
A Model and Prototype of a Resource-Efficient Storage Server for High-Bitrate
Video-on-Demand ∗

Yung Ryn Choe, Chase Douglas, and Vijay S. Pai
Purdue University

West Lafayette, IN 47907
{yung, cndougla, vpai}@purdue.edu

Abstract

This paper presents a mathematical model and a proto-
type of a resource-efficient storage server for high-bitrate
video-on-demand (VoD) applications. Rapid exponential
growth of disk capacity enables the storage of high-bitrate
VoD streams; however, a server system must be carefully de-
signed to allow those streams to be retrieved from disk and
delivered to the network efficiently. Additionally, a cost-
effective server should be implemented using only commod-
ity components, such as standard PCs, SATA disks and con-
trollers, and Gigabit Ethernet links.

Previous parallel I/O performance models have been ei-
ther oversimplified theoretical models that ignore hardware
and application characteristics or complex hardware mod-
els that consider detailed disk behaviors such as inter-track
variations. This paper presents a model between these ex-
tremes: detailed enough to account for the rate-based na-
ture of streaming video, the buffering time allowed by the
application, and average-case disk hardware characteris-
tics while remaining simple enough to use for algorithm and
system design. This paper then describes a prototype stor-
age server designed to serve large video files at the specified
bitrates and finds its performance to agree closely with the
model (with an average discrepancy of 11% for high-bitrate
streams). The system uses up to 8 SATA-300 disks and can
simultaneously serve 290 distinct DVD-quality (6 Mbps)
streams or 74 distinct HDTV-quality (25 Mbps) streams
from disk, achieving an aggregate network throughput of
1.85 Gbps.

1 Introduction

As the computational capability and network bandwidth
available to end-users has increased dramatically, all levels
have seen demand for richer and more targeted content. For
example, the mobile space has seen the arrival of the video

∗This work is supported in part by the National Science Foundation
under Grant Nos. CCF-0532448 and CCF-0621457.
1-4244-0910-1/07/$20.00 c©2007 IEEE.

iPod, as well as services such as Verizon V-CAST that bring
video to cell phones. High-end entertainment has seen a
rapid increase in pay-per-view and regional satellite chan-
nels. Even the educational environment has seen offerings
such as iTunes U, which provides video and audio captures
of classroom lectures over the Web. All of these trends in-
dicate an increased need for efficiently serving on-demand
video.

The key issue in the performance of video-on-demand
(VoD) storage servers is managing the disk array. Hard disk
drive capacity has been improving at a 100% annual rate
since the introduction of GMR heads in 1997 [12]. At the
same time, the internal data transfer rate of disks, measured
for sequential access between the magnetic media and the
driver’s internal buffers has been improving at roughly 40%
per year. These improvements have come about primar-
ily through the greater information density on disk. Disk
access latency has also improved, but only at about 15%
per year. While the capacity improvements in disks cer-
tainly enable the storage of an ever-greater number of high-
bitrate streams, the performance trends only support sub-
stantial improvements if the workload offered to the disks
consists primarily of large sequential transfers. Storage
servers achieve high data transfer rates by employing par-
allel disks, but effectively utilizing parallel disks for large
data streams is challenging because of the need to multiplex
a large number of distinct request streams onto a smaller
number of disks while meeting real-time delivery targets.

The network server field in general has achieved great
performance improvements in recent years, with such
strategies as event-driven software architectures and zero-
copy I/O [15, 19, 22, 23, 35]. However, these works have
focused primarily on workloads with small files and high
disk cache hit ratios (e.g., web servers). The VoD work-
load is different, as each stream may be multiple Giga-
bytes and may by itself overwhelm the disk cache. The
web proxy server workload sees substantial disk access,
and some software strategies have focused on minimizing
seeks [16]. However, those file sizes are still small com-
pared to the VoD workload, and the performance levels re-
ported by proxy benchmarks are less than 300 Mbps [27].

Theoretical computer science has also produced advances
in parallel disk models and algorithms, but these do not ac-
count for real hardware or software characteristics [34].

The goal of this work is to model and prototype a
resource-efficient storage server for VoD applications with
bitrates ranging from 1 Mbps (roughly the quality viewable
on an iPod) to 25 Mbps (HDTV-quality), with a key oper-
ating point at 6 Mbps (DVD-quality). The server should be
built using commodity hardware and as few disks as possi-
ble while also serving as many high-bitrate streams as al-
lowed by the network links. The design should be based on
sound principles resulting from the model-based analysis.

