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ABSTRACT
This paper presents and evaluates Toast, a scalable Video-on-
Demand (VoD) streaming system that combines the popular Bit-
Torrent peer-to-peer (P2P) file-transfer technology with a simple
dedicated streaming server to decrease server load and increase
client transfer speed. Toast includes a modified version of BitTor-
rent that supports streaming data delivery and that communicates
with a VoD server when the desired data cannot be delivered in
real-time by other peers.

The results show that the default BitTorrent download strategy
is not well-suited to the VoD environment because it fetches pieces
of the desired video from other peers without regard to when those
pieces will actually be needed by the media viewer. Instead, strate-
gies should favor downloading pieces of content that will be needed
earlier, decreasing the chances that the clients will be forced to get
the data directly from the VoD server. Such strategies allow Toast
to operate much more efficiently than simple unicast distribution,
reducing data transfer demands by up to 70–90% if clients remain
in the system as seeds after viewing their content. Toast thus ex-
tends the aggregate throughput capability of a VoD service, offload-
ing work from the server onto the P2P network in a scalable and
demand-driven fashion.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed
Systems–Distributed Applications; C.2.5 [Computer-
Communication Networks]: Local and Wide-Area Networks–
Internet; H.5.1 [Multimedia Information Systems]: Video

General Terms
Performance, Experimentation, Design, Measurements
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1. INTRODUCTION
With the proliferation of inexpensive broadband connections,

many applications have arisen to take advantage of this widespread
bandwidth. One of the most commercially important and techni-
cally challenging applications is Video-on-Demand (VoD) service
for high-quality, full-length movies. For example, the most recent
annual report of the largest cable company (Comcast) starts with
the sentence “On Demand is in” and states “Our growing ON DE-
MAND library attracted more than 1.4 billion views in 2005, nearly
a 150 percent jump over the previous year” [9]. This is an average
of 62 views per year per customer household. These numbers can
only be expected to increase as higher bandwidth links proliferate
and library capacity increases, allowing a greater number of high-
quality video selections for consumers. Forms of VoD range from
news and entertainment clips on the Internet to high-quality full-
length movie services offered by ISPs or cable companies.

Numerous systems have targeted VoD through powerful stor-
age servers that use disk striping and scheduling to multiplex a
large number of distinct request streams across a storage array
while meeting real-time network data delivery targets [3, 6, 15,
21, 27]. However, VoD systems may also experience difficulties
in achieving high throughput as a result of their network data deliv-
ery method. Whether they use UDP, TCP, or another transport pro-
tocol, VoD servers communicate with each client separately since
each client may request a different piece of content, and since even
multiple clients requesting the same piece of content may be at dif-
ferent points in the stream. This scenario potentially requires the
server to deliver the same content repetitively as it transmits data
separately to each client.

An alternative model for data delivery on high-bandwidth com-
munication channels is peer-to-peer (P2P) communication, which
makes all participants perform both client and server functions. Us-
ing P2P technology can greatly reduce the cost of distributing con-
tent, because the peers contribute their resources as well. Among
various P2P systems, the most popular is BitTorrent. BitTorrent
breaks each file into pieces to improve the efficiency and speed of
file transfers. Participants seeking a particular file form a swarm.
Entries in the swarm that have the complete file are called seeds.
Members that join the swarm obtain data pieces from seeds and
other new members depending on data availability, while also pro-
viding data to other new members as well. A “tit-for-tat” policy
aims to insure that every participant must also provide service to
others. Once a member has the full file, it also becomes a first-class
seed and remains such until its user closes the BitTorrent session.



By allowing an individual client to download pieces of a file simul-
taneously from multiple sources, BitTorrent improves user latency
while also avoiding bottlenecks at a centralized server.

BitTorrent has many uses, such as distribution of Linux ISOs
and other software updates. It is also extensively used for video
data transfer (including piracy, though this use is officially discour-
aged) [30]. Despite its use in video environments, however, Bit-
Torrent is fundamentally based on a download model rather than a
streaming model: actual end-user access to the media content is not
possible until the entire video has arrived. The default BitTorrent
policy is for a given swarm member to prefer to get the rarest piece
of data available from another swarm member. This is beneficial
for keeping more copies of this rare piece in the swarm and allow-
ing other members to pull this data from multiple sources, but is
not necessarily well-suited to the goals of the end-user who actu-
ally wants to view the data in real-time.

This paper presents a new system called Toast (Torrent Assisted
Streaming) which aims to improve the efficiency of VoD servers by
using P2P delivery through a video-targeted version of BitTorrent.
The BitTorrent version in Toast has been adapted to support stream-
ing real-time data delivery and to communicate with a traditional
back-end VoD server when none of the swarm participants is able
to provide the desired data in time for the user to view it. In essence,
a P2P network acts as a distributed cache for a VoD server, offload-
ing work from the server in a scalable and demand-driven fashion.
The VoD server remains in the system, however, to allow clients to
receive data pieces in real-time even when BitTorrent swarms can-
not provide those pieces efficiently. Though Toast could be used
on the Internet for the type of content seen on popular video sites
such as YouTube, the focus of this paper is higher-quality streams
and a faster network; for example, a cable company could deploy a
system like Toast on its set-top boxes.

