSE’s strict but general component communi-
cation contract enables the creation of highly reusable com-
ponent libraries and eases the task of rapidly exploring ever
more exotic designs. LSE components and descriptions can
be hierarchically composed of other components and can
exist at any level of abstraction (statistical to gate-level).
This choice of abstraction level combined with partial spec-
ification support allow models to be iteratively refined; de-
scriptions generate fully functional simulators from the very
start, allowing users to specify and validate precise models
incrementally.

Several component libraries must be provided to serve
as a foundation for creating simulators that span multiple
architectural levels. LSE components have already been
used to model a wide range of microprocessors and in-
terconnection networks. By building on these component
libraries, we intend to support a wide range of compu-
tational systems including systems-on-a-chip (SoCs), dis-
tributed clusters of workstations, tightly-coupled multipro-
cessors, and high-end supercomputers. While traditional

Instruction Set
Emulation

Customized and Interconnected Component Instances

Full System Simulator

Simulator
ExecutableLiberty Simulator Constructor

UPL

User

PCL NIL

user
defined MPL CCL

Liberty
Simulator

Specification
(LSS)

Components for use in LSS

Figure 1. An overview of LSE

simulators have focused on general-purpose programmable
processors, LSE will allow the composition of complex het-
erogeneous system models that include both programmable
components and dedicated application-specific hardware
models for tasks such as wireless communication or high-
speed network I/O. Such composability becomes essential
as systems of interest evolve from commodity PCs to sensor
network arrays and distributed low-power embedded sys-
tems.

By providing a design-neutral, unrestricted open-source
simulation framework to the community, we intend to im-
prove the quality of best-known techniques. Through struc-
tural and composable model specification, LSE will allow
researchers to easily collaborate, exchange ideas, under-
stand novel techniques, and evaluate the work of others in a
variety of contexts, facilitating independent verification of
research. The resemblance of LSE descriptions to real sys-
tems will allow it to be an effective educational tool when
integrated with an interactive system visualizer. The devel-
opment of several additional reusable core component li-
braries will provide a starting point for exploration by other
researchers, and the “Liberation” of existing popular simu-
lation systems, through encapsulation into LSE modules or
through equivalent configuration, will allow a smooth tran-
sition for interested researchers.

2 The Liberty Simulation Environment

A user of the Liberty Simulation Environment (LSE)
writes a Liberty Simulator Specification (LSS) to specify
the desired system by defining interconnections between
customized instances of reusable module templates. LSE
reads the LSS, instantiates modules templates into mod-
ule instances, and weaves the specification and module
instances together to form an executable simulator. An
overview of the Liberty simulator construction process is
shown in Figure 1.

LSE makes no assumptions about the target system while
ensuring that components interoperate. This guarantees that
components developed for one domain can be combined
with components developed independently for another. In
this way, LSE can serve a single platform for developing a

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

limitless range of full system simulators. LSE also contains
features that allow for iterative refinement of designs, a va-
riety of abstraction levels, and reuse of the components for
reduced simulator construction time.

2.1 Reusable Components

LSE was developed with a specification language and
component system based on observations about the short-
falls of existing systems. Many simulation systems, in par-
ticular those for processor design [20, 5], are built upon se-
quential programming languages, such as C or C++, and
attempt to leverage traditional software componentization
and composition techniques to allow for hardware com-
ponent reuse. Unfortunately, this approach does not work
well, since traditional software composition techniques are
designed for components that execute sequentially in LIFO
(program stack) order, typically waiting for all inputs before
beginning computation. As a result, the timing, control, and
functionality of components cannot be abstracted in a way
that would allow them to be reused across a large variety of
systems [25]. This lack of reuse makes designing a system
model extremely cumbersome. Furthermore, since many of
these systems do not have clean component interfaces with
respect to hardware blocks, it becomes difficult to refine a
coarse model to a more accurate one by replacing high-level
models with more detailed ones.

In contrast, like real hardware, each LSE module in-
stance executes concurrently with other LSE module in-
stances. Modules specify their interface to other modules
via ports. Each port represents an input or output chan-
nel for the module, and may have multiple connections so
that users can easily scale the bandwidth a module instance
has to the other blocks. Each module instance is abstracted
solely by its communication interface, with no assumptions
about sequentiality of the internal computation. Because
of this decomposition, the LSE specification resembles the
hardware that is being designed. As a result, it is far easier
and less error prone to translate ideas about hardware to an
LSS.