The contributions of this paper are twofold. First, this pa-
per presents a performance model of a VoD storage server
that accounts for the rate-based nature of streaming video,
the buffering time allowed by the application, and the disk
performance characteristics. The model is a substantial im-
provement over existing parallel I/O models both for its ease
of use and for its ability to capture realistic hardware and
application characteristics. Second, this paper describes
a prototype storage server designed to serve large video
files at specified bitrates and finds its performance to agree
closely with the model, with an average discrepancy of only
11% for high-bitrate streams. The system uses up to 8
SATA-300 disks and can simultaneously serve 290 distinct
DVD-quality (6 Mbps) streams or 74 distinct HDTV-quality
(25 Mbps) streams from disk, achieving an aggregate net-
work throughput of 1.85 Gbps.

2 Modeling a VoD Storage Server

System design is a challenging process and can be aided
by the use of models. Models are ideally detailed enough
to capture important performance effects while still simple
enough to use easily. The following gives a model for de-
signing a parallel I/O system suited for delivering VoD from
a modern disk array.

Parallel I/O. A popular model for theoretical analy-
sis of parallel disk I/O systems is the parallel disk model
(PDM) [34]. PDM accounts for a fixed-size memory buffer
and assigns a unit cost for each disk access, casting the
optimization problem as one of minimizing the number of
atomic I/O steps. This model has been extensively used for
analysis and optimization of external-memory applications
under adversarial request models [1, 5, 13, 30]. Further,
Barve et al. have provided a competitive online algorithm
for retrieving a single multimedia reference stream from
multiple disks [4]. However, the general problem of op-
timally scheduling multiple streams on parallel disks has
been proven NP-Complete [2]. As a further complication,
the model does not account for the variable latencies of real
disks that consist of seek time, rotational latency, and trans-

fer time, or for realistic application characteristics such as
real-time delivery.

Disk characteristics. Seek time and rotational latency
are independent of transfer size, but the transfer time de-
pends on the transfer size used to access the disk and the
disk’s sequential transfer rate. Consequently, disks can be
accessed more efficiently if the block sizes are large enough
to amortize the overhead of seeking and rotational laten-
cies. However, using exclusively large block sizes could be
extremely wasteful when storing small pieces of data (e.g.,
typical Unix files with a median size of 10 KB [18]).

Rotational latencies between discontiguous disk ac-
cesses are uniformly distributed with an average of 30000

R
milliseconds, where R is the rotational speed of the disk
stated in RPMs. However, neither seek time nor sequen-
tial transfer rate is a constant; seeks that must travel a short
distance are much faster than those that span the disk, and
transfers at outer tracks provide higher bandwidth because
of the higher linear velocity of the magnetic medium. Prop-
erly considering the distributions of these terms in detail
requires extensive knowledge of the layout and workload
that may not be available at design time. Ruemmler and
Wilkes have designed a disk simulation model and explain
how various disk drive performance components can affect
its accuracy [28]. They quantify the effectiveness of their
model by comparing performance distribution curves for
a real drive and the model output; they use the root mean
square of the horizontal distance between these two curves
as a metric called the demerit figure. Achieving a truly de-
tailed model with a very low demerit figure requires a de-
tailed understanding of the seek time, rotational position-
ing, disk data layout, and data caching characteristics of
the disk. Although this level of information may be pos-
sible under certain circumstances, it is often difficult or im-
possible to extract from commodity operating systems and
disk drives. Such detailed information is also difficult to
acquire before building the actual system, making such a
model less valuable for performance-oriented design. Con-
sequently, the analysis presented here chooses to abstract
out those details and only considers the average seek times
and sequential transfer rates. (Note that even these mea-
sures incorporate some short seeks, as these are present in
sequential transfers of large blocks.)

If the average access time (seek plus rotational latency)
is termed ta and the average sequential transfer rate is
termed rd, the average time to access a contiguous block
of disk with size B is ta + B

rd
. Typical values of ta and

rd range from 17 milliseconds and 440 Mbps for high-
capacity SATA drives to 6 milliseconds and 800 Mbps for
high-performance SCSI drives. These values may be mea-
sured using tools such as lmbench [17].