The contributions of this paper are as follows. First, this paper
describes the design and implementation of Toast, providing ex-
perimental verification of its basic principles. Second, this paper
explores the strategies by which BitTorrent picks the next piece of
content to download. The results show that the default BitTorrent
policy is not well-suited to the VoD environment. Instead, poli-
cies should favor downloading earlier pieces of content from other
swarm participants to make it more likely that the end clients will
not have to get the data from the VoD server instead. Third, this
paper explores the impact of seeding on the effectiveness of Toast.
The experimental results show that intelligent piece picking and
persistent client seeding allow Toast to be quite effective, offload-
ing 70–90% of the network traffic from the VoD server onto the
P2P network (depending on the upload bandwidth available at the
clients).

Section 2 discusses background material on the BitTorrent sys-
tem and on VoD. Section 3 presents the overall Toast system and
discusses the client and server implementations, along with the var-
ious client options that are tested. Section 4 discusses overall eval-
uation goals, the testbed, and the methodology used to investigate
Toast. Section 5 presents and discusses our findings, and Section 6
concludes the paper.

2. BACKGROUND

2.1 BitTorrent
BitTorrent has become the most popular file distribution proto-

col on the Internet. This is primarily due to its efficiency and speed
in transferring files. Previous P2P systems usually consisted pri-
marily of a method to search for and locate files shared on the net-
work. Once found, a peer simply requested the file from another

peer, which transferred it using HTTP or a similar protocol. These
systems were primarily differentiated by their methods of locating
content, but were all similar with respect to their transfer methods.
BitTorrent on the other hand ignores the search problem. Instead,
it relies on web sites or other common distribution methods to dis-
tribute small files called torrent files (sometimes called “dot tor-
rent” files, due to their filename extension), each of which is essen-
tially a descriptor of a file or group of files to be downloaded. Each
file to be distributed has its own torrent file, and the group of clients
downloading a particular torrent is called a swarm. Each swarm is
independent and self-contained, but individual clients may partic-
ipate in more than one swarm at a time. The swarm is managed
by a simple network server called a tracker, which is responsible
for keeping track of all clients in the swarm, and informing clients
about each other. The tracker does not upload or download any file
data; to begin file distribution requires at least one client which has
the entire file, and which will upload to other clients in the swarm.
Such a client is called a seed, and downloading clients which do
not yet have the whole file are called peers or leechers (we will use
the general term client to refer to either a peer or a seed). Peers
become seeds once they have the whole file, and there are no dis-
tinctions between the seeds. (In particular, there are no differences
between the original seed run by the original distributor of the file
and other clients that have become seeds and are still participating
in the swarm.) In most cases, once they have the entire file, clients
will continue to participate as seeds until the user closes them.

There are two major innovations in the BitTorrent approach. The
first is that each file is split into a number of small pieces (often
256 kB), and these pieces are transferred out of order. This means
that peers that have different pieces of the file can exchange them,
and that a peer can download different pieces from several other
peers at once. In fact, since transfers are made at a granularity even
smaller than the piece size (usually 16 kB), even a single piece
can be downloaded from several peers at once. This can greatly
increase the speed at which a file is transferred compared to simply
downloading all of it from a single peer.

The second important feature of BitTorrent is an incentive strat-
egy designed to reduce the impact of “freeloaders” (clients who
download a lot of data but rarely or never upload anything) [8].
Such freeloaders are common in many P2P networks and do not
contribute positively to overall system performance. In the BitTor-
rent system, each client maintains connections with many others,
but is not necessarily willing to upload to all of them. Remote
clients which have active connections with the local client, but to
which the local client is not willing to upload, are said to be choked;
all remote clients start out choked. A remote client may be ran-
domly selected to be unchoked (called “optimistic unchoking”), or
may be unchoked when the local client recieves file data from it.
Thus, sending pieces of the file to remote clients increases the per-
formance seen by the local client. This strategy is called tit-for-tat
because of its reactive nature; similar strategies have been shown
effective in solving a variety of optimization problems in game the-
ory [2].

Using the above mechanisms, BitTorrent deals with heterogene-
ity in peer upload rates in two different ways. First, the tit-for-tat
scheme rewards peers that have higher upload rates and are thus
contributing more to the swarm. Second, the ability to download
parts of the same piece from multiple peers at the same time not
only accelerates the download process, but also shields the down-
loader from the possibility of waiting too long on a slow uploader.

For BitTorrent to operate effectively, peers communicating in a
swarm need to have different sets of pieces so that they can ex-
change them. The choice of which piece to request from another



peer can thus be critically important. Selecting pieces from the
other peer’s set uniformly at random generally does a good job of
maintaining this “piece diversity” throughout the system. However,
the standard BitTorrent client uses a “rarest-first” policy in which
the client keeps track of how many copies of each piece exist among
its peers, and selects the pieces with the fewest copies. Preferen-
tially choosing the rarest piece has three benefits. First, it helps to
ensure that all the pieces will still be available if all the seeds leave
the network. Second, this scheme also improves the aggregate up-
load bandwidth available for the chosen piece since this peer will
now be able to provide the piece to other swarm members. Third, it
can maximize the possibility that a peer has something to exchange
with other peers since it is unlikely that other peers have this con-
tent as well. Otherwise, other peers do not have the incentive to
serve this peer due to the tit-for-tat nature of the algorithm.

To maintain piece diversity, the standard client uses random se-
lection until a specified number of pieces have been downloaded
(4 by default), and then switches to rarest first, randomly selecting
among pieces with the same rarity.

