
Exploiting Task-level Concurrency in
a Programmable Network Interface

Hyong-youb Kim, Vijay S. Pai, and Scott Rixner
Rice University

�hykim, vijaypai, rixner�@rice.edu

ABSTRACT
Programmable network interfaces provide the potential to extend
the functionality of network services but lead to instruction pro-
cessing overheads when compared to application-specific network
interfaces. This paper aims to offset those performance disadvan-
tages by exploiting task-level concurrency in the workload to par-
allelize the network interface firmware for a programmable con-
troller with two processors. By carefully partitioning the handler
procedures that process various events related to the progress of
a packet, the system can minimize sharing, achieve load balance,
and efficiently utilize on-chip storage. Compared to the unipro-
cessor firmware released by the manufacturer, the parallelized net-
work interface firmware increases throughput by 65% for bidirec-
tional UDP traffic of maximum-sized packets, 157% for bidirec-
tional UDP traffic of minimum-sized packets, and 32–107% for
real network services. This parallelization results in performance
within 10–20% of a modern ASIC-based network interface for real
network services.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Programming –
Parallel Programming

General Terms
Experimentation, Performance

Keywords
Programmable Network Interface, Parallel Programming, Ethernet,
Firmware

1. INTRODUCTION
Modern computer systems access the network through a net-

work interface card (NIC). The NIC implements the protocols of
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the physical medium, typically an Ethernet cable, and frees the op-
erating system from directly sending and receiving data over that
medium. Instead, the operating system stores and retrieves data
from the system memory and communicates with the NIC over the
local interconnect, typically a peripheral component interconnect
(PCI) bus. The functionality of such a PCI-based Ethernet NIC is
fixed and well-defined, so most modern NICs use an application-
specific integrated circuit (ASIC) controller to store and forward
data between the PCI bus and the Ethernet. A programmable con-
troller on the NIC, however, provides the flexibility to improve
and modify the functionality of the NIC. This is extremely valu-
able in improving network server performance by enabling critical
processing or frequently accessed data to be moved closer to the
network, as in iSCSI [13] or network interface data caching [7].

The Tigon programmable Ethernet controller, released in 1997,
is used in a family of 3Com Gigabit NICs. The Tigon includes
two MIPS R4000-based processors, but the firmware that has been
released by the manufacturer only utilizes a single processor. Ex-
periments show that using this firmware, the Tigon is unable to
match the performance of modern ASIC controllers. Furthermore,
the limited power distribution and cooling area available to a PCI
card restrict the clock speed of any processor on a PCI card, so it
is impractical to implement a single-processor programmable NIC
controller with sufficient performance to support the wire speed of
the Ethernet cable. However, effective utilization of multiple pro-
cessors can provide the same performance as a single processor
running at a faster clock speed while consuming far less power [9].

Fortunately, there is abundant parallelism in network interface
processing. This paper explores the parallelization of the Tigon
firmware across the two processors. The Tigon provides sev-
eral mechanisms to enable efficient event-driven firmware. The
event-driven organization allows the processing of multiple net-
work packets to be overlapped with each other as well as with
high latency operations, such as data transfers between the host
and NIC. Successfully parallelizing event-driven firmware across
multiple processors requires partitioning the event handlers while
balancing the workload and minimizing sharing of data and hard-
ware resources. This paper presents a static partition of event han-
dlers that minimizes hardware resource sharing and requires only
three shared variables. Further, this partitioning of event handlers
enables better utilization of the on-chip memory associated with
each processor. Parallelizing the network interface firmware in this
fashion increases throughput by 65% for bidirectional UDP traf-
fic of maximum-sized packets, 157% for bidirectional UDP traf-
fic of minimum-sized packets, and 32–107% for real network ser-
vices. This parallelization results in performance within 10–20%
of a modern ASIC-based NIC for real network services.

The remainder of this paper proceeds as follows. Section 2 ex-
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Figure 1: Steps involved in sending a packet.

plains the functionality of a network interface. Section 3 describes
how the Tigon hardware mechanisms and firmware implement a
network interface. Section 4 then describes the proposed paral-
lelization of network interface firmware for the Tigon. Section 5
describes the experimental methodology used in this study, and
Section 6 analyzes the experimental results. Section 7 discusses
the issues in scaling to more than two processors, and Section 8
relates this work to earlier work. Section 9 summarizes the paper.

2. NETWORK INTERFACE FUNCTION-
ALITY

The host operating system uses the network interface to send
and receive packets. The operating system stores and retrieves data
directly to or from the main memory, and the NIC transfers this data
to or from its own local transmit and receive buffers. Sending and
receiving data is handled cooperatively by the NIC and the device
driver in the operating system, which notify each other when data
is ready to be sent or has just been received.

Sending a packet requires the steps shown in Figure 1. In step
1, the device driver first creates a buffer descriptor, which contains
the starting memory address and length of the packet that is to be
sent, along with additional flags to specify options or commands. If
a packet consists of multiple discontiguous regions of memory, the
device driver creates multiple buffer descriptors. The device driver
then writes to a memory-mapped register on the NIC with infor-
mation about the new buffer descriptors, in step 2. In step 3 of the
figure, the NIC initiates one or more direct memory access (DMA)
transfers to retrieve the descriptors. Then, in step 4, the NIC ini-
tiates one or more DMA transfers to move the actual packet data
from the main memory into its transmit buffer using the address
and length information in the buffer descriptors. After the packet is
transferred, the NIC sends the packet out onto the network through
its medium access control (MAC) unit in step 5. The MAC unit is
responsible for implementing the link-level protocol for the under-
lying network such as Ethernet. Finally, in step 6, the NIC informs
the device driver that the descriptor has been processed, possibly
by interrupting the CPU.

Receiving packets is different, since the system can anticipate
neither when packets will arrive on the network nor the size of
arriving packets. Therefore, the device driver must pre-allocate
a pool of main memory buffers ahead of time to hold maximum-
sized network packets that may be received in the future. As these
buffers are consumed, the device driver must continually allocate
new buffers for subsequent packets and create buffer descriptors
that store information about those buffers. The device driver noti-
fies the NIC that new buffer descriptors are available, and the NIC
retrieves them for later use, following steps 1 through 3 of Figure 1.

