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Abstract—Network interface data caching reduces local interconnect traffic on network servers by caching frequently-requested

content on a programmable network interface. The operating system on the host CPU determines which data to store in the cache and

for which packets it should use data from the cache. To facilitate data reuse across multiple packets and connections, the cache only

stores application-level response content (such as HTTP data), with application-level and networking headers generated by the host

CPU. Network interface data caching reduces PCI traffic by 12-61 percent for six Web workloads on a prototype implementation of a

uniprocessor Web server. This traffic reduction improves peak throughput for three workloads by 6-36 percent.

Index Terms—Web servers, local interconnects, network interfaces, operating systems.
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1 INTRODUCTION

WEB server performance has improved substantially in
recent years, due mostly to rapid developments in

application and operating system software. Techniques
such as zero-copy I/O [16], [18] and event-driven server
architectures [17] have reduced the CPU load, the amount
of main memory used for networking, and the bandwidth
requirements of data transfers between the CPU and its
main memory. Web servers are now capable of achieving
multiple gigabits per second of HTTP content throughput.
As server performance increases, the local I/O interconnect
within a server, such as the peripheral component
interconnect (PCI) bus, has become a potential bottleneck.

Network interface data caching can alleviate the local
interconnect bottleneck by caching data directly on a
network interface [10]. A software-managed data cache in
the network interface stores frequently-served content. The
cached content is no longer transferred across the local
interconnect. Instead, it is directly transmitted from the
network interface, thereby reducing the interconnect traffic.
The operating system on the host CPU determines which
data to store in the network interface data cache and for
which packets it should use data from the cache. Cache
contents may be appended to packet-level and application-
level headers generated by the host CPU and then sent over
the network.

The previously published work on network interface
data caching uses a PC-based prototype Web server and
shows that caching reduces PCI bus traffic and improves
server throughput for several workloads that cause high
bus utilization [10]. This paper uses a more recent testbed
and further evaluates caching performance on various bus
configurations, which include 33 and 66 MHz PCI buses as
well as two different system chipsets that provide an

interface to the bus and main memory. Small 16 MB caches
on network interfaces reduce the server PCI bus traffic by
about 12-61 percent for the six workloads used in this
paper, regardless of the bus configuration. This reduction in
turn improves peak HTTP content throughput by 6-
36 percent for the three workloads that cause very high
PCI bus utilization. PCI overheads turn out to be a major
source of inefficiencies. At least 20 percent of the bus
bandwidth is wasted by transfer-related PCI overheads,
which are mainly stalls on main memory accesses. Because
the bus speed does not affect main memory access latencies,
increasing the bus speed also increases data transfer
overheads unless the main memory latency improves
accordingly. For instance, the 66 MHz PCI bus loses about
twice many cycles to the overheads than the 33 MHz PCI
bus when the main memory latency remains constant.
Although recent interconnects such as PCI-X and PCI
Express continue to improve bandwidth through faster
clocks, they still incur significant overhead per transfer.
Thus, techniques like network interface data caching that
enable more efficient use of the available bandwidth may
continue to be useful as the host CPU and other system
components scale.

The remainder of this paper proceeds as follows:
Section 2 describes the flow of request and response data
in a Web server. Section 3 explains the concept of network
interface data caching and its potential benefits, and
Section 4 details the design and use of the cache. Section 5
describes the experimental methodology. Section 6 dis-
cusses the experimental results. Section 7 and Section 8
discuss Web workloads and related work. Section 9 draws
conclusions.

2 ANATOMY OF A WEB REQUEST

To illustrate the performance issues in Web servers, this
section examines the flow of an HTTP request and response
through a system that supports zero-copy I/O and includes
a network interface card (NIC) that supports checksum
offloading. Operating systems that support zero-copy I/O
use special APIs or memory management schemes to avoid
copying data between the kernel and user space of main
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memory or between different subsystems of the kernel
(such as the file cache and network buffers) [7], [16], [18].
With checksum offloading, the NIC, rather than the host
CPU, computes various checksums such as TCP/IP
checksums [12]. Both zero-copy I/O and checksum off-
loading reduce the load on the host CPU and are commonly
employed in a modern Web server.

Fig. 1 shows the steps taken by a typical Web server to
process an HTTP request for a static Web page and to
produce a response, assuming that the requested file resides
in the file cache. In step 1, the packets that contain the HTTP
request arrive on the Ethernet link. The NIC initiates a
direct memory access (DMA) across the local interconnect,
through which the device takes control of the interconnect
and writes the packets into the main memory. In step 2, the
operating system running on the host CPU reads the
packets from the main memory, validates the packets to
ensure that they are not corrupted, and extracts the HTTP
request, which is then read by the Web server through a
system call. In step 3, the Web server creates appropriate
HTTP headers and sends the headers and requested file
using a system call. If the file resides in the main memory
file cache, then the kernel passes a reference to the file to the
TCP/IP network stack (if the file is not found in the main
memory, then the file system initiates an I/O operation to
read the file from disk). The TCP/IP network stack creates
TCP/IP headers and packets that contain HTTP headers
and content (the requested file). The device driver then
alerts the NIC of new packets to be transmitted. In step 4,
the NIC initiates DMA transfers of the TCP/IP headers,
HTTP headers, and HTTP content from main memory to
the network interface buffers. Finally, the NIC calculates
checksums for each packet and sends it out onto the
network.

As the server begins to utilize a significant fraction of the
Ethernet bandwidth, the local interconnect, such as the

popular PCI bus, can become a performance limiter. A
standard 64-bit/33 Mhz PCI bus provides a peak band-
width of 2 Gb/s, theoretically enough to deliver HTTP
content through two Gigabit Ethernet NICs at full transmit
bandwidth. However, it cannot achieve the peak bandwidth
due to the overheads associated with data transfers such as
addressing and main memory stalls. These PCI bus over-
heads in a Web server can consume over 30 percent of the
bus bandwidth, so the efficient use of the PCI bus can
significantly affect Web server performance.