2.2 Video-on-Demand
Video-on-Demand (VoD) has long been a research goal for sys-

tem architecture, networking, and audio/video coding researchers,
and hundreds of systems and solutions have been developed in
these areas. A common way of implementing a VoD server is to use
unicast and send each client a copy of the media, using one of sev-
eral protocols designed for this purpose (e.g., RTP and RTSP [25,
26]). However, this unicast approach is inefficient with hundreds
or thousands of clients. By taking advantage of the fact that the
same files are requested by many of the clients, many techniques
have been developed using multicast for nearly on-demand view-
ing, or using multiple unicast or multicast streams to reduce server
load while still providing true on-demand service. Such schemes
include patching, staggered broadcasting, hierarchical multicast
stream merging, adaptive piggybacking, and periodic broadcast
protocols [4, 11, 14, 17, 31]. However, IP multicast is rarely seen
on the Internet or even intra-ISP networks, so these solutions have
not had much impact.

Many newer techniques for video data delivery are based on
some form of peer-to-peer or overlay multicast technology, all with
their own protocols to manage peer communication and organiza-
tion [10]. The first such system uses linear chains of clients to
achieve functionality similar to IP multicast and uses these chains
to implement a generalized batching technique for on-demand
video [28]. GloVE combines these chaining and batching tech-
niques, allowing multiple streams of data between different clients,
but relies on IP multicast to make these streams efficient [13].

On-demand streaming systems such as CoopNet, PALS, PROP,
and BiToS are closely related to this work. Each of these systems
seeks to support an infrastucture-based system with P2P networks
and thus achieve scalability and reliability. CoopNet provides both
live and on-demand streaming using a multicast tree rooted at the
server and divides the streaming media content into multiple sub-
streams using multiple description coding (MDC) to provide ro-
bustness [22]. When CoopNet is used for on-demand streaming,
the P2P network is used only when the server is overloaded. The
server is required to keep track of the peers and the content held
by them, and redirect requests to peers when it is overloaded. (Bit-
Torrent and Toast clients do this by themselves, preferring to get
content from peers rather than the server). PALS uses layered-
encoding to allow receivers to fetch data from multiple sources,
including either other peers or servers [24]. The receiver chooses
sender peers in such a way as to optimize throughput and quality

of service. Unlike BitTorrent and Toast, PALS distinguishes be-
tween senders and receivers and thus only uses peers as senders
when they have the complete data of the stream. PROP is designed
for intranets which deploy a proxy server [18]. At any time, the re-
questing client receives data from either a peer or the proxy server.
If data is not available in the peers or the proxy, the proxy server
requests the missing data from the media server. The BitTorrent ap-
proach allows each peer to retrieve pieces of the video stream from
multiple other clients simultaneously. This provides robustness by
allowing multiple sources for each piece in case of node failure,
and provides better performance by allowing downloaders to get
pieces well in advance, reducing the chance that they will have to
get them from the server. BiToS actually uses BitTorrent for con-
tent distribution and balances rarest-first piece selection with a need
for real-time delivery [32]. However, BiToS does not include any
backing servers to guarantee real-time delivery. As a result, the
measured results for all variants indicate that at least 5% of pieces
are not received in time, degrading quality of service.

Other works have provided analysis and simulations of proposed
peer-to-peer VoD systems backed by servers, in which the peer-to-
peer network is used to reduce load from the servers. Cui et al.
propose oStream, a system using overlay multicast trees to stream
most of the video from peers instead of the server [10]. They of-
fer extensive analysis and some simulation results. Huang et al.
describe a peer-assisted VoD service with different fetching poli-
cies based on mathematical models of client needs and the ca-
pabilities of the server and P2P network [20]. They provide the
results of a discrete-event simulation model based on real-world
traces of accesses to a video to show the potential of such an ap-
proach. Chen et al. describe and simulate a system that employs
topology-aware algorithms and provides economic incentives to
peers that provide data, thus providing additional encouragement
to contribute resources and coordinating delivery to reduce over-
all network traffic [5]. Dana et al. propose a system similar to
Toast called BitTorrent-Assisted Streaming System (BASS) [12].
Their work uses Torrent trace data from the distribution of Fedora
Core 3 and develops a simplified model of BitTorrent client perfor-
mance, which they simulate for several metrics. Although each of
the above simulation-based and analytical works provides valuable
conceptual insights, Toast is a real implementation and thus allows
for more detailed insight and analysis on actual performance is-
sues. For example, using a real implementation allows this paper
to explore various modifications to BitTorrent that better target this
system for VoD.

2.3 Other Related Work
Numerous web caching systems and content distribution net-

works (CDNs) (e.g., Akamai) have sought to offload the delivery
of streaming video content onto geographically-distributed servers.
Peer-to-peer systems represent an alternative approach to this prob-
lem. P2P has advantages in dynamically provisioning resources as
demand rises since each requesting node must also be a provider.
If the peer nodes are actually controlled by a system administrator
(e.g., cable company or PCs on a LAN), they can be set to remain as
background seeds long after their viewing is complete, thus offload-
ing work from remote network servers without requiring additional
infrastructure support through a CDN.

A related problem to on-demand video streaming is that of live
streaming. Live streaming accomplishes a similar goal (distribut-
ing video or other content to large number of people) but does not
have the requirement that the user be able to skip to arbitrary points
in the stream (for example, in the future). However, this is the
primary advantage that BitTorrent exploits: the ability of clients
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Figure 1: System and client overview

to exchange pieces from anywhere in the file. BitTorrent-based
systems for live streaming have been proposed, implemented, and
analyzed. Such systems typically introduce a slight delay in play-
back to allow for limited exchange of a small window of content
pieces that have already been published but not yet distributed to
all peers [23, 29]. Alternative peer-to-peer approaches include
overlay-based multicast networks (e.g., [7]). These systems also
provide the benefits of peer-to-peer in terms of demand-driven
scalability, but BitTorrent-based systems benefit from BitTorrent’s
more richly-connected peering, use of multiple simultaneous peers
at each peer, and tit-for-tat incentive system.