LSE module templates encapsulate functionality with a
flexible control interface. Each connection in LSE actually
corresponds to a connection of 3 signals. These 3 signals
are used to negotiate whether or not data can be transmitted
across a connection in a particular time-step. The signals
are similar to those used in bus handshaking protocols, and
serve a similar purpose, to guarantee that two components
can interoperate even if they weren’t explicitly designed to
interoperate with each other. Within a set of simple rules,
the user can manipulate how the “handshake” signals are
used to specify any control behavior they desire, indepen-
dent of module functionality. To prevent the user from hav-
ing to specify full control semantics, module templates pro-

vide default control semantics. Using the default control se-
mantics, working system models can be constructed by con-
necting the datapath and specifying minimal control. LSE
allows the user to override the default control semantics so
that any system behavior can be specified.

In addition to control semantics, details regarding the
functionality of hardware blocks often vary from system
to system. However, in monolithic simulators, these small
variations often require extensive code modifications since
functionality, timing, and control are intertwined in the
specification. Since these changes become overwhelm-
ing, simulators are often written from scratch for each new
project. To allow components to be reused, despite small
changes or extensions to functionality, LSE also has a pow-
erful component customization capabilities. Components
have algorithmic parameters, parameters whose values de-
scribe functionality. Via these parameters, users can inherit
the overall functionality of a module template, but adapt the
specific behavior to the system being modeled.

To further improve reuse, LSE allows users to build new
module templates based on the interconnection and cus-
tomization of instances of existing module templates. To
make the resulting hierarchical module template flexible,
the LSS language has powerful syntax by which users can
specify the hierarchical module template’s parameters and
port connections relative to the sub-module-instances’ in-
terconnections and customizations.

By providing hierarchical structural composition, cus-
tomization of components, and a communication contract
with default control semantics, LSE allows construction of
module template that can be reused in many contexts. For
example, a single module template can be instantiated to
model a processor’s instruction window, its reorder buffer,
and the I/O buffers in a packet router [25, 26].

2.2 Levels of Abstraction and Iterative refinement

One of LSE’s great strengths is the ability of LSE module
instances to interoperate. Even module instances with dif-
ferent levels of abstraction can interoperate. As a result, it is
possible to mix components with different levels of detail in
the same LSS. For example, a model of an interconnect net-
work may have connected to it a statistical packet generator
used to simulate network traffic. However, it is possible to
replace the statistical packet generator with a network inter-
face controller for a microprocessor simply by replacing the
packet generator. In this way, the same interconnect model
can be used with an abstract statistical model, as well as a
detailed microprocessor model.

Full system abstraction is also possible with LSE. Each
module template can provide default semantics when some
of its ports are left unconnected. This means that users can
specify a partial system and rely on the default behavior to

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

fill in omitted details, thus forming an abstract model of the
entire system. We use this feature extensively while build-
ing processor microarchitectural models. The typical de-
sign process starts by first specifying simple fetch and issue
logic. Then, once satisfied with this behavior, we add a
pipeline specification, speculation control logic, predictors,
and memory hierarchies in turn. At each stage in this refine-
ment process, the specification is compilable into a working
simulator.

2.3 Relation to Other System Specification Ap-
proaches

Other systems do not provide a domain independent
modeling system with a component contract that allows for
reusable component libraries. Hardware description lan-
guages, while capable of full system description, do not pro-
vide enough support for component customization to build
reusable components. Thus, a user has no ability to affect
the internal timing of pre-built components. Furthermore,
HDLs still require the user to specify all control explic-
itly, making specification of new systems quite involved.
Since the control interface is ad-hoc, pre-existing compo-
nents may not be able to interact in the desired way if the
correct control signals were not exposed.

SystemC [19] is superior to HDLs since it has better
support for inheritance and a more advanced type-system
allowing better abstraction. However, SystemC does not
provide any mechanism for simplifying the specification of
control, or providing default control semantics. As a re-
sult, specifying a model in SystemC can still be difficult.
In addition, since the SystemC libraries do not provide a
component communication contract, the control interface
is, once again, ad-hoc. Thus, the same mapping problem
exists for SystemC, making the standardization upon a stan-
dard component library unlikely. Note, however, that LSE
could bring its benefits to SystemC to solve these problems
by wrapping it. This is an option being explored.