Multimedia performance model. Real multimedia
servers such as video-on-demand must schedule N simul-

taneous connections onto their D disks. Each connection
is transferring content from a large logically contiguous file
with a target bitrate (rc). Additionally, the server may only
force each connection to buffer data for a certain amount
of time, as the buffer time affects the initial startup delay
of viewing the stream or the amount of time required for
recovery after a fast-forward or rewind operation. We call
this time tb; based on user perceptions of Web quality of
service, this time should be no more than 5–10 seconds [7].

We may define a measure of disk availability as the num-
ber of disks available over a period of time. Because the
server has D disks, there are simply Dtb units of disk avail-
ability during tb amount of time. At the same time, each of
the N simultaneous streams must retrieve rctb data in that
time period to keep its client connection active; rctb is the
conceptual block size of logical data retrieval in this system.
Using the above formula for disk access time, each stream
requires ta + rctb

rd
units of disk availability in tb time. We

then solve for N by comparing the required disk availability
and the total disk availability.

N(ta +
rctb
rd

) = Dtb ⇒ N =
Dtb

ta + rctb

rd

=
Dtbrd

tard + rctb

This represents the maximum number of simultaneous dis-
tinct streams available from the disk subsystem, assuming
no contention for resources when accessing the disks. Alter-
natively, solving for D gives D = N tard+tbrc

tbrd
as the num-

ber of disks required to support such a number of streams.
Since the streams must then be delivered on the network, N
is also bounded by rl

rc
where rl is the achievable link-level

bitrate (949 Mbps for TCP/IP over Gigabit Ethernet.)
Accounting for RAID. A common approach to improv-

ing disk bandwidth for certain classes of applications is to
use RAID to stripe data across disks [24]. In particular,
each large sequential transfer will be striped across several
disks depending on the RAID level used. The disk access
(with cost ta) will take place simultaneously across disks,
but the transfer rate will be multiplied by the number of
disks across which it has been striped, termed Ds. Note
that Ds only considers the number of disks across which
a given transfer has been striped, not the total number of
disks in the array. In total, a sequential transfer of size rctb
takes ta + rctb

rdDs
time, using taDs + rctb

rd
units of disk avail-

ability. The disk usage corresponding to the access time
has been multiplied but that from the transfer time is un-
changed. Solving for N now gives:

N =
Dtb

taDs + rctb

rd

=
Dtbrd

taDsrd + rctb

Since this is strictly less than the non-striped version (and
degrades as Ds increases), this model predicts better peak
performance without RAID than with it. This is somewhat
contrary to conventional wisdom but jibes with the observa-
tion of Reddy and Banerjee that disk striping increases the

effective service time of a request [25]. A possible solu-
tion to avoid this increase is to make the disk stripe size at
least as large as typical requests, thus giving a Ds of 1 for
such transfers [11]. However, a server that supports multi-
ple bitrates invariably has multiple reasonable request sizes;
choosing the smallest leads to a large Ds for larger transfers,
while choosing the largest gives no bandwidth improvement
for small transfers. Consequently, the prototype server stud-
ied here manages the disks in the array as independent units
rather than as a RAID.

3 Prototype Implementation

We have built and started to experiment with a prototype
streaming storage server. The following discusses the hard-
ware and software used in this study.

Hardware platform. This study uses two hardware sys-
tems, one based on a SATA-1 disk array and another based
on a SATA-300 disk array. The SATA-1 platform uses a
Promise FastTrak TX4200 4-port SATA RAID controller, a
motherboard with a 2-port Intel SATA controller, 1–6 Sea-
gate SATA-1 disks with capacity 400 GB and 7200 RPM ro-
tation speed, two 2.8 GHz Pentium-4 Xeon hyperthreaded
processors, two Gigabit Ethernet links, and 4 GB of DRAM.
The SATA-300 platform uses a Promise FastTrak SX8300
8-port SATA-300 RAID controller, 1–8 Seagate SATA-300
disks with capacity 500 GB and 7200 RPM rotation speed,
two 2.0 GHz dual-core Opteron processors, two Gigabit
Ethernet links, and 4 GB of DRAM. As discussed in Sec-
tion 2, this study configures the disks independently rather
than as a RAID.