3. IMPLEMENTATION

3.1 Overview
Figure 1 shows an overview of the Toast system, along with some

details of the client. The Toast system is essentially a hybrid of a
modified BitTorrent and a simple unicast VoD system. The tracker
and the seed client (which is optional in Toast) are unmodified.
The Toast clients implement standard BitTorrent functionality, but
also have an additional component. As in BitTorrent, each file has
its own instance of the overall system, although some components
may be shared. However, Toast also includes a VoD media server
that can satisfy any client’s request for a piece of the file.

The fundamental problem with BitTorrent for VoD applications
is that the file pieces are downloaded out of order. This means that
if a user is watching a video while it is being downloaded, it may
come to a piece of the file that has not been downloaded yet (even
though still later pieces of the file may have already been down-
loaded). If this situation arises or will arise soon, a Toast client
simply makes an extra request to the dedicated VoD server, out-
side of the BitTorrent system, to prevent interruption of the video
stream. In this way, the VoD server serves as a kind of backup for
the BitTorrent system. The “on-demand” nature of VoD is still sat-

isfied, but with much lower overhead on the server, compared to
systems where the server sends the whole file itself. The guiding
principle of Toast is thus to acquire data ahead of time from the
peers whenever possible while using the VoD server as a source of
data only if the peers do not have the data or cannot supply it in
real-time. This goal is different from that of standard BitTorrent,
so the software must also be modified accordingly.

3.2 Modified Client
The Toast client is based on version 4.4 of the official BitTor-

rent client from http://www.bittorrent.com, also known as the
“mainline” client. This implementation was chosen from the many
that exist because it was the original implementation by the au-
thor of the protocol (making it a popular de-facto standard), and it
is written in Python, which facilitates relatively easy reading and
modification of its code.

StreamWatcher. The primary addition is a new module called
StreamWatcher, which tracks the progress of a conceptual video
stream that the user is watching. (No actual video functionality
is implemented; the StreamWatcher merely tracks a file position.)
This is done by simply keeping track of time and multiplying the
elapsed time by the bitrate of the video stream (assuming no use of
VCR operations such as pause, fast-forward, and rewind). Alter-
natively, if an interface to a movie viewer were implemented, the
viewer could inform the StreamWatcher of the current position in
the file, updating this position as time elapses or as VCR opera-
tions are invoked. By knowing the file position, the StreamWatcher
knows which block will be next needed by the viewer, and it uses
the interfaces to BitTorrent’s internal components to keep track of
the download in progress.

Whenever the stream reaches a point of the file (whether through
simple play or through VCR-style operations), the StreamWatcher
checks the file store to see if the piece corresponding to that point
has been downloaded and is available. If so, then nothing must be
done until the next piece is needed. If the piece is not present, then
it must be downloaded immediately or the video stream will suffer
delays or breaks. So, the StreamWatcher sends a request to the VoD
server (which is carried out in a separate thread) and downloads the
piece. Although this download takes place out-of-band with re-
spect to the BitTorrent swarm, a complete piece received in this
way is still written into the file using the standard internal BitTor-
rent component which manages the downloaded file. In addition,
the internal PiecePicker (which keeps track of which pieces have
arrived and is responsible for selecting which piece to request next)
is also updated. These measures ensure that the piece will not be
selected and downloaded again from another peer. If there are any
outstanding requests to other peers for parts of this piece, they are
cancelled. Finally, this new piece is advertised to adjacent peers
(just as if it had been downloaded from a peer) so that they can
request it from the local client. Taken together, these procedures
effectively add the new piece to the existing swarm.

The BitTorrent portion of the client operates as usual, download-
ing pieces of the file from peers and writing them into the BitTor-
rent file store. The StreamWatcher simply keeps track of the current
stream position and downloads missing pieces from the VoD server
when necessary, writing them into the same file store.

PiecePicker. The other major modification to the client is to the
policy that determines which piece will be selected when the local
client is ready to request a new piece from a peer. Unlike the stan-
dard BitTorrent, Toast has less reason to favor the rarest piece first
since there is no danger that the file will become unavailable. In-
stead, the primary goal should be to reduce load on the VoD server
as much as possible. This means that there is a potential trade-off in
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piece selection: biasing selection toward pieces that will be needed
sooner would make it more likely that pieces are present when they
are needed by the StreamWatcher. However, good piece diversity
is still required for efficient BitTorrent operation, and more even
distribution would facilitate this. It should be noted that the piece
selection policy is only a preference. The PiecePicker is called
when a remote client has indicated its willingness to upload (that
is, it has unchoked the local client), but the remote client may not
have the picker’s preferred piece. In this case, the picker chooses
the next most desirable piece, according to the policy. It is also
possible that there are no pieces available that the client needs; in
this case it must simply wait and try again later.