3 A NETWORK INTERFACE DATA CACHE

Adding a data cache directly on the NIC allows it to capture
repeatedly transferred files. By storing frequently requested
files in this network interface data cache, the server will not
need to send those files across the interconnect for each
request. Rather, the server can simply generate the appro-
priate protocol and application headers, and the NIC can
combine those headers and the file data to be sent out over
the network. Referring back to Fig. 1, the Web server
normally transfers requested files across the local inter-
connect to the NIC (step 4 in the figure). Storing copies of
files in a cache on the NIC eliminates this final transfer of
file data from the system memory to the NIC’s local
memory, reducing the bandwidth demands on both the
local interconnect and main memory.

Fig. 2 shows the stages in processing a Web request in a
system with a network interface data cache. Steps 1-3
remain unchanged from those in Fig. 1. In step 4, however,
if the operating system determines that the file being sent is
currently cached within the NIC, then only the headers
(HTTP, TCP, and IP), the location of the cached data in the
NIC’s local memory, and its length are transferred to the
network interface via DMA. In step 5, the NIC then finds
the data in its local memory, appends this data to the
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Fig. 1. Steps in processing an HTTP request for a file that currently resides in the operating system file cache.

Fig. 2. Steps in processing an HTTP request for a file that currently resides in the network interface data cache.



headers to form complete packets, calculates the required
checksums, and sends them over the network. A system
with a network interface data cache reduces traffic on the
local interconnect by transferring only relatively short
header information when possible, rather than transferring
entire files for every HTTP request.

The network interface data cache may store parts of a file
if necessary. When the kernel finds that parts of the
requested file reside in the network interface data cache, it
informs the NIC of the location of each part in the cache in
addition to the location of the remainder that resides in the
main memory. The NIC then transfers the remainder from
the main memory and assembles complete packets. The
other operations of the cache remain the same as described
above.

3.1 Content Locality

Due to space, power, and cost constraints, the memory on a
NIC is far more limited than the server’s main memory, so
the network interface data cache will be much smaller than
the operating system’s file cache. Therefore, for effective
caching, Web server requests must have significant data
locality. Fig. 3 shows the percentage of the HTTP content
traffic that would be eliminated from the local interconnect
by network interface data caches of varying sizes. This
figure was generated using a cache simulator that simply
plays back a Web trace and determines what portion, if any,
of each successive requested file is currently in the cache.
Files greater than the cache size are not cached. The traces

are access logs of Web sites for Berkeley’s Computer Science

Department, IBM, NASA, Rice’s Computer Science Depart-

ment, and the 1998 Soccer World Cup. The NASA and

World Cup traces are publicly available from the Internet

Traffic Archive. In addition to these logs from real Web

sites, an access log produced by the SPECweb99 benchmark

is also used. SPECweb99 evaluates the Web server’s

capacity by using synthetic clients that generate requests

for both static and dynamic content at a fixed rate (the

default 400 Kb/s). SPECweb99 was configured to emulate

1,536 clients with the default mix of operations (70 percent

static and 30 percent dynamic content). Thus, the SPEC-

web99 access log contains both static and dynamic content

requests, but only the static content requests are fed to the

simulator because only static files can be easily cached. The

basic statistics of the access logs are shown in Table 1. The

figure shows the results for caches sized from 64 KB to

16 MB, with 4 KB blocks using least-recently used (LRU)

replacement. The solid lines show the potential traffic

reduction for a single cache. The dashed lines show the

potential traffic reduction if two caches of the same size are

used with the trace split evenly across the two. This

simulates the potential caching behavior of a server with

two NICs. Even though the use of two caches doubles the

total cache size, the traffic reduction is slightly lower since

splitting the traces reduces temporal locality. The SPEC

trace is an exception, and the lines completely coincide,

since the SPEC trace is generated statistically.
The figure shows that dual 16 MB caches can potentially

reduce more than 50 percent of HTTP content traffic for

those traces that have working sets less than 1 GB (IBM,

NASA, Rice, and World Cup). However, for the Berkeley

and SPEC traces that have much larger working sets, the

caches are less effective, showing about 12 percent

(Berkeley) and 25 percent (SPEC) of potential reduction in

HTTP content traffic. As mentioned above, the SPEC trace

fed to the cache simulator includes only the static content

requests. Since they account for 70 percent of an actual

SPECweb workload, 25 percent reduction in static content

traffic leads to about 17 percent reduction in overall HTTP

content traffic. Overall, even just a few megabytes of data

cache can significantly reduce HTTP content traffic, indicat-

ing substantial potential main memory and local inter-

connect bandwidth savings.
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Fig. 3. Potential reduction in HTTP content traffic using LRU caches.

TABLE 1
Basic Statistics of the Web Server Access Logs Used for the Experiments

For the SPECweb99 log, all statistics except the data set size only account for the static content requests.



3.2 Bus Utilization

The expected reduction in the bus traffic from using
network interface data caches depends on the contribution
of the HTTP content to the overall traffic as well as the
content locality. Fig. 4 shows the utilization of the PCI bus
during the execution of each workload on a PC-based Web
server without network interface data caches. The server
includes a single AMD Athlon XP 2600+ CPU, 2 GB of
DRAM, two Gigabit Ethernet NICs on a 64-bit/33 MHz PCI
bus, and a PCI bus analyzer (see Section 5 for details). The
utilization shown in the figure is the ratio of the measured
PCI traffic during the execution of the workload to the peak
theoretical traffic for the server’s PCI bus during the same
time period. The figure categorizes the different sources of
PCI utilization on the server, including HTTP response
content, PCI overhead, networking headers (TCP/IP and
Ethernet headers from the server), HTTP response headers,
and other PCI data (including HTTP request headers, TCP/
IP packets from the client, and traffic from other periph-
erals). PCI overhead accounts for bus cycles spent on
transfer-related overheads such as address cycles and main
memory stall cycles. The NASA trace nearly saturates the
bus with 95 percent utilization. However, about 30 percent
of bandwidth is wasted due to overheads, so the bus is able
to transfer only about 1.2 Gb/s of HTTP content even
though its theoretical peak bandwidth is 2 Gb/s. The Rice
and World Cup traces also cause high bus utilization—
around 84 percent. The IBM trace utilizes only about
62 percent of the bus cycles because the small average
response size causes the CPU to quickly saturate. The
Berkeley trace requires heavy disk accesses due to its large
working set, so disk latency becomes a bottleneck. The
SPECweb workload yields the lowest utilization due to
dynamic content generation and disk accesses.