The SATA-1 disks achieve a disk access time (ta) of 17
ms and a sequential transfer rate (rd) of 525 Mbps. Al-
though SATA uses a point-to-point link for each disk, the
controller is on a PCI bus that is limited to 2.1 Gbps. Con-
sequently, inter-disk contention becomes an issue with 4 or
more disks. With 4 disks simultaneously running, the per-
disk rd is 431 Mbps; with 6 disks (placing the last two on
the motherboard controller), the per-disk rd is 458 Mbps.
The SATA-300 disks see ta of 16 ms, rd of 446 Mbps (be-
cause of their larger size), and negligible inter-disk con-
tention because the controller has an 8 Gbps PCI-X host
interface.

Server software. The software platform consists of a
standard Linux 2.6.8 kernel using the ext3 filesystem for all
data partitions. Because the operating system is unchanged,
it may still allocate disk blocks at a minimum granularity
of 4K; in practice, the ext3 filesystem tends to allocate file
blocks sequentially. The content is stored on disk as large
files, with one stream data partition per disk. The SATA-1
disk array is large enough to hold over 500 4.7 GByte DVD-
quality streams, while the SATA-300 array can hold over
800. However, even these numbers are not enough to fully

Accept
Connection

Server Thread

End of file?

Sendfile()

Adjust time slice as
needed

Time slice
reached?

Sleep

Reduce time
slice

End

Yes

No

No

Yes

Figure 1. Flowchart describing operations
in server thread for processing individual
video-on-demand (VoD) client connection

exercise the system at low rates. Consequently, these tests
use an even larger number of 1 GByte streams. No stream
data is reused in the filesystem cache across performance
tests because each test overflows the cache in less than one
minute.

Figure 1 represents the flow of operations in the
application-level server software. The server responds to
a client connection by creating a new thread and then send-
ing rctb data as an initial buffer. It then enters a repeated
pattern of sending rctb data, seeing how long it took to per-
form that transmission, and sleeping that connection for the
remainder of tb. If a transmission takes longer than tb, the
server sends the next chunk at a higher rate (by sleeping for
less time) until the client side catches up. Each time the
transmission takes longer than tb, the server adds the ex-
cess time to a per-connection deficit variable (td) and sets
the target time for the next transmission of rctb data to be
tb−td. This deficit is reduced (or reset) if the next transmis-
sion completes before the target elapses. If the client side
repeatedly fails to keep up, its buffer will be exhausted and
it will starve; the server will continue to send at a higher
rate until its target has been met.

The performance tests use a tb of 5 seconds and report
a prototype N value as the maximum number of simulta-
neous connections to distinct streams that can be success-
fully supported by the server. This maximum value is de-
termined by binary search; any test in which any client con-
nection starves even once after the initial buffering (namely,
in which its data buffer empties because of slow server

responses) is considered to have failed. The client con-
nections come from one or two client machines on the
same LAN as the server, each initiating parallel requests
for distinct content. The prototype delivers the content via
HTTP over TCP/IP using the application-level rate-pacing
described above; realistic multimedia protocols would add
some network overhead but would not change the disk ac-
cess pattern.

4 Experimental Results

Figures 2 and 3 show the number of simultaneous dis-
tinct streams that can be served by the SATA-1 and SATA-
300 systems for high bitrates. From bottom to top, the
graphs represent the performance of systems with 1, 2, 4,
6, and (for SATA-300) 8 disks. In each case, one set of
bars shows the prototype at each of the target bitrates: 6,
12, 18, and 25 Mbps, while the other set shows the per-
formance predicted by the model (saturating at 1.9 Gbps
because of link-level bandwidth limits). The model graphs
are next to the prototype result graphs for comparison. The
model graphs assumes the same rd as in the 1 disk case ex-
cept for SATA-1 with 4 and 6 disks. In these two cases, the
model graphs account for inter-disk contention by using the
adjusted rd values given in Section 3. None of the other
configurations see noticeable inter-disk contention.

For the bitrates shown in Figures 2 and 3, the model
closely predicts the performance actually achieved by the
prototype. The average discrepancy is only 11% across all
combinations of disk array size and bitrate. These results
serve to validate the model and show that it can be used for
effective system design.

Further analysis shows that in both systems, limitations
from the operating system and PCI bus cap the actual net-
work throughput to 1.85 Gbps; this measurement was taken
by sending data from memory rather than accessing disk.
This limit explains why the SATA-300 prototype does not
scale to the expected 1.9 Gbps link-level bandwidth; the 8-
disk SATA-300 system actually saturates the network for
18 and 25 Mbps streams. The remaining discrepancies may
stem from other limitations not considered by the model,
such as memory transfer bandwidth, I/O bus contention
from other devices, CPU utilization, or seek time and trans-
fer rate variations across the disk.