Figure 2 depicts the steps for receiving a packet from the net-
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Figure 2: Steps involved in receiving a packet.
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Figure 3: A block diagram of the Tigon controller.

work into these pre-allocated receive buffers. In step 1, a packet
arriving over the network is received by the MAC unit and stored
in the NIC’s local receive buffer. In step 2, the NIC initiates a DMA
transfer of the packet into a pre-allocated main memory buffer. In
step 3, the NIC produces a buffer descriptor with the resulting ad-
dress and length of the received packet and initiates a DMA transfer
of the descriptor to the main memory, where it can be accessed by
the device driver. Finally, in step 4, the NIC notifies the device
driver about the new packet and descriptor, typically through an in-
terrupt. The device driver may then check the number of unused
receive buffers in the main memory and replenish the pool for fu-
ture packets.

3. A PROGRAMMABLE NETWORK IN-
TERFACE

A programmable network interface implements the operations
described in Section 2 by executing firmware code on one or more
programmable processors. The Tigon is one representative pro-
grammable Ethernet controller that provides several mechanisms
to support parallel and event-driven firmware.

3.1 Tigon Hardware Mechanisms
The Tigon programmable Ethernet controller supports a PCI

host interface and a full-duplex Gigabit Ethernet interface. Fig-
ure 3 shows a block diagram of the Tigon. The Tigon has two
88 MHz MIPS R4000-based single-issue, in-order embedded pro-
cessors which share access to external SRAM. Each processor has
a one-line (64-byte) instruction cache to capture spatial locality for
instructions from the SRAM.
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Figure 4: Illustration of overlapped execution of the send and
receive steps in Figures 1 and 2. Asynchronous events allow the
firmware to overlap the execution of multiple steps of send and
receive processing.

In the Tigon, each processor also has a private on-chip scratch
pad memory, which serves as a low-latency software-managed
cache. The scratch pads behave differently from coherent caches
because the code running on the Tigon is solely responsible for ex-
plicitly writing, using, and managing their contents. The scratch
pads, external SRAM, and other hardware registers are all mapped
onto different memory address regions and form the Tigon memory
address space. Thus, a processor accesses its scratch pad through
ordinary load and store instructions, giving the firmware complete
control over the use of the scratch pads. For instance, the firmware
may use the scratch pads to store frequently-accessed code re-
gions or private data for low-latency memory access. However,
the scratch pads provide no coherence mechanism, so shared data
is stored in the shared external SRAM.

Hardware DMA and MAC controllers enable the firmware to
transfer data to and from the system’s main memory and the net-
work, respectively. The DMA controller provides separate read and
write channels, each with an associated queue of DMA descrip-
tors. Each DMA descriptor contains enough information to initiate
one DMA transfer (such as host memory address, local SRAM ad-
dress, and length). The PCI bus can only support one transfer at
a time, so the DMA controller serializes the transfers pending in
these queues. Similarly, the MAC unit provides separate transmit
and receive channels, each with a queue of MAC descriptors that
contain information about packets to be transmitted or that have
been received. However, Ethernet is full-duplex, so one send and
one receive can occur simultaneously.

The Tigon provides three special-purpose memory-mapped reg-
isters to facilitate parallelization: a hardware semaphore register
and an event register for each processor. The hardware semaphore
register provides support for a single lock. The standard MIPS
synchronization instructions (load-linked and store-conditional) are
not supported, but additional locks can be implemented in soft-
ware using the hardware semaphore. The event registers provide
an efficient event notification mechanism to support event-driven
firmware. Each bit in the event registers corresponds to a particular
event; when a bit is set, it signifies that the event has occurred and
has not yet been handled. The Tigon hardware reserves a number
of bits for predefined hardware-generated events, and the firmware
can use the rest of the bits for firmware-generated events.

The hardware event mechanisms and descriptor queues of the
Tigon enable firmware to efficiently handle multiple packets in
transit and to overlap long latency operations, like DMA transfers,
with other processing. For example, Figure 4 illustrates some of the
processing for two packets; the numbers in the blocks correspond to

the send and receive steps in Figures 1 and 2. The first block in the
figure corresponds to step 4 in sending packet #1, which initiates
a DMA transfer of the packet. Rather than waiting for the DMA
transfer to complete, the code for this block enqueues the appropri-
ate DMA descriptor to the DMA controller and yields control to the
event dispatch loop. While packet #1 is being transferred, packet
#2 arrives from the network. The firmware then enqueues a DMA
write to transfer the received data to the main memory.

During the processing of step R2, the DMA for packet #1 com-
pletes. Unlike the asynchronous event notification mechanisms
found in most operating systems, events in the Tigon do not in-
terrupt firmware execution. Once an event handler is invoked, it is
run to completion, even if higher priority events occur. So, the NIC
does not handle step S5 until the processing for step R2 completes.
At that point, the NIC may transmit the packet. Finally, when the
DMA write completes for packet #2, the NIC must inform the de-
vice driver of the new packet in the main memory.

3.2 Released Tigon Firmware
Alteon Websystems released several versions of the Tigon

firmware as open-source software [1]. This released firmware is
event-driven, consisting of an event dispatch loop and a set of event
handlers. The event dispatch loop prioritizes events according to
the order of the corresponding bits in the event register. If no bits
are set, the event dispatch loop repeatedly polls the event register
until an event occurs. Table 1 describes the hardware-generated
and firmware-generated events used by the firmware to send and
receive packets.

The firmware defines three types of buffer descriptors: sendfor
packets to be sent, receivefor buffers in the main memory into
which the NIC may store received packets, and receive returnfor
received packets after they are stored in the main memory. Send
and receive descriptors are produced by the host device driver and
consumed by the NIC, while receive return descriptors are pro-
duced by the NIC and consumed by the host device driver. The
firmware and device driver cooperatively store the three types of
buffer descriptors in three separate ring structures. Each ring is a
circular buffer with producer and consumer indices that enable the
device driver and NIC to inform each other when they have pro-
duced or consumed buffer descriptors. The device driver and NIC
both store copies of each ring in their own memories; these copies
are kept consistent through DMA transfers. These DMA transfers
may be delayed arbitrarily, but inconsistencies are allowed as long
as each copy maintains the producer/consumer relationship both
locally and with respect to the other copy.