While not exclusively a hardware modeling tool, the
Ptolemy framework does allow users to model hardware by
composing concurrently executing components [4]. How-
ever, unlike LSE, SystemC, and HDLs, Ptolemy allows each
model to specify the model of computation (MoC) that gov-
erns the semantics of communication and execution. This
flexibility, however, comes at a price. When using differ-
ent models of computation, work must be done to ensure
that the models can be composed. Sometimes this process
is easy and automatic, at other times it may require solv-
ing difficult problems [17]. Techniques allow some MoCs
to interact [15, 12], but they do not cover all MoCs leav-
ing the possibility of incompatible components. Further-
more, for hardware modeling, this flexibility is unnecessary
since most hardware can easily be specified using a single

model of computation with little loss of clarity or specifica-
tion ease. Also, MoC flexibility also comes at a simulation
performance price too steep for applications of interest.

LSE fixes its MoC to a reactive model of computation.
This has several advantages. First, power users only have
to learn one set of computation and communication seman-
tics easing the learning curve (though most users need not
be concerned with these details). Second, since all compo-
nents use the same model of computation, the MoC does not
preclude reuse of components. It should be noted, however,
that the standard MoC must be carefully chosen to avoid in-
terfering with reusability [25]. Third, by carefully selecting
the model of computation it is possible to analyze the LSS
for optimization [22].

Other domain specific approaches for simulator con-
struction have been proposed. These approaches [18, 21,
23, 13] gain most of their benefit from domain specific as-
sumptions and thus are not suitable for general system-level
simulation. Other approaches have been proposed [10, 16]
that could extend to full system simulation. However, these
approaches lack the necessary features to allow construc-
tion of interoperable components and highly reusable com-
ponent libraries.

Perhaps the most important shortfall of many of these
systems is availability. Many of these systems are pro-
prietary or not publicly available. Through the support of
the National Science Foundation’s Next Generation Soft-
ware program, we have been able to release LSE Version
1.0 without restriction ensuring that it will remain an open,
standardized collaborative framework.

3 Component Libraries

The core of LSE is its libraries of components consisting
of LSE modules. These pre-defined modules enable rapid
modeling of complex systems through seamless composi-
tion. We classify the various components into the following
libraries based on a functional partition:

Primitive Component Library (PCL) This consists of
primitive building blocks that are likely to be used across a
wide range of applications. Examples include arbiters and
memory arrays.

Uni-processor Library (UPL) This consists of the
micro-architectural elements of general purpose and appli-
cation specific processors. Examples include instruction de-
coders and branch prediction units.

Communication Component Library (CCL) This
consists of building blocks of communication fabrics. Ex-
amples include buses and routers.

Network Interface Library (NIL) This consists of
components that serve as interfaces across network bound-
aries and in between networks and processors. As example

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

is a format converter that sits between an Ethernet and a PCI
bus.

Multi-processor Library (MPL) This consists of com-
ponents used in multi-processor architectures. Examples
include cache-coherence engines for implementing shared
memory systems and DMA controllers for implementing
message passing.

The above classification is a functional one. It is driven
by the need for organization of what would otherwise be a
single vast and difficult to manage library. This classifica-
tion helps in both the library development stage as well as
the library deployment stage. During library development,
it is the natural partition of tasks among specialists in the
various functional domains. During deployment, it serves
as a catalog to help search for the appropriate match in the
building of complex systems.

It should be noted that this classification does not create
any usage boundaries. Components in one library can freely
be used in other libraries. The primitives in PCL are likely
to be used in all the other libraries. Similarly, MPL is likely
to build on all the other libraries in constructing top-level
models of complex multi-processor systems.

We now illustrate the use of these component libraries
in assembling models for a diverse range of systems. Fig-
ure 3 sketches several systems that our proposed simula-
tion framework will support. Each system can be com-
posed in a plug-and-play fashion using the LSE modules
defined in our suite of component libraries. By defining all
these modules with LSE, modules can inter-operate seam-
lessly across component libraries. Thus, simulation of new
complex systems can leverage the modules in these com-
ponent libraries for substantial productivity gains. For in-
stance, a chip multi-processor (see Figure 2(a)) will consist
of general-purpose processor (GP) modules from UPL, in-
terface modules (NI) from NIL, and network fabric modules
provided by CCL, glued with multiprocessor modules from
MPL.