Overall, HTTP content and PCI overhead account for
about 60 percent and 30 percent of all PCI traffic,
respectively, regardless of the workload. Network interface
data caching directly targets the HTTP content, the largest
component of the PCI traffic. Reductions in HTTP content
traffic in turn lead to reductions in PCI overhead, since the
system will now handle fewer transfers. Network interface
data caching aims to reduce the two components that
account for roughly 90 percent of all PCI traffic, so it is

expected to achieve large reductions in HTTP content traffic
with reasonable storage capacity. Thus, network interface
data caching should provide substantial reductions in
overall PCI traffic for the workloads studied in this paper.

4 NETWORK INTERFACE DATA CACHE DESIGN

A network interface data cache utilizes a few megabytes of
DRAM added to a NIC with a programmable processor.
The cache resides in the DRAM and stores data that may be
appended to packet-level and application-level headers
generated by the host CPU and then sent out over the
network. The operating system running on the host CPU
determines which data to store in the network interface
cache and for which packets it should use data from the
cache.

4.1 Cache Architecture

The network interface data cache is simply a region of local
memory (on-board DRAM) on the NIC. Ideally, the cache is
as large as possible, but, as shown in Fig. 3, a small 16 MB
cache can significantly reduce interconnect traffic. Such a
cache can be implemented with a single 16 MB DRAM chip
that dissipates less than 1 Watt [13], leading to minimal
increases in area and power on the NIC.

Since the cache resides in the local memory of the NIC,
only the processor on the NIC may access the cache.
However, the network interface data cache is controlled
entirely by the operating system on the host processor. The
NIC processor acts as a slave to the operating system. It
inserts and retrieves information from the cache only at the
direction of the host. When adding new data to the network
interface data cache, the operating system instructs the NIC
to fetch that data from the main memory and store the data
at a particular offset in the cache. The NIC then fetches the
specified data from the main memory into the cache. When
the operating system decides to use data within the network
interface data cache for a packet, it simply instructs the NIC
to append data from the cache to the packet by giving the
offset and length of the desired data in the cache. In this
way, the operating system can use any data in the network
interface data cache for any outgoing packet. For example,
the data can be a subset of a block that was previously
inserted into the cache or can straddle multiple cached
blocks.

4.2 Cache Management

Since the processor on the NIC does not interpret the data in
any way, the host processor must establish policies for
allocation, replacement, and use of data in the network
interface data cache. Additionally, the host processor must
resolve the cache coherence problem that arises on
modifications to the main memory copy of content
replicated on the NIC local memory. The operating system
implements all policies for these cache management tasks.

When allocating storage in the network interface data
cache, the operating system caches content at the granular-
ity of a file block. Caching blocks instead of packets allows
the TCP/IP stack to structure packet contents differently for
different responses, if necessary, and also simplifies cache
management by using fixed size objects. The operating
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Fig. 4. PCI bus utilization measured in a Web server under various Web

workloads without network interface data caches.



system also manages a directory of the cached blocks. The
directory entries contain information relating a cached
block to the original file that contains the block. An entry
contains the file identifier, the offset within the file, the file
revision number (maintained by the operating system to
track changes in files), and any required status information
associated with the data stored in the network interface data
cache. A system with multiple NICs has separate directories
for each network interface data cache, since the NICs have
separate storage.

The operating system attempts to use data from the
network interface data cache in response to the sendfile

system call from the application. Sendfile is a commonly-
implemented API for zero-copy I/O in servers. Although a
server can also transfer data using the read and write

system calls, the use of user-level data buffers in those
system calls commonly causes the kernel to copy data from
the kernel file cache to user space on a read and from user
space to the kernel network buffers on a write. Such
copying increases CPU and memory load in performing the
copies and memory pressure in storing multiple copies of
the same information. In contrast, sendfile allows for a
straightforward implementation of zero-copy I/O since it
refers to file content through a descriptor rather than a user-
level buffer. The experimental results show that the use of
sendfile system call improves Web server throughput by
up to 47 percent for the Web server workloads used for this
study.

Although the system benefits from zero-copy I/O, it is
not a requirement for network interface data caching. The
network interface data caching can use any API as long as
the operating system can relate each piece of data that is
being sent out onto the network to the original file and
supply the cache directory with information required in
directory entries.

Fig. 5 depicts the actions taken by the FreeBSD operating
system in response to sendfile. If a call to sendfile

specifies a portion of the file that resides in the operating
system file cache, then the operating system creates a set of
small memory buffers (called mbufs in FreeBSD) to hold
control information and a pointer to the data in the file

cache. Each mbuf specifies a contiguous region of memory.
In the figure, each mbuf points to a page of the file to be
sent. In step 1, the operating system annotates these mbuf

structures with the original file identifier, the offset into the
file (page offset), and the file revision number. The mbuf

chains created by sendfile are transformed into packets
by the TCP/IP stack. In step 2, the process of forming
packets may split the mbufs so that they reference
subranges of pages because each mbuf can reference at
most one contiguous region of memory. The TCP/IP stack
then passes the mbuf chain for each packet to the device
driver for the NIC that will be used for transmission.