The Toast client implements three piece selection schemes in
addition to the default. All policies share the common feature of
“giving up” and not selecting pieces that are too close to the cur-
rent stream position to download on time. For example, if a miss-
ing piece that represents 4 seconds of video will be needed in less
than 4 seconds, and the remote client’s upload rate is less than the
video bitrate, then the download cannot finish before the piece is
needed, so the picker will skip it and choose a piece further ahead.
The amount of this lookahead is estimated based on the length
of the piece, the client’s upload rate, and the video bitrate. The
first selection policy, called “in-order,” simply selects the piece that
will be needed soonest by the StreamWatcher; that is, the lowest-
numbered available piece. This shows a sort of greedy approach
where piece diversity is ignored in favor of pieces which will be
needed soon. The second policy, called the “beta” policy, selects
randomly among all needed pieces using a distribution that favors
earlier pieces over later pieces. This is implemented using Python’s
generator for a beta distribution with an α parameter of 1.0 and a
β parameter of 2.0. This gives a probability density function that
decreases linearly as piece number increases. This is an attempt to
strike a balance between getting pieces that will be needed soon,
and maintaining piece diversity.

Figure 2 shows the third policy, a hybrid of the previous two.
Aside from the pieces in the past and those given up, it maintains
two ranges of pieces: those that will be needed “soon” (e.g., in the
next few minutes), and those that will not. It first attempts to ensure
that it has all the pieces that will be needed soon by choosing in-
order in that range. Then, if it has all the available pieces in this
range, it chooses with the beta distribution among the remaining
pieces. The size of the in-order range can be specified in seconds
because the video has a known bitrate.

Local buffer size limit. In order to model situations in which the
local client has only a limited amount of hard disk space to devote
to the file, Toast has an option to simulate a limited local buffer.
The size of the downloaded data is tracked, and when the size limit
is reached, one of two actions is taken. First the client attempts

to reduce the local data size by ejecting pieces which are no longer
needed (i.e., pieces earlier than the current file position, which have
presumably already been watched). To simulate ejection of pieces,
the client simply sends a new “bitfield” message to all of its peers,
informing them that it no longer has the ejected pieces. If there are
no pieces available to eject, the client then suspends all download
activity by informing all peers that it is not interested in any of their
pieces and by not requesting any new pieces until it can free space
by ejecting pieces (new pieces will become eligible for ejection as
the current file position passes them).

3.3 VoD Server
The server is a modified HTTP server. Instead of streaming the

movie from start to finish, the server sends the pieces that are re-
quested by the clients. The clients send an HTTP request with
the name of the file, and the starting and ending byte (using the
HTTP/1.1 Content-Range entity-header [16]) that correspond to the
piece they need. The piece is sent using as much bandwidth as the
server has available and the client is able to receive (rather than just
at the video bitrate) to ensure that the client has the piece as soon
as possible for its own playback and to share the piece with other
clients.

4. EXPERIMENTAL METHODOLOGY
Toast is implemented in version 4.4 of the official (mainline) Bit-

Torrent client and is tested using an actual peer-to-peer network
and VoD server. To model the impact of a large number of peers,
many instances of the client can be run on each of a small num-
ber of machines. The clients are managed by a script that ensures
that each client runs in its own directory. Each client also uses a
different TCP port for incoming connections. To keep connection
speeds realistic, a client’s upload bandwidth is limited by the client
itself (in fact, this is an existing feature of the mainline client). The
client uses only a small amount of CPU time, and provided that
bandwidth limits can keep the network interface from being satu-
rated, many clients can be run on a single machine. Our testbed
consists of 6 dual-processor 2.8 GHz Intel Pentium 4 systems and
4 4-processor 2.2 GHz AMD Opteron systems, all with 4 GB of
RAM and connected by a Gigabit Ethernet switch. Because clients
running on cable set-top boxes would share a low-latency network,
using Gigabit Ethernet with appropriate delays added to the net-
work could be a realistic setup. For all tests shown, 300 clients are
distributed across 9 systems, and the server has its own Intel-based
system. A seed client also runs on the server system during these
tests, though Toast does not require this.

To emulate a cable-LAN, a Linux tool called NetEm was used to
add a fixed amount of delay to all packets as they are sent, includ-
ing those destined for other ports on the same machine [19]. NetEm



is used to control traffic characteristics like delay and packet loss,
allowing a lab environment to simulate a wide-area network. It
is part of the Linux kernel version 2.6 and is controlled by “tc”
(traffic control), a tool which is part of the iproute2 package. All
machines used for testing (including the server machine) were as-
signed a one-way send-side delay of 4 ms using NetEm. The com-
bination of this delay with processing time and propagation delay
gives an average round-trip time of about 10 ms, corresponding to
the latency characteristics of a metro-area LAN [1]. Our tests do
not model a specific network topology, but rather only the impact
of topology on packet latency.

While there are many types of VoD services on many types of
networks, one of the main challenging goals remains to serve high
quality full-length movies, for example as an ISP service for its
customers. In this type of situation, clients often have low latency
and high download bandwidth to the ISP’s network, though upload
rates are more limited. A typical DVD quality movie in MPEG
format would be about 4 GB streamed at a rate of 6 Mbps. Due to
disk space and bandwidth capacity, the number of clients that can
be run on a single machine is limited when using such large files.
Instead, the experiment here scales down the system to use 2 Mbps
streams, each of which has a capacity of 858 MB. Note that even
this lower bitrate exceeds the quality of one of the most popular
legal video distribution schemes (iTunes store) and is thus still a
realistic operating range. Toast is evaluated using maximum client
upload rates of 1 Mbps, 1.5 Mbps, and 2 Mbps.