Figure 4 shows the performance achieved by the proto-
type and predicted by the model for 1 Mbps streams. The
bars are similar to those used in Figures 2 and 3, repre-
senting the number of simultaneous connections to distinct
streams as the number of disks is varied. The prototype val-
ues are within 15% of the model when only 1 or 2 disks are
used in the SATA-1 system or with 1–4 disks in the SATA-
300 system. However, the numbers start to diverge sub-
stantially as more disks are used. This discrepancy arises

0

50

100

150

200

250

300

350

6 P 6 M 12 P 12 M 18 P 18 M 25 P 25 M

Bitrate (Mbps), Prototype or Model

N
um
be
r
of
 c
on
ne
ct
io
ns 6 disk

4 disk

2 disk

1 disk

Figure 2. Performance of high bitrate SATA-1 system according to model and prototype.

0

50

100

150

200

250

300

350

6 P 6 M 12 P 12 M 18 P 18 M 25 P 25 M

Bitrate (Mbps), Prototype or Model

N
um
be
r
of
 c
on
ne
ct
io
ns 8 disk

6 disk

4 disk

2 disk

1 disk

Figure 3. Performance of high bitrate SATA-300 system according to model and prototype.

because the prototype uses a software concurrency architec-
ture with one thread per connection, and CPU utilization be-
comes saturated with about 400 threads per processor. We
are currently investigating alternative software architectures
to achieve sufficient concurrency without a large number of
threads.

5 Related Work

There have been numerous commercial implementations
of VoD servers, as well as academic research on the sub-
ject. For example, Kasenna’s Media Server uses a high-
performance SCSI disk array to support 400 streams of rate
3 Mbps, while Bitband’s Vision 680 supports 257 streams
at 3.5 Mbps [8, 14]. Yang et al. have built a prototype
server using custom hardware, achieving 550 simultaneous
streams of rate 1.3 Mbps [37]. Shenoy and Vin studied stor-
age techniques such as static and dynamic load balancing,
retrieval techniques such as caching and batching, and disk

striping policies based on detailed models of large disk ar-
rays (16+ disks) with variable numbers of clients [31, 32].
Chang and Garcia-Molina focused on the best memory use
techniques under different disk management policies [10].
There have also been numerous studies in disk-scheduling
algorithms such as EDF, CScan, and Real-Time [9, 20, 36].
Other works have considered VoD storage performance
with disk striping and interleaving [6, 21, 36]. Wright de-
scribes and analytically evaluates a scheme called one-way
elevator with interleaving and delayed start (OEID); this
scheme interleaves data over all disks and delays the start
of each new stream to reduce random fluctuations in disk
load caused by new arrivals [36]. In general, prior studies
have generally focused on bitrates below 5 Mbps or sys-
tems that support only a small number of distinct streams.
More recent developments in link-level bandwidths, CPU
performance, and disk technology trends require a careful
investigation of faster bitrates, more connections, and more
distinct streams.

0

200

400

600

800

1000

1200

1400

1600

SATA-1 Prototype SATA-1 Model SATA-300 Prototype SATA-300 Model

1 Mbps

N
u
m
b
e
r
o
f c
o
n
n
e
ct
io
n
s

8 disk

6 disk

4 disk

2 disk

1 disk

Figure 4. Performance of 1 Mbps SATA-1 and SATA-300 system according to model and prototype.

In networks, Rejaie et al. have provided a transport pro-
tocol for real-time multimedia streams [26], while Almeida
et al. used multicast to service media workloads in educa-
tion [3]. Such protocol issues are orthogonal to the design
studied in this paper and may be combined productively
with this work.

6 Conclusions and Discussion

This paper contributes to the state-of-the-art in parallel
I/O performance modeling by providing a model that is sim-
ple enough to use for algorithm and system design while
also being detailed enough to account for streaming appli-
cation characteristics and disk hardware trends. This pa-
per then describes a prototype storage server designed to
serve large video files at bitrates ranging from 1–25 Mbps
and finds its performance to agree closely with the model
(with an average discrepancy of only 11% for high-bitrate
streams). The prototype can deliver 1.85 Gbps of aggre-
gate network throughput when serving distinct streams from
disk, using a commodity PC-based server, an unmodified
operating system, and inexpensive SATA disks. These re-
sults are promising by indicating that commodity equip-
ment can be used to support emerging high-bitrate stream-
ing media and that such systems can be designed and eval-
uated analytically.