In step 3 in the figure, the device driver looks up each
referenced block in the network interface data cache
directory. If the block is already present, then the driver
informs the NIC of the offset and length of the content
within the network interface data cache. If the block is not
present, the driver allocates a block in the cache, using a
replacement policy to evict old blocks if no space is
available. In either case, the driver creates a set of buffer
descriptors to pass the relevant information to the NIC
(step 4). Each buffer descriptor either points to a main
memory buffer or a region of the network interface data
cache. The CPU typically notifies the NIC that it has created
new buffer descriptors by writing to a memory mapped
register of the NIC. The NIC then retrieves the buffer
descriptors using DMA and uses the information contained
within them to initiate the necessary DMA transfers to
retrieve the data from main memory. After completing the
requested operation, the NIC interrupts the CPU to inform
it that the buffer descriptors have been consumed. In a
system without a network interface data cache, these buffer
descriptors always require the NIC to transfer packet data
from main memory using DMA. In a system with a network
interface data cache, however, buffers pointing to cached
content require no DMA transfers.

The file revision field stored in each directory entry
enables a straightforward mechanism to keep the cached
blocks coherent with the objects stored on the server’s main
storage system. When looking up blocks in the network
interface data cache directory, the device driver lazily
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Fig. 5. Steps in sending a response using the sendfile system call.



invalidates blocks for which the current revision identifier
does not match the cached revision. Note that multiple
NICs do not present any additional cache coherence
problems, since each network interface data cache operates
independently.

To further simplify the coherence implementation, the
operating system keeps the network interface data cache
strictly a subset of the main memory file cache. With this
guarantee of inclusion, information mapping file blocks to
network interface data cache storage need not persist
beyond the replacement of a block from the main memory
file cache. This inclusion property provides two further
benefits. First, it allows caching even for NICs that do not
support checksum offloading, since all content on the NIC
also resides in the main memory and can thus have
checksum calculations performed by the host CPU. Second,
inclusion simplifies network retransmits in the event of
replacements from the network interface data cache, since
the the operating system always keeps data in the main
memory file cache for retransmits.

The cache management described so far ignores possible
synchronization issues that may arise in a multiprocessor
system. The design requires little additional synchroniza-
tion to an operating system that already supports multiple
processors for the following reasons. First, the design makes
use of existing data structures of the operating system,
except the cache directory in the device driver. Second, the
execution flows of the network stack with and without
network interface data caches are essentially the same.
Assuming that the original network stack is properly
synchronized to support multiple processors, only accesses
to the cache directory require additional synchronization. If
accesses to the device driver are already synchronized, even
this synchronization is unnecessary.

4.3 Cache Interface

The operating system manages the network interface data
cache using an API that consists of the four functions listed
in Fig. 6. The figure only shows the functions used to send
packets; the NIC must also support functions to receive
packets and perform other actions, but those remain
unchanged because the cache does not affect those tasks.
Since the host processor cannot directly call functions on

the NIC’s processor, these API functions are actually
implemented using existing mechanisms to communicate

from the host processor to the NIC. In particular, the

operating system uses flags in the buffer descriptor data
structure to indicate which command to invoke, and

additional fields within those buffer descriptors to pass
arguments to the NIC.

The API for the network interface data cache includes
functions to initialize the cache, to copy data from main

memory to the network interface data cache, to append a
block of main memory to the current packet, and to append

a cached block to the current packet. All other NIC

functions remain unchanged. The initialization function,
nic_cache_init, allocates space in the NIC’s local

memory and notifies the operating system of the amount
of memory that has been allocated so that the operating

system may construct and manage the cache directory. Data

is added to the cache using the nic_cache_insert

function which transfers the data from main memory

through DMA. As with all DMA transfers, a single buffer

descriptor can only describe one contiguous buffer. If
disjoint memory regions are to be added to the cache, the

operating system must call nic_cache_insert multiple
times. The API does not include an explicit invalidation

command. Instead, the operating system simply invalidates

its directory entries.
The API of a conventional NIC effectively only includes

the nic_pkt_append_mm function to construct and send

packets. As described in Section 4.2, the operating system

transmits packets by generating a list of buffer descriptors
that are then fetched by the NIC. Each buffer descriptor

points to a main memory buffer that the NIC should
append to the current packet in the NIC’s transmit buffer

by using a DMA transfer. Such DMA transfers are initiated

by invoking the nic_pkt_append_mm function on the
NIC for each buffer descriptor. Additional flags in the

buffer descriptor are used to indicate to the NIC if that
block is the first or last block in the packet, if a particular

function should be performed before sending the packet

(such as checksum offloading or other future services), or
any additional information required by the NIC to process

the packet.
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Fig. 6. Commands supported by the programmable processor on the network interface and invoked by the operating system.



The last API function nic_pkt_append_cache resem-
bles nic_pkt_append_mm but copies data to the transmit
buffer from the indicated offset in the network interface
data cache, not from main memory through DMA. This
copy on the network interface could also be eliminated if
the medium access control (MAC) engine that transfers the
data out onto the network could gather the packet from
disjoint memory regions on the NIC. As with nic_pkt

_append_mm, additional flags in the buffer descriptors are
used to indicate if the block is the last block in the packet or
if additional processing should occur.

The NIC executes commands in the same order as they
are issued by the driver. The NIC also interlocks the
commands appropriately in order to resolve any data
dependencies that may arise when multiple commands are
pending. For instance, when executing nic_pkt_append

_cache followed by nic_cache_insert to the same
cache block, the NIC delays the transfer of new data (the
second command) until the copying of the block completes
(the first command).

Referring back to Fig. 5 in Section 4.2, the buffer
descriptors of step 4 convey the commands of Fig. 6. If
the data represented by an mbuf is not cached, the driver
inserts the data into the cache using nic_cache_insert.
The driver then sends a series of buffer descriptors that
contain command nic_pkt_append_cache or nic_pkt

_append_mm, as appropriate, to transmit each packet. The
processor on the NIC concatenates the cached data with the
headers fetched from the main memory before the packets
are transmitted onto the network. Headers for TCP/IP,
Ethernet, and HTTP are transferred to the NIC using
nic_pkt_append_mm and are never inserted into the
network interface data cache since they do not refer to a file
block. Similarly, other types of data such as dynamically
generated HTTP content that do not refer to a file block are
also transmitted using only nic_pkt_append_mm.