Many of these libraries will share modules with similar
semantics, with components carefully defined for reuse. For
instance, in a sensor network node (see Figure 2(b)), which
is composed of a general-purpose processor (GP) and a dig-
ital signal processor (DSP) from UPL, linked with a bus
from CCL, and interfacing to a wireless radio component
from CCL through a radio interface from NIL, the GP and
DSP will share many common modules within UPL. The
various libraries will also share many modules of PCL, such
as the memory array primitive component which can double
as bus queuing buffers for CCL as well as caches in UPL.

Our goal of reusing the components led to careful gener-
alization of modules, so the same module can be param-
eterized and plugged into substantially different systems.
Figure 2(c) demonstrates how similar modules used to sim-

ulate a chip multiprocessor can now be extended to simu-
late systems of a totally different scale - a petaflops multi-
processor grid-in-a-box, with many GP modules from UPL,
sophisticated network interface controllers from NIL, inter-
connected with high-speed electrical or optical fabrics from
CCL, and glued with MPL modules such as cache coher-
ence controllers.

The hierarchical and iterative refinement features of LSE
are especially critical when we consider complex systems-
of-systems such as that in Figure 2(d). Here, we envi-
sion small sensor nodes peppered around an area, collecting
and communicating data wirelessly back to coarser-grain
nodes with chip multiprocessors that analyze and coordi-
nate groups of sensors. Finally, analyzed data is aggre-
gated back to a base camp where there are petaflops grids-
in-a-box that performs computationally intensive tasks for
coordinating and controlling the nodes in the field. With
LSE, we can compose such a complex system hierarchi-
cally from the subsystems built with components of the var-
ious libraries. It also allows users to work at different levels
of abstraction, so a network architect can iteratively define
the wireless network component of CCL, perform detailed
studies, while keeping the rest of the system at a high level
of abstraction.

We will next detail the various component libraries, the
challenges faced in each, and discuss the current status and
future work.

3.1 Primitive Component Library (PCL)

As we built early versions of UPL and CCL, we found
clear building blocks that are common across many libraries
such as queues and arbiters. These primitives can be read-
ily leveraged while building the functional component li-
braries, saving development time, maximizing reuse, and
easing debugging. An arbiter is an example of a primitive
that is readily used across various component libraries. For
instance, the same arbiter module can be used in CCL to
control access to network buffers and links, and in UPL to
regulate access to synchronization locks. The PCL has been
released with the support of the National Science Founda-
tion along with LSE Version 1.0.

3.2 Uniprocessor Library (UPL)

The Uniprocessor Library (UPL) contains all the build-
ing blocks for standard microprocessor models. UPL in-
cludes basic buffering and queuing structures that can be
customized to model the main processor pipeline including
functional units, re-order buffers, instruction windows, and
the corresponding interconnections. It also includes many
modules that when composed hierarchically, can provide
complex components such as realistic cache configurations.

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

On-chip Network

GP

NI

GP

NI

GP

NI

GP

NI

GP

NI

GP

NI

GP

NI

GP

NI

(a) Chip multi-processor

Wireless Network

GP DSP

Bus

NI

GPDSP

Bus

NI

......

Sensor node Sensor node

(b) Sensor network node

GP
N
I

board-to-
board

interconnect

GP
N
I

GP
N
I

GP
N
I

GP
N
I

GP
N
I

(c) Grids-in-a-box

Chip
multi-

processors

Sensor nodes

Wireless
Network

Petaflops
GriDs

Wireless
Network

NI NI NI NI

(d) A complex system of systems

Figure 2. A diverse range of systems that LSE aims to support through a suite of component libraries.

We have built an extensive range of components in UPL,
and have successfully modeled IA-64 and Alpha processors.
These models are being prepared for release along with the
UPL.

3.3 Communication Component Library (CCL)

Systems are becoming increasingly interconnected – A
simulation infrastructure that supports diverse communica-
tion fabrics is critically needed. Orion [26], a CCL, was
proposed to address this need, targeting the communica-
tion components of a wide array of systems, ranging from
on-chip networks in chip multi-processors, to electrical and
optical chip-to-chip and board-to-board fabrics in petaflops
grids-in-a-box, to wireless fabrics in sensor networks.