The high level steps of send and receive processing described
in Section 2 are implemented through multiple events. Sending a
packet specifically consists of the following sequence of events:

1. Mailbox – Read the producer index of the device driver’s copy
of the send buffer descriptor ring from a mailbox register. Raise
the Send Buffer Descriptor Ready event.

2. Send Buffer Descriptor Ready – Enqueue a DMA descriptor to
transfer the newly produced buffer descriptor(s).

3. DMA Read Complete – Determine that the completed DMA
has transferred send buffer descriptors. Update the producer in-
dex of the firmware’s send ring based on the number of fetched
descriptors. Raise the Send Data Ready event.

4. Send Data Ready – Enqueue one or more DMA descriptors
to transfer a packet into the transmit buffer. Also enqueue a MAC
descriptor to inform the MAC to transmit the packet when it arrives
in the transmit buffer.



Hardware-generated Event Description
Mailbox The host CPU has written into a memory-mapped Tigon mailbox register.
DMA Read Complete A DMA read transfer has completed.
DMA Write Complete A DMA write transfer has completed.
Receive Complete A packet has been received.

Firmware-generated Event Description
Send Buffer Descriptor Ready The device driver has produced send buffer descriptors. The firmware needs to fetch

them into the local memory.
Send Data Ready Send buffer descriptors have been fetched into the local memory. The firmware needs

to fetch packets specified by the descriptors.
Update Send Consumer The firmware has finished processing the buffer referenced by a send buffer descriptor

and has updated the consumer index of its copy of the send ring. The firmware needs
to transfer the index to the main memory.

Receive Buffer Descriptor Ready The device driver has produced receive buffer descriptors. The firmware needs to fetch
them into the local memory.

Update Receive Return Producer The firmware has produced a receive return buffer descriptor in the main memory and
updated the producer index of its copy of the receive return ring. The firmware needs
to transfer the index to the main memory.

Table 1: Hardware-generated and firmware-generated events in the Tigon for send and receive processing.

5. DMA Read Complete – Determine that the completed DMA
has transferred packet data. Update the consumer index of the
firmware’s send ring. If the number of send descriptors consumed
is greater than the interrupt coalescing threshold, raise the Update
Send Consumer event.

6. Update Send Consumer – Enqueue a DMA descriptor to trans-
fer the consumer index of the send ring to the host.

7. DMA Write Complete – Determine that the completed DMA
has transferred the consumer index. Interrupt the host CPU.

The pre-allocation of main memory buffers for future received
packets follows steps 1–3 above, but using the receive ring and Re-
ceive Buffer Descriptor Ready. Steps 4 and 5 are eliminated, as
there is no data to fetch. Transferring the consumer index is also
not needed, as it is stored as a field of the receive return buffer de-
scriptors that are produced by the NIC. For the receive return ring,
the firmware only maintains its producer index because the device
driver ensures that the receive return ring is never full when the re-
ceive ring is not full. The actual receive into pre-allocated main
memory buffers consists of:

1. Receive Complete – Enqueue a DMA descriptor to transfer the
packet into the buffer described by the next buffer descriptor in the
receive ring. Also create a receive return buffer descriptor with
information about the packet, and enqueue a DMA descriptor to
transfer the new buffer descriptor. If the number of receive re-
turn descriptors produced is greater than the interrupt coalescing
threshold, raise the Update Receive Return Producer event.

2. Update Receive Return Producer – Enqueue a DMA descrip-
tor to transfer the new producer index of the receive return buffer
descriptor ring.

3. DMA Write Complete – Determine that the packet has been
transferred to the host. No action is needed.

4. DMA Write Complete – Determine that the receive return
buffer descriptor has been transferred to the host. No action is
needed.

5. DMA Write Complete – Determine that the producer index of
the receive return ring has been transferred to the host. Interrupt
the host CPU.

The various events used to send and receive packets must share
certain data structures to maintain global state information. The
events also share hardware resources that are explicitly managed
by the firmware, such as DMA channels. Table 2 lists the data
and explicitly-managed hardware resources shared by the event
handlers and the cause of sharing in the released firmware. Data
is typically shared by subsequent steps in the send or receive se-
quence, or between the last step in transferring descriptors for the
pre-allocated main memory buffers and the first step in the actual
receive. Events related to sending or pre-allocating main memory
buffers share the read DMA channel, while the write DMA chan-
nel is primarily shared among events related to the actual receive
process. The only exception is that Update Send Consumer also
requires the write DMA channel. The MAC channels are also ex-
plicitly managed by the firmware, but they are not shared among
any events. The receive channel acts as the source of packets arriv-
ing from the network, so only the Receive Complete event needs to
access the channel in order to dequeue received packets. Packets
are sent out over the network using the transmit channel, and no
further action is required after each packet is transmitted. There-
fore, only the Send Data Ready event needs to access the channel
in order to enqueue packet transmissions.

4. PARALLELIZATION OF FIRMWARE
Utilizing both processors efficiently is difficult because of the

data and resource sharing described in the previous section. The
released firmware for the Tigon only makes use of a single proces-
sor, likely due to the difficulty of parallelization. However, a single
88 MHz processor is not sufficient to process bidirectional traffic at
rates comparable to modern ASIC-based NICs. For example, a NIC
using this firmware achieves a maximum throughput of 938 Mb/s
on bidirectional UDP traffic consisting of maximum-sized frames,
whereas a modern ASIC-based NIC delivers a maximum through-
put of 1882 Mb/s on the same workload. Furthermore, the limited
cooling area and power distribution available to a PCI card con-
strain the clock speed of any processor on the card, so performance
cannot be gained by simply increasing operating frequency. There-
fore, the firmware must be parallelized across multiple processors
in order to approach the performance of special-purpose NICs.



Shared Data Sharing Events Cause
Producer index of the
device driver’s send
buffer descriptor ring

Mailbox
Send Buffer Descriptor Ready

The device driver notifies the NIC that it has produced send
buffer descriptors by updating this index and writing it in a
mailbox register. The firmware must then use this producer
index to fetch the new buffer descriptors.

Producer index of
the firmware’s send
buffer descriptor ring

DMA Read Complete
Send Data Ready

When the DMA unit completes a transfer of buffer descrip-
tors, it must update the number of buffer descriptors stored in
the local memory. Send Data Ready then uses these locally-
copied descriptors to fetch packets.