5 EVALUATION METHODOLOGY

5.1 Prototype Implementation

A prototype implementation of network interface data
caching is built using a PC-based server and programmable
Gigabit Ethernet NICs. The prototype implements an LRU
block cache with lazy invalidation, a block size equal to the
page size of the operating system (4 KB), and a requirement
of inclusion in the main memory file cache. It does not cache
files greater than the cache size. The LRU replacement
policy and 4 KB block size are chosen to simplify the
implementation. The server employs four different config-
urations of the host processor and PCI bus in order to

evaluate the impact of technology on performance of
network interface data caching. Table 2 shows the config-
urations. The AMD servers use the Tyan Tiger MPX
motherboard based on the AMD-760 MPX chipset, and
the Intel servers use the Tyan Tiger i7500 motherboard
based on the Intel E7500 chipset. All server configurations
have a single processor, two 1 GB PC2100 DDR SDRAM
DIMMs, two 36 GB SCSI disks, a SCSI disk controller
plugged into a 32 bit PCI slot, two 3Com 710024 copper
Gigabit Ethernet NICs plugged into 64 bit PCI slots, and a
VMETRO PBT-615B PCI bus analyzer. The Intel Xeon
processor supports Hyper-Threading [9], but this feature
has been disabled so all of the results consistently reflect
uniprocessor performance.

The PCI bus analyzer passively measures the PCI bus
utilization and injects no traffic onto the PCI bus. Both the
AMD and Intel systems have multiple PCI buses, but they
are organized differently. On an AMD system, the single
analyzer can monitor the NICs and the SCSI controller.
However, on an Intel system, the NICs and the SCSI
controller are on two independent bus segments such that
the single analyzer captures all NIC traffic but none of the
SCSI traffic. Because network interface data caching only
affects HTTP content traffic transferred to the NICs and its
associated PCI overhead, it has no impact on the SCSI
traffic. Likewise, the SCSI traffic has no impact on caching
performance. Thus, capturing the NIC traffic is sufficient for
evaluating caching effects on bus traffic.

The 3Com 710024 NIC is based on the programmable
Tigon Gigabit Ethernet controller and has 1 MB of on-board
memory. The controller includes two simple MIPS-based
programmable cores. The 3Com NIC runs a modified
version of Revision 12.4.13 of the Tigon firmware, which
was made open-source by the manufacturer [1]. The
modified firmware implements the API commands of
Section 4.3 and various optimizations to reduce the
possibility of the NIC being a potential bottleneck.
Specifically, the modified firmware parallelizes tasks across
the two processors and sets tunable parameters to commu-
nicate with the host more efficiently [11]. Note that the
cache content is only accessed by the DMA and MAC
hardware, so task parallelization does not introduce
synchronization problems for the processors. The proces-
sors do need to maintain small data structures in order to
resolve data dependencies among multiple pending com-
mands that use or modify the cache, as mentioned in
Section 4.3. In the current firmware implementation, this
task is handled entirely by one processor. Although the
current prototype uses a MIPS-based programmable con-
troller, network interface data caching may be implemented
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Server Configurations Used to Evaluate Network Interface Data Caching

The remainder of the text uses short configuration names to concisely describe server hardware.



on any other programmable controller. The specific NIC
used in this study has been discontinued, but Broadcom
continues to produce Gigabit Ethernet controllers that are
very similar to the Tigon. Unfortunately, the specifications
of these newer controllers are not publicly available.

The server runs a version of the FreeBSD 4.7 operating
system with the following modifications. The sendfile

system call is extended to use network interface data
caching. The mbuf structure has five new fields, and mbuf

manipulation routines are modified to handle the new
fields appropriately. Finally, the device driver for the NIC is
modified to maintain cache directories and generate
modified buffer descriptors that contain the commands
for network interface data caching.

The 3Com NIC only has 1 MB of on-board memory. At
minimum, roughly three-fourths of the on-board memory
are required for the firmware code, transmit buffer, and
receive buffer. Thus, the 1 MB of on-board memory is
insufficient to evaluate network interface data caching.
Instead, network interface data caches of various sizes are
emulated using the following modifications to the API
shown in Fig. 6. Upon receiving a nic_cache_insert

command, the prototype fetches the specified data and
discards it instead of adding it to the cache. On a
nic_pkt_append_cache command, the prototype simply
increments the pointer to the end of the transmit buffer by
the specified length, using whatever data is currently in the
buffer. The other API functions behave as specified. The
NIC with these simplifications generates the same amount
of PCI bus traffic and Ethernet traffic as a fully functional
NIC that actually stores cached blocks and reuses them on
appropriate commands. However, the lack of copying in
nic_pkt_append_cache ignores the overhead of copy-
ing. This copying is unnecessary for a NIC that supports
gather I/O and can transmit packets consisting of non-
contiguous memory regions. Another problem with
nic_pkt_append_cache is that packets that include
cached data have invalid checksums. The Tigon checksum-
ming hardware is integrated into the DMA engine (this is
not to be confused with a manufacturer-documented
hardware checksum bug that arises when both read and
write DMA transfers are active). Therefore, only data that is
transferred between the host and the Tigon may be
checksummed. A slight modification to the Tigon architec-
ture to allow data stored in local memory to be run through
the checksumming hardware can solve the checksum
problem. These additional features are simple and would
not require substantial implementation costs. Thus, despite
the simplifications in nic_cache_insert and nic_pkt

_append_cache commands, the prototype should accu-
rately emulate network interface data caching and its
impact on server performance.