The testing scenario models a period in which clients come and
go over time. For example, a set of 300 clients might watch the
same 2 hour movie over a period of 8 hours, arriving at different
times during the first 6 hours. To keep the test runs shorter but still
model this scenario, the actual tests were run over a period of 4
hours, with clients starting in the first 3 hours, and all being fin-
ished by the end of the 4th. The clients arrived every 36 seconds at
a constant rate. Three different client behaviors are tested: in the
“download-only” behavior the client quits and leaves the swarm as
soon as all the pieces are downloaded (which is before the stream
reaches the end of the file). This is the behavior of many Internet
users of BitTorrent who do not wish to share their upload band-
width more than necessary. The streaming behavior downloads the
file and continues to seed it on the network until the stream reaches
the end of the file (1 hour from when the client started), which
might be the behavior of a user who kept the BitTorrent client open
until the end of the movie. The seeding behavior does not exit the
client but seeds the file continually until the end of the test, result-
ing in all 300 clients being active at the end. Because the default
behavior of most BitTorrent clients is to seed the file until the client
is closed, this behavior is also commonly seen on Internet swarms,
and might also be used if the VoD distributor controls all of the
clients (for example, in cable set-top boxes).

The key evaluation metric is reduction of load on the VoD server.
A simple unicast server would have to send the entire file to every
client separately, with a total data transfer equal to the file size times
the number of clients. Allowing the clients to send data to each
other reduces this load on the server, ultimately allowing it to serve
more clients. All traffic sent by the server machine (including the
VoD server, BitTorrent tracker, and BitTorrent seed) was tracked at
the network interface and compared to the amount of file data that
would have been sent by a unicast server, equal to the size of the
file multiplied by the number of clients. All measurements include
startup costs where no content has been distributed to any of the
clients yet (thus making them slightly conservative with regards to
the benefits of Toast).
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Figure 3: Comparison of picker policies at different maximum
client upload rates using streaming behavior

5. RESULTS AND DISCUSSION
Impact of piece selection policies and upload rates. Figure 3

shows the test results as a percent reduction in total data uploaded
by the server machine (including the VoD server, BitTorrent tracker,
and the seed client) compared to a simple unicast server that sends
the entire file to each client. In other words, it shows the percent-
age of total data transfer that was transferred between peers instead
of from the server. Each client upload bandwidth rate is grouped
together, comparing each of the four piece selection policies. The
2 Mbps upload bitrate matches the client upload bitrate with the
video stream rate, while the 1.5 Mbps and 1 Mbps upload rates
represent more constrained environments ( 3

4 and 1
2 of the video

bitrate, respectively). In these tests, all clients use the streaming
behavior as described in Section 4: they leave the swarm once the
StreamWatcher reaches the end of the video content. These tests
also do not add artificial delays using NetEm.

For upload rates lower than the video bitrate, it is impossible for
the percent reduction to exceed the ratio of the upload rate to the
video bitrate with the streaming client behavior. For example, if
the upload rate is half the video stream rate, and each client up-
loads data for exactly the length of time of the video, then it can
only contribute half of the total size of the video into the swarm.
The same is true of each client, and the remaining data must be
contributed by the VoD server. There was also a greater difference
among piece picking policies for greater upload bandwidth, with
the better overall performance giving them more ability to differen-
tiate. As expected, the piece selection policies which are designed
with streaming in mind almost always perform better than the de-
fault rarest-first policy. In addition, the in-order and hybrid policies
perform much better with large upload bandwidth, whereas the beta
policy performs better with low upload bandwidth. When most of
the downloaded pieces can be successfully delivered by peers, it
is most profitable to use the available bandwidth to deliver those
pieces that will be needed soon rather than attempt to maintain di-
versity or fetch far into the future.

The 1 Mbps upload case is the only case where rarest-first per-
forms slightly better than in-order and hybrid policies. Since rarest-
first has no bias for earlier pieces, it is more likely than the others to
select further in the future. This divergence arises as follows. If a
piece in the near future is selected and the system has a low upload
rate, there is a higher probability that the data will not come fast
enough and will need to be downloaded from the VoD server any-
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Figure 4: Effect of in-order range size on hybrid policy using
streaming behavior and 2 Mbps maximum client upload rate

way, despite the attempt to compensate for this effect by not select-
ing on nearby pieces as described in Section 3. Predicting the right
number of nearby pieces to avoid is difficult because a client does
not know what percent of the remote peer’s upload bandwidth it is
getting, or the number of remote peers from which it can download
a single piece at any given time. Consequently, the actual number
of pieces that cannot be obtained from peers successfully will vary
dynamically. Because the pieces in the expected in-order range are
also less likely to be available, the hybrid policy never gets a chance
to escape to the randomized region. Consequently, it behaves just
like the in-order policy.

Figure 4 shows the effect of varying the in-order range of the
hybrid piece picking policy. This range is tested with values from
2 to 20 minutes. In these tests, the client upload rate was equal to
the video bitrate and again the streaming client behavior is used.
In-order and beta policy results are included for reference. Hybrid
outperforms beta throughout the range considered; it also outper-
forms in-order from approximately 9 minute mark on, peaking at
around 15 minutes. (The 15 minute in-order range was used in
Figure 3.) This result, as well as the other results in this section
show that the hybrid policy achieves its goal of capturing the ben-
efits of early piece selection and piece diversity over a wide range
of conditions and represents a good compromise between the more
randomized rarest-first and beta policies and the stricter in-order
policy.