Consumer index of
the firmware’s send
buffer descriptor ring

DMA Read Complete
Update Send Consumer

The firmware has completely consumed a send packet when
the DMA unit completes the transfer of packet data. At this
point, it updates the send consumer index and must then trans-
fer this index to the host.

Producer index of the
device driver’s receive
buffer descriptor ring

Mailbox
Receive Buffer Descriptor Ready

The device driver notifies the NIC that it has produced receive
buffer descriptors by updating this index and writing it in a
mailbox register. The firmware must then use this producer
index to fetch the new buffer descriptors.

Producer index of the
firmware’s receive
buffer descriptor ring

DMA Read Complete
Receive Complete

When the firmware has fetched the buffer descriptors that will
later be used for received packets, it updates the number of de-
scriptors stored in the local memory. The Receive Complete
function later uses these when choosing the buffer into which
it should transfer a received packet into the main memory.

Producer index of the
firmware’s receive re-
turn buffer descriptor
ring

Receive Complete
Update Receive Return Producer

The Receive Complete function produces a receive return
buffer descriptor for a received packet. The Update Receive
Return Producer transfers the producer index of the receive
return ring to the main memory to notify the device driver of
the received packets.

Shared Hardware Sharing Events Cause
DMA read channel DMA Read Complete

Send Buffer Descriptor Ready
Send Data Ready
Receive Buffer Descriptor Ready

The device driver produces packets to be sent and
send/receive buffer descriptors. The NIC transfers these to
its memory through DMA reads.

DMA write channel DMA Write Complete
Update Send Consumer
Update Receive Return Producer
Receive Complete

The NIC passes received packets, updated ring indices, and
the receive return buffer descriptors that it produces back to
host memory through DMA writes.

Table 2: List of data objects and explicitly-managed hardware resources shared among the various events in the released firmware.

4.1 Parallelization Concepts
Effective parallelization requires identifying the concurrent

tasks, partitioning those tasks among processing elements for load
balance, and avoiding sharing of data or hardware resources be-
tween processing elements. In an event-driven system like the
Tigon firmware, the fundamental unit of concurrency is an event
handler. Thus to exploit parallelism, the events may be partitioned
and assigned to specific processors.

However, partitioning event handlers across the processors may
require synchronization. As described in Section 3.1, event han-
dlers always run to completion without being interrupted. Thus,
sharing of data or hardware resources between event handlers that
always run on the same processor requires no synchronization. An
effective partition should consider the sharing patterns described in
Table 2 and place events that share data or resources on the same
processor whenever possible in order to reduce sharing across the
processors.

Some forms of parallelization may enable better use of the Tigon
hardware mechanisms. For example, data that is exclusively used
by one processor may be placed in that processor’s private scratch
pad, allowing much faster access than the external SRAM. Further,

the firmware code can also be partitioned across two processors and
stored in their respective scratch pads.

Finally, the cooperation between the firmware and the device
driver provides additional support for parallelization. In particu-
lar, a firmware operation that impedes parallelization may simply
be eliminated if the host device driver can implement it efficiently
instead.

4.2 Parallelization Strategy
Figure 5 profiles the execution time of the event handlers in the

released firmware for a workload consisting of simultaneous sends
and receives of minimum-sized (64-byte) Ethernet frames. The
send and receive rates are equal and are chosen such that no packets
are dropped by the Tigon. The Y axis shows the events. The X axis
shows the processor execution time consumed for each event han-
dler as a fraction of the total execution time of all send and receive
events. The scratch pads are disabled during the measurement to
eliminate any bias for the particular subset of code and data that
the Tigon manufacturers chose to place in the scratch pad for the
released firmware.

The Send Data Ready and Receive Complete handlers clearly
dominate execution time at roughly 30% each. Among the other
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Figure 5: Execution time of event handlers normalized to total
execution time of all send and receive events.

event handlers, DMA Read Complete is the next largest at 14%. It
is over twice as expensive as the DMA Write Complete handler be-
cause the DMA Read Complete handler uses the newly read data to
initiate other actions. Each of the other handlers consumes 4–6% of
the total, except for Update Send Consumer as the least significant
at 0.6%.

Since they collectively account for 60% of the execution time,
a static partition of event handlers for this workload should place
Receive Complete and Send Data Ready on separate processors in
order to balance the load on the processors. The other event han-
dlers should be selected based on both load balance and the sharing
patterns shown in Table 2. DMA Read Complete shares data with
both of the dominant event handlers, but only shares explicitly-
managed hardware with Send Data Ready. Thus, DMA Read Com-
plete should be colocated with Send Data Ready. However, assign-
ing these two events to the same processor is only valuable if it
eliminates synchronization for this hardware resource—the DMA
read channel. Thus, Send Buffer Descriptor Ready and Receive
Buffer Descriptor Ready should also be put on the same processor.
Both of these handlers share data with Mailbox, but placing that
handler on the same processor would push this processor’s load
well above 50% of the total. DMA Write Complete shares no data
with any other event, but should be placed on the same processor
as Receive Complete since they share an explicitly-managed hard-
ware resource. Update Receive Return Producer shares both data
and hardware with Receive Complete, and thus should be placed
on the same processor.

The only remaining handler is the least significant, Update Send
Consumer. It shares data with DMA Read Complete but shares the
DMA write channel with the handlers on the other processor. To
resolve this conflict, the Update Send Consumer handler is modi-
fied to update only the local copy of the send ring consumer index
without transferring it to the main memory using DMA. Instead,
the device driver is modified to read this index through memory-
mapped I/O. This eliminates sharing of the DMA write channel,
thus allowing Update Send Consumer to be colocated with DMA
Read Complete.

The only examples of interprocessor sharing resulting from
the above partition are the data sharing between the DMA Read
Complete and the Receive Complete handlers and the data shar-
ing between the Mailbox and the Send/Receive Buffer Descriptor
Ready handlers; there is no interprocessor sharing of the explicitly-

managed hardware resources shown in Table 2. The only shared
variables are the producer indices for the driver’s send buffer de-
scriptor ring and for both copies of the receive buffer descriptor
ring. All other variables may be placed in the scratch pads. The
sharing pattern of each shared variable is such that only one han-
dler writes it and the reader may read an old value without causing
any correctness problems. Consequently, these variables may be
shared without mutual exclusion. With the static partitioning de-
scribed so far, the two processors split the original execution time
for this workload by 53% to 47%.