5.2 Test Platform

The performance testbed consists of the prototype Web
server and two client machines. Each client machine has
two Gigabit Ethernet NICs and runs FreeBSD 4.7. The
machines are connected through two Netgear GS508T
Gigabit Ethernet switches and use two subnets. Each
machine has one NIC on each subnet. The NIC drivers on
the clients are modified to accept packets from the server
containing cached data despite their invalid checksums
discussed in Section 5.1; to support this distinction, the

server marks such packets with an artificial time-to-live
field in the IP header.

The server runs a version of the Flash Web server that
uses the sendfile API and supports HTTP pipelined
persistent connections [17]. Server throughput is measured
using the Web workloads listed in Table 1. For all
workloads except SPEC, a trace replayer tool is used. It
reads a Web trace and simulates multiple users by opening
multiple simultaneous connections to the server, each of
which corresponds to a single user. The replayer uses an
infinite-demand model, issuing requests as fast as the
server can sustain. Requests that came from the same
anonymized client IP address within a fifteen second period
in the original access log are treated as a single persistent
connection. Within a persistent connection, requests that
arrive less than five seconds apart in the original log are
grouped, and requests within each group are pipelined.
Each client machine runs two instances of the replayer, one
on each subnet. Requests are split equally among all
replayers.

SPECweb99 also simulates multiple clients but does not
follow an infinite-demand model. Rather, each client tries to
maintain a fixed 400 Kb/s. The server capacity is then
measured as the number of clients that achieve at least
320 Kb/s. The results presented in this paper are based on
runs in which all clients achieve at least 320 Kb/s and use
the default mix of requests (70 percent static and 30 percent
dynamic content). The AMD and Intel systems use 1,536
and 1,664 clients, respectively.

For some workloads, the results presented in the
following sections are markedly different from the pre-
viously reported results from a similar testbed [10]. This
study uses a faster CPU, more efficient Web server software
(multithreaded Flash versus single-threaded thttpd), and an
improved version of sendfile. In general, these improve
throughput. The throughput for the Berkeley trace im-
proves significantly because multithreaded Flash can over-
lap disk accesses with network transfers, whereas single-
threaded thttpd blocks on disk accesses.

6 EXPERIMENTAL RESULTS

6.1 Local Interconnect Traffic and Server
Throughput

Fig. 7a shows the impact of network interface data caching
on PCI traffic for AMD/33. The figure shows four bars for
each workload. The leftmost bar represents traffic without
caching, and the right three bars represent traffic with cache
sizes of 4 MB, 8 MB, and 16 MB per network interface. All
measures of PCI traffic are normalized to the traffic without
caching. As in Fig. 4, each bar is split into five categories.
Fig. 7a shows that network interface data caching reduces
the HTTP content traffic on the PCI bus, by substantial
margins for all workloads except Berkeley and SPEC, as
predicted by Fig. 3. Removing HTTP content transfers also
reduces the PCI overhead associated with those transfers
since the overhead stems from data transfers across the bus.
As the HTTP content traffic reduction increases, the PCI
overhead decreases, leading to further reductions in PCI
traffic.
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With 16 MB data caches, the server reduces HTTP
content traffic on the bus by 55-89 percent for the IBM,
NASA, Rice, and World Cup traces. These reductions
closely match the predictions in Fig. 3, even though the real
system may reorder requests and responses due to various
latencies in the system and the different ways of splitting
the traces. The PCI overhead accordingly decreases by 16-
35 percent, leading to combined overall PCI bus traffic
reductions of 34-59 percent. Since only HTTP content is
cached on the NIC, network interface data caching does not
change the other types of PCI traffic such as HTTP and
network headers.

The Berkeley and SPEC workload show little reductions
in overall PCI traffic because their large data set sizes (over
5 GB, as shown in Table 1) allow network interface data
caching to eliminate only about 10 percent of the overall PCI
traffic. More intelligent replacement policies may provide
additional benefits for such workloads [4], [6]. Additionally,
predicting reuse patterns could allow for reducing cache

pollution by bypassing the cache entirely for some data, as
has been studied in other contexts [22].

Fig. 7b shows the server throughput improvements
(shown in percent) that result from the reduction in PCI
traffic discussed above. As shown in Fig. 4, the NASA
workload nearly saturates the PCI bus with 95 percent bus
utilization without caching. Therefore, caching yields the
most benefit, about 32 percent throughput improvement
using 16 MB caches. This enables the server to achieve a
peak throughput of 1,574 Mb/s on the NASA trace. The
Rice and World Cup workloads show the second highest
bus utilization (84 percent) without caching. Accordingly,
they benefit less from caching than the NASA workload.
Throughput improvements are about 16 percent for the Rice
trace and 10 percent for the World Cup trace using 16 MB
caches. Network interface data caching is most effective at
capturing the locality of the World Cup trace, with 16 MB
caches reducing 89 percent of the HTTP content traffic.
However, throughput improvement for the World Cup
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Fig. 7. (a) Bus traffic reduction, (b) HTTP content throughput improvement, and (c) request rate improvement from network interface data caching for

AMD/33.



trace is less than that for the Rice trace, even though the
World Cup trace shows a greater reduction in HTTP
content traffic and both achieve the same bus utilization
without caching. The main difference between the two is
that the Rice trace has larger response sizes. This result
indicates that the response size plays a greater role in
determining throughput improvements from caching than
the traffic reduction. As expected, improvements in request
rates from caching, shown in Fig. 7c, are identical to
throughput improvements because the request rate should
be linearly proportional to the throughput under the infinite
demand model. Network interface data caching does not
improve the server throughput for the Berkeley, IBM, and
SPEC workloads. This is expected since the PCI bus is not a
bottleneck in the system without caching. The overhead of
managing the cache and using the cache commands slightly
degrades server throughput.