One workload-related limitation of the model of Sec-
tion 2 is that it targets only the maximum possible per-
formance for delivering data from a VoD storage server’s
disk array. This performance level is achieved when N
distinct streams are uniformly spread across D disks. The
model should be expanded to consider other workloads. For
example, some reuse patterns would allow successful file
caching, reducing the disk utilization. On the other hand,
hotspotting could reduce the effective parallelism of a disk

array. Analysis has shown that possible solutions to avoid
hotspotting such as RAID or random placement of disk
blocks may still lead to a loss of concurrency and perfor-
mance under certain workloads [5, 33]. Sanders et al. gave
an elegant technique to avoid disk hotspotting by placing
each logical disk block (in our case, a chunk of at least r ctb)
on two randomly selected disks so that at least one copy can
be read without I/O bottlenecks [29]. Such a strategy trades
off some capacity for more reliable performance, but the
current rate of capacity growth may make this strategy a
reasonable tradeoff.

References

[1] A. Aggarwal and J. S. Vitter. The Input/Output complex-
ity of sorting and related problems. Communications of the
ACM, 31(9):1116–1127, 1988.

[2] A.Gulati and P. Varman. Scheduling Multiple Flows on Par-
allel Disk Systems. In Proceedings of the International Con-
ference on High-Performance Computing (HiPC ’05), De-
cember 2005.

[3] J. M. Almeida, J. Krueger, D. L. Eager, and M. K. Ver-
non. Analysis of educational media server workloads. In
Proceedings of the 11th International Workshop on Network
and Operating System Support for Digital Audio and Video
(NOSSDAV 2001), pages 21–30, June 2001.

[4] R. Barve, M. Kallahalla, P. Varman, and J. S. Vitter. Com-
petitive Parallel Disk Prefetching. Journal of Algorithms,
pages 152–181, 2000.

[5] R. D. Barve, E. F. Grove, and J. S. Vitter. Simple randomized
mergesort on parallel disks. Parallel Computing, 23(4):601–
631, 1997.

[6] S. Berson, S. Ghandeharizadeh, R. Muntz, and X. Ju. Stag-
gered striping in multimedia information systems. Pro-
ceedings of the ACM SIGMOD International Conference on
Management of Data, 23(2):79 – 90, 1994.

[7] N. Bhatti, A. Bouch, and A. Kuchinsky. Integrating User-
Perceived Quality into Web Server Design. In Proceed-
ings of the Ninth International World Wide Web Conference,
2000.

[8] Bitband Technologies Ltd. Vision 680. Data Sheet.

[9] P. Bosch and S. Mullender. Real-time disk scheduling in
a mixed-media file system. Proceedings Sixth IEEE Real-
Time Technology and Applications Symposium. RTAS 2000,
pages 23 – 32, 2000.

[10] E. Chang and H. Garcia-Molina. Effective memory use in
a media server. Proceedings of the Twenty-Third Interna-
tional Conference on Very Large Databases, pages 496 –
505, 1997.

[11] G. R. Ganger, B. L. Worthington, R. Y. Hou, and Y. N.
Patt. Disk subsystem load balancing: Disk striping vs. con-
ventional data placement. In Proceedings of the Twenty-
Sixth Annual Hawaii International Conference on System
Sciences, volume I, pages 40–49, January 1993.

[12] E. Grochowski and R. D. Halem. Technological impact of
magnetic hard disk drives on storage systems. IBM Systems
Journal, 42(2):338–346, April 2003.

[13] M. Kallahalla and P. J. Varman. Optimal read-once parallel
disk scheduling. In In Proc. of Sixth ACM Workshop on I/O
in Parallel and Distributed Systems, pages 68–77, 1999.

[14] Kasenna, Inc. Kasenna Media Servers. Data Sheet, August
2003.

[15] J. R. Larus and M. Parkes. Using Cohort Scheduling
to Enhance Server Performance. In Proceedings of the
2002 USENIX Annual Technical Conference, pages 103–
114, June 2002.