The challenges of Orion lie mainly in three areas: model-
ing of traffic workloads, development of component build-
ing blocks that are generalizable to different domains, and
component attribute models that cover key design parame-
ters in diverse applications.

An early version of Orion was developed, focusing on
wired interconnection networks, supporting fabrics rang-
ing from on-chip buses and networks for SoCs to chip-
to-chip electrical backplanes for petaflop grids [26]. Now,
in addition to dynamic power, Orion characterizes leakage
power [7] as well as the thermal impact of networks. Be-
sides being used to model networks in multiprocessor sys-

tems, both on-chip and chip-to-chip, the basic components
of Orion have been found to be applicable to interconnected
distributed caches [3], as well as heterogeneous multi-core
SoCs [27], demonstrating its generality. We have also pro-
posed and investigated various abstractions of different traf-
fic patterns in mobile sensor networks. We plan to further
extend Orion to a wider variety of communication fabrics,
developing new attribute models for the design metrics that
are significant in diverse application domains.

3.4 Multiprocessor Component Library (MPL)

Multiprocessor architectures form one of the most
difficult and important simulation domains for high-
performance systems engineering. Modules from PCL and
CCL form the foundation of a multiprocessor system sim-
ulator. The additional complexities in multiprocessor sys-
tem simulation stem from managing data replication, order-
ing, and communication. The MPL includes the modular
components required for implementing a structural specifi-
cation of a multiprocessor. These modules include DMA
controllers (for simulating low-overhead message-passing
systems), pluggable cache coherence controllers (includ-
ing bus-based snooping for small scale multiprocessors and
point-to-point coherence transactions for scalable systems),
and pluggable memory ordering controllers to restrict the
reordering allowed by the processor according to desired

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

constraints. Many of these components are sufficiently
flexible that they can be deployed in a variety of contexts
and systems, ranging from chip multiprocessors to tightly-
coupled systems to message-passing grids.

A hierarchical and component-based multiprocessor
simulator based on LSE serves as an ideal platform for re-
search into multiprocessor simulation methodologies. For
example, investigation of speed-enhancing techniques is es-
sential because of the need to support large-scale applica-
tions. Here, the reuse enabled by LSE eases the develop-
ment of sampling versions of hierarchical modules, in addi-
tion to allowing the incorporation and study of acceleration
techniques developed for the PCL. The support for multiple
levels of abstraction in LSE also allows for simulation ac-
celeration by integrating a detailed simulator of some por-
tions with analytical representations of other system com-
ponents. Such abstraction may increase the applicability of
workload-driven analytical models proposed for multipro-
cessor performance evaluation [24].

We are currently porting the RSIM simulator released
by Pai et al. to LSE as a base platform for developing
component-based multiprocessor simulators. RSIM’s mod-
ular open-source design has enabled external users to add
substantial functionality; our approach here is instead to
break the simulator into Liberty components along the lines
of its current modules and to formalize the interactions be-
tween modules according to the Liberty model of compu-
tation. Our prior experience with porting SimpleScalar to
Liberty should help guide our development efforts in these
regards.

3.5 Network Interface Component Library (NIL)

Network interfaces bridge processors and fabrics, and
multiple networks, and are realized both in ASICs and more
recently, as programmable network interfaces. These de-
vices translate between the formats understood on the ex-
ternal network and the local interconnect; the most common
realization is a network interface card (NIC) that translates
between Ethernet and PCI formats, implementing the arbi-
tration policies of the PCI bus and the medium access poli-
cies of Ethernet. Network interfaces have stringent space
and power requirements, combined with little data reuse.
Consequently, the primary techniques used in general pur-
pose processors to improve performance – large caches and
faster clocks – are inapplicable. In contrast, multiprocessor
microarchitectures are particularly appealing for these pro-
grammable network interfaces, since parallelism can allow
for performance without increasing clock speed.

Additionally, these devices have a heterogeneous set of
components, including DMA and MAC assist logic. The
process of simulating these devices is further complicated
by the asynchronous nature of the I/O interactions with

both the network and the host. Some previous studies have
attempted performance simulation for these devices using
conventional processor simulators [8]. However, no work
to date has provided a realistic simulation that accounts for
the special hardware features or software tasks supported by
these systems.