These reductions in PCI traffic and throughput improve-

ments have several consequences. First, systems that are

limited by the achievable PCI bandwidth will improve their

performance commensurate with the reduction in bus

traffic. Second, systems that are not limited by the

achievable PCI bandwidth will be able to scale other

resources in the system beyond the limits currently

imposed by the local interconnect. Scaling other resources

such as memory and CPU would increase contention for the

PCI bus, and then the system can employ network interface

data caching to further improve performance. In both cases,

the potential to extract greater performance from existing

shared I/O interconnects makes more radical changes to

local I/O interconnect designs less attractive because of the

additional engineering costs they impose in redesigning

motherboards, peripheral interfaces, interconnection com-

ponents, and operating systems.

6.2 Interconnect Bandwidth

Network interface data caching relieves the interconnect

bottleneck by reducing the required bandwidth. A faster

bus can also relieve this bottleneck by increasing the

available bandwidth. This section examines the impacts of

bus speeds on bus utilization and caching performance by

comparing AMD/33 against AMD/66.
Fig. 8a compares the PCI bus utilization of AMD/33 and

AMD/66. Because the 66MHz PCI bus theoretically doubles

the bandwidth of the 33 MHz PCI bus, AMD/66 is expected

to show lower bus utilization than AMD/33 given the same

server throughput. However, both AMD/33 and AMD/66

show almost same bus utilization for the NASA, Rice, and

World Cup workloads, while AMD/66 achieves only

marginally higher throughputs than AMD/33, as shown in

Fig. 8b. These workloads again generate significant bus

traffic with overall utilization reaching 80 percent and

above. Despite high bus utilization, almost 60 percent of all

PCI traffic is consumed by overheads, and HTTP content

accounts for only about 30 percent. Remember that on

AMD/33 the PCI overhead and HTTP content account for

about 30 percent and 60 percent of all PCI traffic,

respectively. So, per-byte PCI overhead (PCI overhead

divided by HTTP content) is about four times greater on

the 66 MHz PCI bus than on the 33 MHz PCI bus.

Consequently, even for the most bus-limited workload

(NASA), the server throughput increases only by 87 Mb/s

as the PCI bus speed increases from 33 MHz to 66 MHz.
Since AMD/33 and AMD/66 achieve similar bus

utilization and server throughput without caching, caching

is expected to yield similar benefits for both systems.

Reductions in the HTTP content traffic shown in Fig. 9a are

same as those for AMD/33 shown in Fig. 7a because both

servers transfer the same amount of HTTP content, and PCI

bus speeds should not affect the potential reduction in

HTTP content from caching. The overall PCI traffic

reductions are also roughly same as those for AMD/33

shown in Fig. 7 due to the increased PCI overhead

associated with data transfers. Figs. 9b and 9c show that

the throughput and request rate improvements from

caching for AMD/66 are also similar to those for AMD/

33. Overall, improvements are only about 5 percent lower

than those for AMD/33.
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Fig. 10. (a) Comparison of PCI bus utilization and (b) HTTP content throughput achieved with AMD/33, AMD/66, Intel/33, and Intel/66.

Fig. 9. (a) Bus traffic reduction, (b) HTTP content throughput improvement, and (c) request rate improvement from network interface data caching for

AMD/66.



6.3 Interconnect Interface

Comparison between AMD/33 and AMD/66 shows that
per-byte PCI overhead increases nearly four times as the
bus speed doubles. The analyzer reveals that the overhead
cycles are mostly main memory stalls. Since memory
accesses are performed by the system chipset not by the
PCI bus, bus speeds should not affect memory access time.
Thus, one can expect that doubling the bus speed would
also double PCI overhead. A fourfold increase indicates
possible chipset performance issues.

Fig. 10 compares the PCI bus utilization and HTTP
content throughput of the Intel systems as well as the AMD
systems. As explained in Section 5.1, the PCI traffic of the
Intel systems in the figure does not include the disk traffic
generated by the SCSI controller. This absence of the disk
traffic explains the decreases in other PCI data for the
Berkeley and SPEC workloads on the Intel systems. Note
that only these workloads generate noticeable disk traffic.

Overall, AMD/33 and Intel/33 show similar bus utilization
and server throughput. Intel/33 generates slightly more
HTTP content traffic and higher server throughput than
AMD/33, which is expected from a faster CPU. It also
shows smaller per-byte PCI overhead. However, Intel/66
shows very different bus utilization from AMD/66. Intel/66
shows much smaller per-byte PCI overhead than AMD/66,
so the overall bus utilization is much lower as well. Unlike
the AMD systems, per-byte PCI overhead on Intel/66 is
only about twice the overhead on Intel/33, which is
expected from doubling the bus speed. This allows the
most bus-limited workload (NASA) to nearly saturate the
two NICs on Intel/66 with 1747 Mb/s of HTTP content
throughput.

Bus traffic reductions and consequent server throughput
improvements from caching shown in Fig. 11 are as
expected. Both Intel/33 and Intel/66 show roughly same
bus traffic reductions, as do AMD/33 and AMD/66.
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Throughput improvements from caching on Intel/33 are
similar to AMD/33 since they show similar bus utilization
and server throughput without caching. Intel/66 gains no
throughput improvements from caching because the bus is
not a bottleneck in the system.

While the Intel systems have lower bus overhead than the
AMD counterparts, overhead due tomainmemory stalls still
consumes a significant fraction of bus cycles. Increasing the
bus speed provides more available bandwidth. However,
because the bus speed does not affect main memory access
time, doing so also increases overhead unless memory
latencies improve accordingly. Thus, increasing the bus
speed alone may not be able to eliminate the potential
interconnect bottleneck.

7 WEB WORKLOADS

The Web workloads used so far are several years old and
may not represent more recent workloads. There are
three main concerns. First, all workloads except SPECweb99
only consist of requests for static content. Web sites serve
more dynamic content now than several years ago, but
static content such as images, scripts, and text is still a
significant part of overall HTTP content. Some Web servers
are now dedicated to serving static content in order to
facilitate dynamic content generation on different servers.
Such servers can directly benefit from network interface
data caching.