[16] E. P. Markatos, M. Katevenis, D. N. Pnevmatikatos, and
M. Flouris. Secondary Storage Management for Web Prox-
ies. In USENIX Symposium on Internet Technologies and
Systems, pages 93–104, October 1999.

[17] L. McVoy and C. Staelin. lmbench: Portable Tools for Per-
formance Analysis. In Proceedings of the 1996 USENIX
Technical Conference, pages 279–295, January 1996.

[18] S. J. Mullender and A. S. Tanenbaum. Immediate files. Soft-
ware: Practice and Experience, 14(4):365–368, April 1984.

[19] E. M. Nahum, T. Barzilai, and D. Kandlur. Performance
Issues in WWW Servers. IEEE/ACM Transactions on Net-
working, 10(2):2–11, February 2002.

[20] A. Narasimha Reddy and J. Wyllie. I/o issues in a multime-
dia system. Computer, 27(3):69 – 74, March 1994.

[21] B. Özden, R. Rastogi, and A. Silberschatz. Disk striping
in video server environments. In Proceedings of the Third
IEEE International Conference on Multimedia Computing
and Systems, pages 580–589, June 1996.

[22] V. S. Pai, P. Druschel, and W. Zwaenepoel. Flash: An
Efficient and Portable Web Server. In Proceedings of the
USENIX 1999 Annual Technical Conference, pages 199–
212, June 1999.

[23] V. S. Pai, P. Druschel, and W. Zwaenepoel. I/O-Lite: A Uni-
fied I/O Buffering and Caching System. In Proceedings of
the Third USENIX Symposium on Operating Systems Design
and Implementation, pages 15–28, February 1999.

[24] D. A. Patterson, G. Gibson, and R. H. Katz. A Case for
Redundant Arrays of Inexpensive Disks (RAID). In Pro-
ceedings ACM SIGMOD Conference, Chicago, Illinois, June
1988.

[25] A. N. Reddy and P. Banerjee. An Evaluation of Multiple-
Disk I/O Systems. IEEE Transactions on Computers,
38(12):1680–1690, December 1989.

[26] R. Rejaie, M. Handley, and D. Estrin. RAP: An end-to-
end rate-based congestion control mechanism for realtime
streams in the internet. In Proceedings of IEEE INFOCOM
’99, pages 1337–1345, March 1999.

[27] A. Rousskov and D. Wessels. The Third Cache-off. Raw
data and independent analysis at http://www.measurement-
factory.com/results/, October 2000.

[28] C. Ruemmler and J. Wilkes. An introduction to disk drive
modeling. IEEE Computer, 27(3):17 – 28, March 1994.

[29] P. Sanders, S. Egner, and J. Korst. Fast concurrent access
to parallel disks. In Proceedings of the ACM-SIAM Sym-
posium on Discrete Algorithms, volume 11, pages 849–858,
San Francisco, January 2000.

[30] R. Shah, P. J. Varman, and J. S. Vitter. Online algorithms for
prefetching and caching on parallel disks. In Proceedings
of the ACM Symposium on Parallelism in Algorithms and
Architectures, 2004.

[31] P. Shenoy and H. Vin. Multimedia storage servers. In
K. Jeffay and H. Zhang, editors, In Readings in Multimedia
Computing and Networking. Morgan Kaufmann Publishers,
2002.

[32] P. Shenoy and H. M. Vin. Efficient Striping Techniques for
Variable Bit Rate Continuous Media File Servers. Perfor-
mance Evaluation Journal, 38(3):175–199, December 1999.

[33] J. S. Vitter. External memory algorithms and data struc-
tures: Dealing with massive data. ACM Computing surveys,
33(2):209–271, June 2001.

[34] J. S. Vitter and E. A. M. Shriver. Optimal algorithms for par-
allel memory I: Two-level memories. Algorithmica, 12(2-
3):110–147, 1994.

[35] M. Welsh, D. Culler, and E. Brewer. SEDA: An architec-
ture for well-conditioned, scalable internet services. In Pro-
ceedings of the 18th ACM Symposium on Operating Systems
Principles, pages 230–243, October 2001.

[36] W. E. Wright. An efficient video-on-demand model. IEEE
Computer, pages 64–70, May 2001.

[37] S. Yang, H. Yang, and Y. Yang. Architecture of high capacity
vod server and the implementation of its prototype. IEEE
Transactions on Consumer Electronics, pages 1169–1177,
November 2003.