Client sharing/termination behavior. Figure 5 shows the ef-
fect of three testing scenarios when the client upload bandwidth is
2 Mbps. The clients are tested using the download-only, stream,
and seed termination conditions described in Section 4 for each of
the piece picker policies. As expected, the seeding behavior per-
forms the best with server bandwidth reduced by up to 90% in the
hybrid policy. However, even the download and stream scenarios
see at least 70% savings with the three new piece picker policies.
The download-only scenario performs the worst since clients stop
sharing the pieces when they are done getting the movie. The ac-
tual sharing behavior is likely to depend heavily on the client pop-
ulation. The stream behavior models a likely PC-based VoD sce-
nario where the viewers will close the program upon completing
the movie. The seed behavior aims to model a situation where the
clients are always connected and responsive, such as one where the
client machines are controlled by an external system administrator.
One possible deployment that could exhibit such behavior would be
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Figure 5: Effect of client sharing behavior in 2 Mbps maximum
client upload rate
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Figure 6: Effect of client sharing behavior in 1 Mbps maximum
client upload rate

set-top boxes in a cable system; thus, the addition of a BitTorrent
peer-to-peer network among nodes in a given area has the potential
to greatly reduce the server infrastructure requirements of cable-
based VoD.

Figure 6 shows the impact of the seed scenario when the maxi-
mum client upload rate is just 1 Mbps (half of the video streaming
rate). As described above, the stream scenario would be theoreti-
cally limited to only reducing half the load; in practice, the server
savings only reaches 45% at most. However, with the seed sce-
nario, the savings reach 71%. This is actually superior to the sav-
ings that the stream scenario achieves with 1.5 Mbps upload band-
width. This result indicates that even with the upload rate only half
of the video bitrate, Toast can be effective in reducing the server
load if there are enough peers contributing.

Impact of choking policy. As discussed in Section 2, BitTor-
rent employs a tit-for-tat choking policy, in which peers prefer to
upload to other peers from which they have already received data.
This strategy is designed to provide incentives for the peers to serve
data to others rather than merely acting as freeloaders. In a more
controlled environment such as an ISP or cable set-top box, how-
ever, this may not be necessary, and a more equal scheme might be
more efficient. The tit-for-tat choking policy is compared against a
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Figure 7: Effect of peer choking policy using streaming behav-
ior and 2 Mbps maximum client upload rate
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Figure 8: Effect of limited local storage on clients using stream-
ing behavior and 2 Mbps maximum client upload rate

policy that does not consider peer download rates. This is the same
policy that is used by a peer when it finishes downloading and be-
comes a seed. Instead of using download rates (which are no longer
relevant for a seed), it uses upload rates and prefers peers which
are not downloading from other peers [8]. Figure 7 shows the re-
sults achieved by both this seed choking strategy and the standard
tit-for-tat for various piece-picker policies with the stream sharing
behavior. The experimental setup for these tests is the same as for
the previous tests. The results indicate that the standard tit-for-tat
policy performs better for all piece picker policies studied, with
substantial differences in the in-order and hybrid cases. Thus, even
in a controlled environment, cooperation between clients plays an
important role in the performance of the system.

Impact of limited local storage. Figure 8 shows the results
when each of the new piece picking policies is subjected to a lim-
ited storage space. Such a situation may arise if the storage space
at the client machine is shared among multiple swarms or is used
for other purposes (such as digital video recording). The buffer
space in each test is limited to the percentage of the video file size
indicated in the legend. This limitation is enforced by the clients
themselves; a client downloads normally until the limit is reached,
and after that it limits its stored size using two mechanisms. If the
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Figure 9: Effect of latency on server bandwidth reduction using
seeding behavior

client has any pieces that have already been viewed (that is, pieces
before the current stream location) one such piece can be ejected
from the local store for each new piece downloaded. If no piece
can be ejected, the client must stop the download process and not
accept any new piece from peers, a process which carries signifi-
cant overhead because of the nature of the BitTorrent protocol.

Unsurprisingly, the overall performance is reduced under this re-
striction, since the ejected pieces are then unavailable to send to
other peers. This effect is particularly marked when the size is
reduced from 50% to 25% because the clients are forced to stop
and start the download process much more often. The behavior of
the hybrid piece picking policy is also notable in that it performs
closely to the in-order policy for large buffer limits but performs
much more like the beta policy for small storage capacities. Clients
that are forced to eject pieces will eject the earliest pieces first, thus
making it more likely that the pieces in the in-order range are un-
available for delivery to other peers. As a result, those other peers
must instead choose pieces further in the future more often. In the
rarest-first policy (the default BitTorrent policy), there are only mi-
nor differences in performance with respect to the storage space.
Interestingly, the performance is slightly better with only 25% of
the storage than with more available. Rarest-first is more effective
than the other policies with very limited local storage, but cannot
take advantage of additional storage to reduce server bandwidth
further. For the other policies to be effective, a storage space equiv-
alent to 50% or more of the total stream length should be available.