We are currently developing a network interface simula-
tor, with an initial target of properly modeling the MIPS-
based Tigon-2 programmable network interface chipset at a
level of detail sufficient to simulate the firmware that sup-
ports its deployment as a Gigabit Ethernet interface [1, 2].
This simulator development consists of two parallel tracks.
One track focuses on bringing up a uniprocessor sufficient
to run the desired firmware, adding support for the various
hardware assists and memory-mapped registers needed and
collecting the I/O traces of host and network traffic that will
later drive the simulation. The second track leverages the
MPL to implement a scalable parallel programmable net-
work interface and also works toward more aggressively
parallelizing the target code. Such simulation efforts will
both allow the architectural exploration needed to reach
next-generation Ethernet speeds and facilitate the develop-
ment of realistic models of other I/O devices. Clearly, de-
velopment of the programmable network interface in NIL
will leverage on modules of UPL and MPL.

4 Conclusions

Unlike traditional simulators, the Liberty Simulation En-
vironment (LSE) automatically constructs simulators from
system descriptions that closely resemble the structure of
hardware. The well-defined component communication in-
terfaces of LSE allow for the reuse and hierarchical con-
figuration of components across systems, easing the explo-
ration of a complex and diverse set of systems. The LSE
system has been released. To get the most out of LSE, com-
ponent libraries are to be released. These libraries target
domains including microprocessors, multiprocessors, net-
works, and programmable network interfaces, using both
domain-independent and domain-specific modules.

By enabling varying levels of abstraction and a unified
component connection framework, LSE provides both ideal
support for education and for technology transfer. Stu-
dents using LSE will be able to focus on system design
concepts and structural composition rather than the syntac-
tic and functional composition of more common simulation
schemes. Researchers may more easily release their mod-
ules built with LSE both for collaboration in academia and
for technology transfer to industry, since the well-defined
interfaces of LSE enable these modules to be composed into
other LSE configurations with ease.

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

Acknowledgments

We thank Kees Vissers, Timothy Kam, and Frederica
Darema for their comments at various points throughout the
development of LSE. This work has been supported by the
National Science Foundation (NGS-0305617). Opinions,
findings, conclusions, and recommendations expressed
throughout this work are not necessarily the views of the
National Science Foundation.

References

[1] Alteon Networks. Tigon/PCI Ethernet Controller, Aug.
1997. Revision 1.04.

[2] Alteon WebSystems. Gigabit Ethernet/PCI Network Inter-
face Card: Host/NIC Software Interface Definition, July
1999. Revision 12.4.13.

[3] B. M. Beckmann and D. Wood. Transmission line caches.
In Proceedings of the International Symposium on Microar-
chitecture, pages 43–55, December 2003.

[4] J. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt.
Ptolemy: A framework for simulating and prototyping het-
erogeneous systems. International Journal in Computer
Simulation, 4:155–182, 1994.

[5] D. Burger and T. M. Austin. The SimpleScalar tool set
version 2.0. Technical Report 97-1342, Department of
Computer Science, University of Wisconsin-Madison, June
1997.

[6] H. W. Cain, K. M. Lepak, B. A. Schwartz, and M. H. Lipasti.
Precise and accurate processor simulation. In Proceedings
of the Fifth Workshop on Computer Architecture Evaluation
using Commercial Workloads, February 2002.

[7] X. Chen and L.-S. Peh. Leakage power modeling and opti-
mization of interconnection networks. In Proceedings of the
International Symposium on Low Power and Energy Design,
pages 90–95, August 2003.

[8] P. Crowley, M. Fiuczynski, J.-L. Baer, and B. Bershad. Char-
acterizing Processor Architectures for Programmable Net-
work Interfaces. In Proceedings of the 14th International
Conference on Supercomputing, pages 54–65, May 2000.

[9] R. Desikan, D. Burger, and S. W. Keckler. Measuring ex-
perimental error in microprocessor simulation. Proceedings
of the 28th International Symposium on Computer Architec-
ture, July 2001.

[10] J. Emer, P. Ahuja, E. Borch, A. Klauser, C.-K. Luk,
S. Manne, S. S. Mukherjee, H. Patil, S. Wallace, N. Binkert,
R. Espasa, and T. Juan. Asim: A performance model frame-
work. IEEE Computer, 0018-9162:68–76, February 2002.