The final partitioning is as follows:

� Events assigned to CPU A:
Mailbox
DMA Write Complete
Receive Complete
Update Receive Return Producer

� Events assigned to CPU B:
DMA Read Complete
Send Buffer Descriptor Ready
Send Data Ready
Receive Buffer Descriptor Ready
Update Send Consumer

Although the partitioning process described above is based on load
balance and sharing, the processors are split so that CPU A handles
the Mailbox event and events related to receiving into pre-allocated
main memory buffers, while CPU B handles all events related to
sending or pre-allocating main memory buffers for receive except
for the Mailbox event. This partition arises because the send and
receive sequences are roughly symmetric, and most sharing of data
and hardware resources takes place within a single sequence. Load
balancing drives the apparent misallocation of the Mailbox event,
leading to two shared variables; this decision stems from the fact
that DMA Read Complete requires twice as much processing as
DMA Write Complete.

This static partitioning also allows better utilization of the
scratch pads for instruction storage. In particular, the size of the
event handlers in the released firmware is roughly 21 KB, which
is larger than CPU A’s scratch pad (16 KB). However, all of the
event handlers can fit in the combined scratch pads (16 KB for CPU
A and 8 KB for CPU B), so the static partition eliminates access
to longer latency external SRAM for instruction access. Utilizing
both processors also allows bookkeeping data, such as various ring
indices that must persist across multiple invocations of event han-
dlers, to be stored in both scratch pads.

5. EXPERIMENTAL METHODOLOGY
This study uses 3Com 710024 Gigabit Ethernet interface cards

to evaluate the effects of parallelizing network interface firmware.
These cards are based on the Tigon controller and have 1 MB
of external SRAM. This section describes the network interface
firmware code used in this study, along with the microbenchmarks
and macrobenchmarks used to test firmware performance.

5.1 Firmware Implementation
Several versions of the Tigon firmware are used to show the ef-

fects of parallelization. RELEASE is revision 12.4.13 of the re-
leased Tigon firmware, which was made open-source by the manu-
facturer and is described in Section 3. BSD is the firmware that is
distributed with the FreeBSD operating system, which is a mod-
ified version of revision 12.4.11 of the released Tigon firmware
and is only available as object code. PARALLEL is parallelized



firmware which statically partitions event handlers and data, as de-
scribed in Section 4.2. To understand the effects of the scratch
pads, PARALLEL has SRAM-CODE, SRAM-DATA, and SRAM-
BOTH variants. These variants show the effects of storing all of
the code, data, and both code and data in the external SRAM, re-
spectively. For comparison, RELEASE also has an SRAM-BOTH
version.

Several Ethernet extensions that can be supported by the Tigon
are not considered in these experiments. Jumbo frames (which al-
lows frame sizes up to 9000 bytes instead of the standard Ethernet
limit of 1518 bytes) and VLAN-tagging (which allows virtually
separate local area networks to share the same physical network)
are disabled or unsupported in all firmware versions. Furthermore,
checksum offloading is also disabled in all firmware versions be-
cause of a hardware bug in the Tigon, so the host CPU calculates
checksums for all firmware versions. Even though most Gigabit
network interfaces allow the host CPU to offload TCP, UDP, and
IP checksum computations onto the interface, experiments using
fast modern host CPUs (1.8 GHz and above) show no benefits from
checksum offloading.

5.2 Benchmarks
The microbenchmarks used to test the performance of the paral-

lelized firmware generate and receive packets directly in the kernel
to isolate the network interface’s performance as much as possible
from other factors. The microbenchmarks test UDP send, UDP re-
ceive, simultaneous UDP send/receive, and UDP ping latencies for
datagram sizes varying from 18 bytes (leading to minimum-sized
64-byte Ethernet frames after accounting for 20 bytes of IP head-
ers, 8 bytes of UDP headers, 14 bytes of Ethernet headers, and 4
bytes of Ethernet CRC) to 1472 bytes (leading to maximum-sized
1518-byte Ethernet frames).

The macrobenchmarks used for further evaluation of the paral-
lelized firmware are the thttpd web server and the Click software IP
router. thttpd is a lightweight and high-performance event-driven
web server [11]. The server is accessed by two synthetic clients
that replay web traces from a NASA site (NASA), Rice University’s
Computer Science department (Rice), and the 1998 Soccer World
Cup site (WC) as fast as the server can handle. Click is a modular
software IP router implemented as a loadable kernel module [8].
Two client machines replay IP packet traces from Advanced Net-
work Services (ADV), NASA Ames to MAE-West (AIX), and the
University of Memphis (MEM), which were made available by the
National Laboratory for Applied Network Research.

The experimental testbed consists of a server and two client ma-
chines. The server has an Athlon 2600+ CPU, 2GB DDR SDRAM,
a 64bit/66Mhz PCI bus, and a 40GB IDE disk (none of the work-
loads are disk-intensive). Each of the client machines has an
Athlon 2200+ CPU, 512MB of DDR SDRAM, a 40GB IDE disk,
a 64bit/66MHz PCI bus, and an Intel PRO/1000 MT Server Giga-
bit Ethernet Adapter. The server has one 3Com 710024 NIC for
the microbenchmarks and thttpd and two NICs for Click. The ma-
chines are connected through one or more Gigabit switches on iso-
lated networks, as appropriate. In the microbenchmarks, one client
machine is used to receive packets from the Tigon-based NIC being
measured in the server, and the other client machine is used to send
packets to it. For comparison, the performance of two commonly-
used nonprogrammable NICs, the Intel PRO/1000 MT Server Gi-
gabit Ethernet Adapter (Intel) and the Netgear GA622T Gigabit
Ethernet NIC (Netgear), is also measured using the same testbed
described above except that the server uses these NICs instead of
3Com NICs.