Impact of latency. Figure 9 shows the effect of network la-
tency as described in Section 4 on the Toast system, comparing the
1 Mbps and 2 Mbps results using additional network delay (10 ms
round-trip time) to the base results with no added delay. These tests
use the seed termination policy. The server transfer reduction is al-
most identical, differing by less than 2.1% in all cases, indicating
that the additional delay has almost no effect on performance. Two
additional delay scenarios were tested, in which not all clients had
the same delay. In the first additional scenario, 4 machines were
assigned no delay, 4 were assigned 1 ms, one was assigned 2 ms,
and one was assigned 5 ms of send-side delay, resulting in over-
all round-trip times of up to 7 ms. A second additional scenario
used 3 machines with no delay, 2 machines with 4 ms, and the rest
with 5 ms, resulting in round-trip times of up to 10 ms. These tests
differed by less than 2.8% in all cases from the base results.
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Figure 10: Total network traffic generated

Total system network traffic generated. Besides server data
transfer savings, another important measure of the efficiencies of
various Toast policies is the overall network traffic generated by
the system. Differences in total network traffic may arise because
of duplicate network traffic generated by the peers due to ineffi-
ciencies in the policy or because of clients fetching data from the
server after already requesting the same data from a peer. Fig-
ure 10 shows the total network traffic in Gigabytes generated by
the system for various piece-picker policies, at both 2 Mbps and
1 Mbps client upload rates, and for both stream and seed sharing
patterns. This traffic metric includes both incoming and outgoing
network traffic generated by the server, the seed client, and all the
BitTorrent clients (including intra-machine transfers in our emula-
tion testbed). These tests were done with network delay added as
described in Section 4. This figure shows only small differences
in total network traffic despite using different piece-picker policies,
client upload bandwidths, and sharing behaviors. This result indi-
cates that Toast has few inefficiencies in total network traffic; the
idea of “giving up” on the data pieces closest to the current stream
position makes it unlikely that the client will have to fetch data
from the server after first requesting it from a peer. The only ex-
ceptions are slight degradations in the case of in-order or hybrid
piece-picking policies with 1 Mbps upload bandwidth and stream
sharing behavior; this result follows the earlier discussion about the
slightly degraded performance of these policies in this client con-
figuration.

Impact of client arrival behavior. For the primary tests, clients
used a uniform arrival rate, arriving every 36 seconds. In a scaled
down version of the tests using 90 clients and a smaller video file,
two additional arrival processes were considered. In the “all-at-
once” arrival behavior, all clients entered the swarm at approx-
imately the same time, simulating the release time of a popular
movie or a scheduled showing. In the Poisson arrival behavior,
clients arrived according to a Poisson process with an average in-
terarrival time of 2 minutes. These behaviors were compared to
uniform arrivals with 2 minute intervals. The all-at-once behavior
performed 21% worse on average than uniform. Because all clients
were at approximately the same point in the stream, fewer future
pieces were available in the swarm. Poisson arrival behaviors per-
formed very similarly to uniform, within 2% on average.

Discussion. The results presented here show that Toast can be
an effective solution for improving the efficiency and aggregate
throughput of a Video-on-Demand service. Toast achieves these

results using a video-targeted adaptation of BitTorrent backed by
a full-fledged VoD server. The results show that the default Bit-
Torrent policy is not well-suited to the VoD environment since it
makes no attempt to use available bandwidth or storage to achieve
real-time delivery constraints. Instead, policies that favor earlier
content pieces make it more likely that clients can avoid using the
backing VoD server. Further, allowing clients to remain in the
swarm as seeds can help improve VoD server efficiency even for
limited client upload bandwidth. Combining BitTorrent, a backing
VoD server, a hybrid piece-picking policy, and client seeding al-
lows Toast to offload as much as 90% of the network traffic from
the VoD server onto the P2P network.

This paper uses BitTorrent to optimize the distribution of a single
file. However, the scheme described here could be deployed using
separate swarms for distributing different popular files. Alterna-
tively, each peer could run a single “swarm manager” allowing it to
better partition its storage and network resources among multiple
active streams. Such capacity management should lead to further
interesting avenues for research.

This paper also does not evaluate the effect of the number of par-
ticipating peers or the scalability of this system. As with any P2P
system, Toast should provide throughput scalable with the number
of the peers so long as peers are not sharing common bottlenecks.
Although a greater number of peers would also yield some benefit
in terms of the likelihood of receiving a piece from a peer instead
of the server, Tewari and Kleinrock showed in the context of live
streaming that BitTorrent-based peer groups reach a critical mass
with as few as 10–15 peers [29]. The critical group size should be
even smaller with on-demand streaming since data can be served
from further ahead in the stream.

6. CONCLUSIONS
This paper presents and evaluates Toast, a system to improve

the efficiency of a Video-on-Demand service using the popular
and proven BitTorrent peer-to-peer technology. Toast includes a
modified version of BitTorrent that supports streaming data deliv-
ery rather than just downloads. The BitTorrent client is adapted to
communicate with a traditional VoD server when the desired piece
of data cannot be delivered by the swarm participants in a timely
fashion. Toast thus extends the aggregate throughput capability of a
VoD service, offloading work from the server onto the P2P network
in a scalable and demand-driven fashion.

This paper evaluates Toast under several usage configurations.
The results show that the default BitTorrent piece selection policy
is not well-suited to the VoD environment. Instead, policies should
favor downloading earlier pieces of content from other swarm par-
ticipants to make it less likely that the end clients will have to get
the data directly from the VoD server. Further benefits are possible
if clients remain in the system as seeds after they are done viewing
their content. Such configurations allow Toast to operate very effi-
ciently, reducing data transfer demands by up to 70–90% compared
to simple unicast distribution. Toast is thus an attractive choice to
serve as the substrate of a VoD data delivery system, effectively uti-
lizing client resources and network bandwidth while also reducing
server infrastructure requirements.
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