[11] J. Gibson, R. Kunz, D. Ofelt, M. Horowitz, J. Hennessy,
and M. Heinrich. FLASH vs. (simulated) FLASH: Clos-
ing the simulation loop. In Proceedings of the 9th Inter-
national Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS), pages
49–58, November 2000.

[12] A. Girault, B. Lee, and E. A. Lee. Hierarchical finite state
machines with multiple concurrency models. IEEE Transac-
tions on Computer Aided Design of Integrated Circuits and
Systems, 18(6):742–760, June 1999.

[13] A. Halambi, P. Grun, V. Ganesh, A. Khare, N. Dutt, and
A. Nicolau. EXPRESSION: A language for architecture ex-
ploration through compiler/simulator retargetability. In Pro-
ceedings of the European Conference on Design, Automa-
tion and Test (DATE), March 1999.

[14] C. J. Hughes, V. S. Pai, P. Ranganathan, and S. V. Adve.
Rsim: Simulating Shared-Memory Multiprocessors with
ILP Processors. IEEE Computer, 35(2):40–49, Feb. 2002.

[15] E. A. Lee and A. Sangiovanni-Vincentelli. Comparing mod-
els of computation. In Proceedings of ICCAD, November
1996.

[16] P. Mishra, N. Dutt, and A. Nicolau. Functional abstrac-
tion driven design space exploration of heterogeneous pro-
grammable architectures. In Proceedings of the Interna-
tional Symposium on System Synthesis (ISSS), pages 256–
261, October 2001.

[17] P. Murthy. Modeling and design of re-
active systems, 1997. Presentation. URL:
http://ptolemy.eecs.berkeley.edu/presentations/97/rasspfinal.pdf.

[18] S. Önder and R. Gupta. Automatic generation of microar-
chitecture simulators. In Proceedings of the IEEE Interna-
tional Conference on Computer Languages, pages 80–89,
May 1998.

[19] Open SystemC Initiative (OSCI). Functional Specification
for SystemC 2.0, 2001. http://www.systemc.org.

[20] V. S. Pai, P. Ranganathan, and S. V. Adve. RSIM Reference
Manual, Version 1.0. Electrical and Computer Engineering
Department, Rice University, Aug. 1997. Technical Report
9705.

[21] S. Pees, A. Hoffmann, V. Z̆ivojnović, and H. Meyr. LISA
– machine description language for cycle-accurate models
of programmable DSP architectures. In Proceedings of the
ACM/IEEE Design Automation Conference (DAC), pages
933–938, 1999.

[22] D. Penry and D. I. August. Optimizations for a simu-
lator construction system supporting reusable components.
In Proceedings of the 40th Design Automation Conference,
June 2003.

[23] C. Siska. A processor description language supporting re-
targetable multi-pipeline dsp program development tools. In
Proceedings of the 11th International Symposium on System
Synthesis (ISSS), Dec. 1998.

[24] D. J. Sorin, V. S. Pai, S. V. Adve, M. K. Vernon, and D. A.
Wood. Analytic Evaluation of Shared-Memory Systems
with ILP processors. In Proceedings of the 25th Annual
International Symposium on Computer Architecture, pages
380–391, June 1998.

[25] M. Vachharajani, N. Vachharajani, D. A. Penry, J. A. Blome,
and D. I. August. Microarchitectural exploration with Lib-
erty. In Proceedings of the 35th International Symposium on
Microarchitecture, pages 271–282, November 2002.

[26] H.-S. Wang, X. Zhu, L.-S. Peh, and S. Malik. Orion: A
Power-Performance Simulator of Interconnection Networks.
In Proceedings of the 35th International Symposium on Mi-
croarchitecture, November 2002.

[27] T. T. Ye, L. Benini, and G. D. Micheli. Packetized on-chip
interconnect communication analysis for mpsoc. In Pro-
ceedings of Design Automation and Test in Europe, pages
344–349, March 2003.

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	footer1: 0-7803-8367-2/04/$20.00 ©2004 IEEE
	01: 3
	02: 4
	03: 5
	04: 6
	05: 7
	06: 8
	07: 9
	08: 10
	09: 11
	10: 47