Finally, for the UDP ping tests, the device drivers for all NICs are

modified to disable interrupt coalescing. When interrupt coalescing
is enabled, each of these NICs delays the generation of interrupts to
the host CPU until they have processed a certain number of packets
or a specified time has elapsed. Since interrupt coalescing can arbi-
trarily increase packet latencies, it is disabled to measure minimum
packet latencies. The device drivers enable interrupt coalescing for
all the other benchmarks, and the same drivers are used for each
test.

6. EXPERIMENTAL RESULTS
The experimental results show that the parallelization strat-

egy presented in Section 4.2 improves performance of both mi-
crobenchmarks and macrobenchmarks. This section analyzes per-
formance gains from the parallelization of the Tigon firmware and
also compares performance of Tigon against two nonprogrammable
NICs.

6.1 Microbenchmark Performance
Microbenchmark results show that parallelized firmware im-

proves unidirectional throughput (UDP send and receive), bidirec-
tional throughput, and UDP ping latencies. The improvements re-
sult not only from the greater computational power enabled by uti-
lizing both processors, but also from the better utilization of hard-
ware resources. For example, the parallelization increases the uti-
lization of the scratch pads.

Figure 6 shows the UDP send throughputs achieved by different
versions of the Tigon firmware as well as the Intel PRO/1000 MT
Server NIC and the Netgear GA622T NIC. The X axis shows UDP
datagram sizes varying from 18 bytes (leading to minimum-sized
64-byte Ethernet frames) to 1472 bytes (leading to maximum-sized
1518-byte frames). The Y axis shows throughput in megabits per
second of UDP datagrams, excluding network headers. The Ether-
net Limit curve represents the theoretical maximum data through-
put of the UDP/IP protocol running on Ethernet for a given data-
gram size; protocol overheads, including 46 bytes of headers and a
trailer per frame, and the required 20 bytes of preamble and inter-
frame gap per frame, prevent the full utilization of 1 Gb/s for data.

PARALLEL outperforms both BSD and RELEASE across all
datagram sizes and delivers up to 32% more throughput than
both (with 800-byte datagrams). As the datagram size decreases
from the maximum, throughput diverges from the Ethernet limit
and starts decreasing linearly starting at 1000-byte datagrams for
BSD and RELEASE and 800-byte datagrams for PARALLEL. The
packet processing rate in packets per second corresponds to the
slope of the throughput curve. The linear decrease indicates that the
firmware handles a constant rate of packets regardless of the data-
gram size, and that the processors in the Tigon are saturated. The
Intel NIC saturates Ethernet with 400-byte or larger datagrams and
delivers over 100% more throughput than PARALLEL with smaller
datagrams. The Netgear NIC does not saturate Ethernet even with
maximum-sized datagrams and performs worse than PARALLEL
for datagram sizes 400 bytes or greater.

As discussed in Section 4.2, PARALLEL utilizes both proces-
sors to send packets and increases scratch pad efficiency by storing
all event handlers in the scratch pads. Figure 7 shows the con-
tributions from the parallelization and scratch pads by comparing
the base PARALLEL with the SRAM-CODE, SRAM-DATA, and
SRAM-BOTH versions, and with the SRAM-BOTH version of RE-
LEASE. The throughput difference between RELEASE(SRAM-
BOTH) and PARALLEL(SRAM-BOTH) shows that the improve-
ment due to parallelization alone is at most 13% for this work-
load, because only one of the send events (Mailbox) is processed
by CPU A. PARALLEL delivers up to 89% more throughput than
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Figure 6: UDP send throughputs achieved by the Tigon run-
ning various firmware versions and by the Intel PRO/1000 MT
Server NIC and the Netgear GA622T NIC with various data-
gram sizes.

Figure 7: Differences in UDP send throughputs due to the use
of the scratch pads.
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Figure 8: UDP receive throughputs achieved by the Tigon run-
ning various firmware versions and by the Intel PRO/1000 MT
Server NIC and the Netgear GA622T NIC with various data-
gram sizes.

Figure 9: Differences in UDP receive throughputs due to the
use of the scratch pads.

PARALLEL(SRAM-BOTH) with 800-byte datagrams, showing
that increased utilization of the scratch pads contributes most to
the improvement of the parallelized firmware over the sequential
firmware for this workload.

The parallelized firmware also improves UDP receive through-
put. Figure 8 shows the UDP receive throughputs achieved by var-
ious versions of the firmware, by the Intel PRO/1000 MT Server
NIC, and by the Netgear GA622T NIC. PARALLEL achieves up to
19% more throughput than BSD, which in turn consistently outper-
forms RELEASE for this workload. As datagram size decreases,
the throughput of BSD falls below the Ethernet limit for datagram
sizes less than 1200 bytes, indicating that the processor is saturated
by packet processing. In contrast, PARALLEL does not fall below
the limit until the datagram size falls below 1000 bytes. The UDP

receive throughput of RELEASE never reaches the Ethernet limit.
As with UDP send throughputs, the Intel NIC saturates Ethernet
with 400-byte or larger datagrams and achieves over 100% more
throughput than PARALLEL with smaller datagrams. The UDP
receive throughput of the Netgear NIC is far greater than its UDP
send throughput. However, it still performs worse than PARAL-
LEL for large datagrams of size 1000 bytes or greater.

The improvement of PARALLEL again comes from both par-
allelization and increased utilization of the scratch pads. Fig-
ure 9 shows throughput increases due to the parallelization
and scratch pads. Receive benefits from the parallelization
since CPU B handles the Receive Buffer Descriptor Ready
and DMA Read Complete events related to informing the
NIC about main memory buffers pre-allocated by the device
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Figure 10: UDP bidirectional throughputs achieved by the
Tigon running various firmware versions and by the Intel
PRO/1000 MT Server NIC and the Netgear GA622T NIC with
various datagram sizes.

Figure 11: Differences in UDP bidirectional throughputs due
to the use of the scratch pads.

driver. PARALLEL(SRAM-BOTH) provides roughly 18% greater
throughput than RELEASE(SRAM-BOTH), showing the improve-
ment due to the parallelization alone. PARALLEL delivers up to
66% more throughput than PARALLEL(SRAM-BOTH) indicating
that most of the improvement of PARALLEL for this workload is
again due to the increased utilization of the scratch pads.