Second, Web requests are believed to follow a Zipf-like
distribution in which popular objects receive a large
number of requests, thereby enabling effective caching.
Fig. 12a shows the number of requests each document
(HTTP object) receives. The document rank is a natural
number in which 1 represents the most popular object. The
Zipf lines are based on request frequencies computed using
ð1=RÞ� where R is the rank and either � ¼ 0:9 or � ¼ 0:7
shown in parenthesis. SPECweb99 uses 1,536 clients as in
Section 3.1. The Rice and SPEC curves descend roughly at
the same rate as the Zipf(0.9). However, all the other curves
show a steeper descent, indicating that popular objects of
these workloads receive a greater fraction of requests than
Rice or SPEC. The cumulative fraction of total requests

shown in Fig. 12b confirms the case. While 16 MB caches
can remove substantial HTTP content traffic for the work-
loads used in this paper, caching may be less effective for
workloads whose Zipf-like behavior is less prominent (see
Zipf(0.7)).

Finally, the working set size may be correlated to the
server throughput. For instance, SPECweb99 increases the
data set size as the request rate increases. The other
workloads have fixed size data sets. It is unclear whether
one must grow in proportion to the other. It is intuitive to
believe that more clients with faster connections would
demand more diverse objects. It is also intuitive that clients
may only be interested in the same set of objects regardless
of the number of clients or connection speeds. For instance,
the World Cup Web site supports the latter.

Overall, not all the workloads may be realistic, but they
tend to follow commonly known characteristics of Web
workloads—they can be effectively cached and have Zipf-
like distributions. This paper shows that some workloads
can cause high bus utilization, and for such workloads,
network interface data caching can alleviate the bus
bottleneck and improve server throughput.

8 RELATED WORK

Yocum and Chase proposed payload caching to improve

packet forwarding performance of network intermediaries

such as firewalls and routers by caching packet payloads

instead of file blocks [25]. Incoming packet payloads are

stored in a payload cache on the NIC so that they may be

transmitted directly from the NIC if they are forwarded

later from the same NIC. Also, if a packet’s payload is not

found in the cache when it is sent, it can be added into the

cache for later retransmission.

Programmable network interfaces have been used ex-

tensively for cluster computing applications. They often

implement message passing protocols and zero-copy I/O

APIs in order to minimize communication latency. Myrinet

[3] and Quadrics [19] use programmable interfaces to

implement parts of their message processing and provide
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the application with zero-copy I/O APIs. Arsenic [20],

Ethernet Message Passing [21], Queue Pair IP [5], U-Net

[23], and Virtual Interface Architecture [8] also make use of

programmable interfaces to facilitate protocol processing

and to support zero-copy I/O. Just as programmable

network interfaces help improve cluster computing appli-

cations through their extended services, network interface

data caching exploits their programmability to improve

network server performance.
Coherent network interfaces take advantage of cache

coherent interconnects in order to reduce overheads
involved in transferring messages in multiprocessor
systems [15]. Others have suggested attaching the network
interface directly to the memory module, essentially on the
coherent interconnect, to overcome the interconnect
bandwidth and latency [14]. With a coherent interconnect,
the NIC can perform caching operations without any
modifications to the operating system. As the NIC fetches
data from main memory, it can decide whether to cache it
for future uses. The NIC then should be able to determine
the staleness of the cached data through the coherence
protocol. It would be costly for an I/O interconnect and
peripheral devices to implement complex coherence
protocols. However, as network speeds continue to
increase beyond 10 Gb/s, such interconnects may become
necessary to facilitate hardware-level zero-copy across the
interconnect.

Previous studies have found high levels of locality in
Web server traces [2]. This study confirms those findings.
Furthermore, a variety of advanced replacement policies to
exploit this locality have been proposed for the Web file
cache environment [4], [6]. Other work has considered
replacement policies for network file server block caches
[24]. The specific policy choices for allocation and replace-
ment are independent of particular implementations of
network interface data caching, and any policies could be
adopted to improve caching performance.

9 CONCLUSIONS

Repeatedly transferring frequently-requested data across a
local I/O interconnect leads to an inefficient use of system
resources. Furthermore, interconnects scale more slowly
than processing power or network bandwidth because of
the need for standardization. Caching data directly on a
programmable network interface reduces local interconnect
traffic on Web servers by eliminating repeated transfers of
frequently-requested content. A prototype implementation
of network interface data caching reduces PCI bus traffic by
12-61 percent on six Web workloads with only 16 MB caches
on two network interfaces. This technique allows applica-
tion-level performance to scale with more aggressive CPUs
and network links beyond the point at which less efficiently
utilized local interconnects would become a bottleneck.
Such reductions in interconnect traffic require only a few
megabytes of DRAM added to the network interface and
impose no constraints on the processor on the network
interface.

Network interface data caching only requires about
1,000 lines of new and modified code: the addition of
five fields to the mbuf structure that refer to kernel data

buffers, modifications to the sendfile system call and
mbuf manipulation routines, and new code in the device
drivers for the network interface. These simple additions to
the operating system and 16 MB caches on two network
interfaces enable Web server throughput improvements of
6-36 percent for three Web workloads studied, directly
resulting from the reduction of data transfers from main
memory to the network interface. Therefore, the introduc-
tion of a programmable network interface with 16 MB of
DRAM would allow existing Web servers to realize this
throughput improvement immediately by more efficiently
utilizing their local interconnects. Although the prototype
uses the FreeBSD sendfile system call and a PC-based
Web server with a PCI bus, the concepts of network
interface data caching are independent of the specific zero-
copy I/O mechanism and the specific local interconnect.

Network interface data caching applies in other environ-
ments as well, since a variety of systems repeatedly transfer
data across the network. Examples include NFS servers,
streaming media servers, computation clusters, and net-
work attached storage. While the access locality in each
environment will be different, caching data within the
network interface is a conceptually simple and practically
implementable mechanism for exploiting that locality.
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