The unidirectional UDP workloads suggest that the parallelized
firmware benefits primarily from better scratch pad utilization.
These workloads benefit little from utilizing both processors be-
cause the static event partition only targets load balance for bidirec-
tional traffic that equally emphasizes send and receive. Figure 10
shows the bidirectional UDP throughputs achieved by different ver-
sions of the firmware, by the Intel PRO/1000 MT Server NIC, and
by the Netgear GA622T NIC. The Ethernet limit is now doubled
since the network links are full-duplex. Compared to RELEASE,
PARALLEL increases throughput by 65% with 1472-byte data-
grams and 157% with 18-byte datagrams. Compared to BSD, PAR-
ALLEL increases throughput by 37% with 1472-byte datagrams
and 146% with 18-byte datagrams. For datagram sizes less than
600 bytes, PARALLEL delivers over 100% more throughput than
either BSD or RELEASE. The sublinear increase of PARALLEL
throughput starting at 600-byte datagram sizes and 1 Gb/s of data
throughput indicates that the packet processing rate is starting to
decrease for larger datagram sizes. Since the firmware includes
no size-dependent overheads, this decrease indicates an increase
in contention for hardware resources that incur per-byte overheads
(such as the DMA and MAC controllers, the PCI and Ethernet in-
terfaces, or the external SRAM) as the Tigon attempts to serve
over 1 Gb/s of network data throughput. As expected from the
throughputs for unidirectional traffic, the Intel NIC outperforms
the Tigon for bidirectional traffic as well. With 1472-byte data-
grams, the Intel NIC achieves 1882 Mb/s, close to the Ethernet
limit of 1914 Mb/s, whereas PARALLEL achieves 1553 Mb/s. For
datagram sizes greater than 400 bytes, PARALLEL performs bet-
ter than the Netgear NIC, which achieves a maximum throughput
of 1241 Mb/s.

Figure 11 shows that the performance gains of PARALLEL for
UDP bidirectional traffic stem from both parallelization and scratch

pads. Parallelization increases throughput by 37–95%, far greater
than in the unidirectional workloads. The scratch pads further pro-
vide up to 70% increase in throughput.

The parallelization improves packet latencies as well as through-
puts. Figure 12 shows the UDP ping latencies achieved by various
versions of the firmware, by the Intel PRO/1000 MT Server NIC,
and by the Netgear GA622T NIC. PARALLEL reduces ping laten-
cies by an average of 6% and 10% when compared to RELEASE
and BSD, respectively. The Intel NIC again performs best. The
Intel and Negear NICs achieve an average of 15% and 9% lower
latencies than that of PARALLEL, respectively.

The small ping latency reductions of PARALLEL over RE-
LEASE are expected because ping is essentially an alternating uni-
directional workload rather than a simultaneous bidirectional work-
load. Specifically, the server first sends a packet to the client. Upon
receiving the packet, the client then sends a packet back to the
server. Since there is only one packet in transit at any given time,
the benefits of the parallelization only come from two sources.
First, there is some overlap between the execution of the Mailbox
and Send Buffer Descriptor Ready events. CPU B starts executing
the Send Buffer Descriptor Ready event before CPU A completes
the Mailbox event and reenters the event dispatch loop. Second,
the modified Update Send Consumer event in PARALLEL com-
pletes quicker than the original unmodified event in RELEASE.
The modified event updates only the local copy of the send ring
consumer index, whereas the original unmodified event must also
enqueue a DMA transfer to update the copy in main memory. Fig-
ure 13 shows that the parallelization and increased utilization of
the scratch pads contribute almost equally to the reduced latencies
of PARALLEL. PARALLEL(SRAM-BOTH) achieves an average
of 10% lower latencies than RELEASE(SRAM-BOTH), and PAR-
ALLEL in turn achieves an average of 8% lower latencies than
PARALLEL(SRAM-BOTH).

6.2 Macrobenchmark Performance
The macrobenchmarks also benefit from the parallelized

firmware. Table 3 shows the HTTP content throughput in Mb/s
achieved by the thttpd web server and the packet routing through-
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Figure 12: UDP ping latencies achieved by the Tigon running
various firmware versions, by the Intel PRO/1000 MT Server
NIC, and by the Netgear GA622T NIC with various datagram
sizes.

Figure 13: Differences in UDP ping latencies due to the use of
the scratch pads.

BSD RELEASE PARALLEL Intel Netgear

thttpd
(Mb/s)

NASA 689 636 944 942 807
Rice 659 616 932 925 775
WC 587 550 702 870 728

Click
(K pkt/s)

ADV 134 113 150 166 N/A
AIX 133 115 173 198 N/A

MEM 133 119 247 276 N/A

Table 3: Throughput achieved by the thttpd web server and Click software IP router with the Tigon running various firmware
versions, Intel PRO/1000 MT Server NIC, and Netgear GA622T NIC.

put in thousands of packets per second achieved by the Click soft-
ware IP router. The Click performance of the Netgear NIC is not
available due to an incompatibility between Click and the device
driver for the NIC. The PARALLEL firmware increases HTTP con-
tent throughput by 20–41% over BSD and by 48–73% over RE-
LEASE. The Tigon running PARALLEL performs slightly better
than the Intel NIC for the NASA and Rice traces and only 20%
worse for WC. The Tigon running PARALLEL achieves over 20%
more throughput than the Netgear NIC for the NASA and Rice
traces and about 4% less for the WC trace. Similarly, PARALLEL
increases packet routing throughput by 12–86% over BSD and by
32–107% over RELEASE. The Click throughput achieved by the
Tigon running PARALLEL is only 10–13% lower than that of the
Intel NIC. These results indicate that parallelizing the network in-
terface firmware enables a programmable NIC to achieve through-
put competitive with modern ASIC-based NICs for real network
services. Combined with the underlying potential to extend the
functionality of network services, parallelization thus makes pro-
grammability a viable and attractive option for high-performance
network interface design.

7. DISCUSSION
Embedded processors cannot scale in frequency or complexity

as aggressively as general-purpose processors. Consequently, pro-
grammable network interfaces must rely on multiprocessor archi-
tectures to achieve network link speeds as they scale to 10 Gb/s and

beyond. However, such rapidly growing link speeds will likely re-
quire more than just two processors, making it difficult to achieve
high performance using only statically-exposed task-level concur-
rency.

The static partition of event handlers described in Section 4 ef-
fectively balanced the workload across two processors. However,
a greater number of processors makes it more difficult to balance
load in the same fashion, given that the event handlers have dif-
ferent processing requirements. Instead, the firmware may dynam-
ically choose the processor to handle a given event. While this
may improve load balance, it creates additional overhead by re-
quiring mutual exclusion to prevent simultaneous execution of an
event handler or simultaneous access to data and resources shared
across event handlers that may now run on any processor. Simi-
larly, dynamic partitioning also degrades locality for shared vari-
ables, private variables that persist across handler invocations, and
event handler code, since any processor may access these data or
code regions in the future. The specific implications for the Tigon
are contention for the single hardware semaphore and less efficient
utilization of the scratch pads, likely offsetting the performance
benefits of load balancing. However, other architectures may gain
greater benefits from dynamic partitioning.

The parallelization scheme discussed in this paper exploits task-
level concurrency in which the unit of concurrency is an event han-
dler. Thus, the granularity of load balancing is limited by the distri-
bution of processing times for the execution of an individual han-



dler, even with dynamic partitioning. For instance, a distribution
that is greatly skewed by some event handlers that require signifi-
cantly more processing than others leads to a poor balance of load.
To mitigate this imbalance, the firmware may parallelize the execu-
tion of the most demanding handlers. One approach to reducing the
granularity of concurrency in this fashion would be to exploit par-
allelism across independent packets, allowing a single handler to
process unrelated packets simultaneously on multiple processors.
As with dynamic partitioning, parallelization of individual handlers
may introduce further synchronization overhead due to sharing of
variables and hardware resources.

Static partitioning, dynamic partitioning, and parallelizing par-
ticular event handlers all have advantages and disadvantages as
discussed above. With more than two processors available, an ef-
fective parallelization would benefit from the use of all three ap-
proaches, as they complement each other. More advanced hardware
can also provide features to address some of the problems caused
by each approach to parallelization.

The static partition presented in this paper targets bidirectional
traffic with equal emphasis on send and receive in order to measure
the impact of parallelization on maximum throughput. This parti-
tioning scheme should also benefit most applications since perfor-
mance of send and receive both improve. To optimize performance
for specific applications, the static partition should use workloads
for those applications to profile execution times of event handlers
and to derive static partitions. Likewise, future network links may
also require different workloads to achieve maximum throughput.
Then, those workloads should be used to profile execution times
and to derive partitions.

8. RELATED WORK
Many researchers have used programmable network interfaces

to implement user-level protocols directly in network interfaces or
to analyze performance issues in network servers [4, 5, 12, 15].
Shivam et al. implemented a parallelized version of their own Eth-
ernet Message Passing (EMP) protocol on the Tigon [15]. EMP
is a specialized message passing protocol for clusters, designed to
provide a low latency and high bandwidth message passing system
that is based on user-level access to Gigabit Ethernet [14]. The
performance results presented in this paper show that parallelized
Ethernet firmware can also improve the throughput of standard IP-
based protocols and applications, enabling performance compara-
ble to modern ASIC-based network interfaces. The parallelization
scheme for EMP statically partitions send and receive processing,
somewhat similarly to the partitioning scheme described in Sec-
tion 4.2. However, they empirically pick a partition of major func-
tional components among a few different partitions based on their
experimental results, rather than deriving a partition that balances
load and minimizes synchronization using profiles as well as care-
ful analysis of hardware and data sharing.

Another widely used programmable network interface is the
Myricom LANai adapter for Myrinet networks [3]. Gallatin et al.
developed the Trapeze/IP firmware for these adapters, implement-
ing various techniques to reduce the overhead of sending and re-
ceiving packets [5]. By using large messages (much greater than
standard Ethernet frames), the authors were able to achieve near-
Gigabit rates on relatively slow machines. Buonadonna and Culler
developed Queue Pair IP, which replaces the traditional socket ab-
straction in order to reduce networking overhead for system area
networks [4]. Queue Pair IP uses the existing Internet protocols
as its transport layer, and the prototype implements components of
TCP/IP directly in the LANai adapter. The authors show that Queue
Pair IP can reduce load on CPU while providing lower latency and

higher bandwidth than either Gigabit Ethernet or Myrinet with the
traditional socket layer. While these and other similar projects im-
prove networking performance for system area networks, the par-
allelization scheme for the firmware presented in this paper is inde-
pendent of the particular user-level protocols because the basic role
of network interfaces is still sending and receiving packets.

Others have studied increasing networking performance by par-
allelizing network protocols on general-purpose multiprocessor op-
erating systems [2, 6, 10]. Such parallelization schemes exploit
concurrency at various levels, such as across packets, protocol lay-
ers, and connections. Parallel network protocol processing deals
with the layers above the network interface, and can thus improve
performance in conjunction with the network interface layer paral-
lelization scheme described here.

9. CONCLUSIONS
Programmable network interfaces provide the potential to extend

the functionality of network services, but their instruction process-
ing overheads are a performance disadvantage over application-
specific network interfaces. However, this performance disadvan-
tage can be offset by exploiting task-level concurrency in network
interface processing. This paper proposes and analyzes a paral-
lelization strategy to target bidirectional IP traffic using the two pro-
cessors of the Tigon network interface controller, a chip released in
1997. By carefully partitioning the handler procedures that process
various events related to the progress of a packet, the system can
achieve load balance while exploiting locality in the on-chip mem-
ories with minimal sharing and no synchronization. Such paral-
lelization increases throughput by 65% for bidirectional UDP traf-
fic of maximum-sized packets, 157% for bidirectional UDP traffic
of minimum-sized packets, and 32–107% for real network services.
This parallelization enables performance within 10–20% of a mod-
ern ASIC-based network interface for real network services.

Future Ethernet speeds are expected to continue growing; ex-
perimental controllers already implement the 10 Gigabit Ethernet
specification. Although clock speeds of programmable network in-
terface controllers will grow above the 88 MHz rate of the Tigon,
the clock rate is unlikely to grow at the same unrestricted pace as
general-purpose CPUs because of the limited power and cooling
area available to any peripheral device. This frequency constraint
eliminates the possibility of uniprocessor programmable NICs sup-
porting future Ethernet wire speeds, making further study of con-
currency in network interface processing essential for providing
high-performance extended network services.
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