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ABSTRACT
The prevalence of multicore architectures has made the per-
formance analysis of multithreaded applications an intrigu-
ing area of inquiry. An understanding of locality effects
and communication behavior can provide programmers with
valuable information about performance bottlenecks and op-
portunities for optimization. Unfortunately, most perfor-
mance analyses are architecture dependent, and hence in-
sights gleaned from an application’s behavior on one plat-
form may not apply when the application is run on another.
In this position paper, we argue that what is needed are
architecture independent metrics that characterize the be-
havior of an application in a system-agnostic manner. Such
metrics will allow a program’s performance to be analyzed
across a range of architectures without incurring the over-
head of repeated profiling and analysis. We propose two
specific analyses: multicore-aware reuse distance, which cap-
tures the locality properties of an application and commu-
nication analysis, which exposes the structure of communi-
cation in an application. We also discuss a number of ap-
plications of these analyses, in the domains of optimization,
code restructuring and performance modeling.

1. INTRODUCTION
Performance tuning for multicore systems typically re-

quires manual restructuring of code and new compiler op-
timizations to target different architectures. These steps
are often performed in an ad-hoc fashion, as different ap-
plications and different platforms require different forms of
tuning. In general, however, performance tuning requires
improving data cache locality and reducing communication
bottlenecks. Although the performance impacts of locality
and communication are architecture-specific, both proper-
ties are determined largely by fundamental characteristics
of the program such as data reuse and inter-thread interac-
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tions. Thus, effective tuning for rapidly evolving architec-
tures will benefit from architecture-independent metrics that
capture data reuse and inter-thread interactions in parallel
programs.

Reuse distance has long been an architecture-independent
quantitative metric for data reuse in programs [12]. The
reuse distance of a given reference to element x is the count
of the number of distinct data elements that have been refer-
enced since the last access of x (or ∞ if the element has not
been referenced before). The data elements can be pages,
cache lines, individual words, or even instructions, yielding a
generalized machine-independent measure of program local-
ity. Conceptually, this is implemented by tracking the depth
of the access in a stack, though more efficient implementa-
tions also exist [15]. Reuse distance predicts cache hit ratio;
in particular, the hit ratio of a cache with N one-word blocks
organized in a single LRU set would correspond to the frac-
tion of references with reuse distance less than N . A single
run of reuse distance analysis can thus predict the behavior
of an application over a variety of cache sizes, but does not
account for real cache constraints like associativity replace-
ment policy details. When considering multicore systems,
however, existing reuse distance analysis methods are insuffi-
cient, as their abstract notion of access ordering by counting
only makes sense within a single reference stream. Recent
studies have accounted for multicore effects on reuse distance
for systems with shared caches or private coherent caches.
Shared caches can be modeled by measuring or statistically
estimating the impact of interleaving instructions from mul-
tiple threads onto a single reuse stack, thereby accounting
for shared-cache effects such as inter-core prefetching, more
effective capacity utilization, and capacity contention [6, 7,
13, 14]. Private caches have been modeled by eliminating
entries from other threads’ stacks when they are written by
one thread, mimicking the behavior of invalidation-based co-
herence protocols [13, 14].

Data communication between threads is another key fac-
tor in shaping multithreaded application performance. The
performance impact of such communication often depends
on the size and sharing configuration of the cache. Numer-
ous works have investigated sharing behavior in applications,
but often only for a single cache size [5]. Such works can help
understand issues related to sharing, but do not indicate how
changes in cache size, configuration, or even thread alloca-
tion policies might differently affect performance. A more
detailed analysis would additionally consider the different
source and destination threads involved in a communication
event, the sharing patterns involved, the extent to which ad-



dresses in communication patterns are correlated over time,
the number of concurrent communication events in the sys-
tem, and the extent to which communications correlate to
particular regions of the source code. Such analysis would
focus on inter-thread interactions rather than the specific
workings of communication for a given platform, and could
thus yield insights in an architecture-independent sense of
how program code and resource utilization should be opti-
mized to yield high performance across architectures and to
properly exploit the tradeoff that sometimes arises between
concurrency and data traffic.

Combining multicore-aware reuse distance analysis and
communication analysis can help provide understanding
about locality, bandwidth, contention, and scalability limi-
tations in multithreaded programs without being tied to the
specific architectural details. Despite these benefits, these
analyses will not be useful unless they can model full-sized
applications with no more than about an order of magnitude
slowdown. Random sampling and parallelized analysis are
key mechanisms to achieve these goals. Random sampling of
individual references is not straightforward for either reuse
distance analysis or communication analysis because each
analysis depends on substantial state information that has
accumulated during the execution of the program. Similarly,
parallelization is challenging because both mechanisms rely
on shared state. (Both of these issues arise for sampling
and parallelization of architectural simulation as well.) This
work presents solutions to these challenges along with pre-
liminary work on architecture-independent analyses for mul-
ticore shared-memory systems. In the case of reuse distance,
the resulting strategy uses sampling not only to avoid track-
ing all references, but also to enable the use of more efficient
data structures and to facilitate parallelization.

There have been other related efforts in a variety of ar-
eas. Lee and Brooks used statistical approaches rather than
only detailed architectural simulation to identify desired mi-
croarchitectural features [9]. In stack reuse distance model-
ing, works both by Jiang et al. and by Chilimbi and Ding
use statistical models to extend per-thread stack reuse dis-
tance measures to estimate the behavior of shared-cache sys-
tems [7, 6]. Sampling has also been studied for “time” reuse
distance analysis (while stack reuse distance counts distinct
addresses accessed between two references to the same ad-
dress, time reuse distance only measures the total number of
accesses, whether distinct or repeated) [1, 2]. Our approach
differs from previous efforts by using statistical sampling
to measure actual stack reuse distances for shared-memory
multicore systems, and also by integrating reuse distance
analysis with communication analysis to target scalability
concerns more directly.

2. MULTICORE REUSE DISTANCE
ANALYSIS

Reuse distance is a popular architecture-independent met-
ric that measures data locality in programs; a single run of
reuse distance analysis suffices to model all possible memory
hierarchies. It operates by using a stack to track the depth
of accessed memory addresses in LRU order [12]. However,
in its traditional form, reuse distance analysis only consid-
ers references from a single stream. This is not sufficient to
model the behavior of multithreaded programs, as it ignores
the possibility of interference caused by other threads; this

interference can impact, or even dominate, the performance
of a parallel program. The nature of this inter-core interfer-
ence is largely dependent on whether cores share caches or
have private caches.

Consider the behavior of a multicore system with pri-
vate caches. Reuse distances are a measure of locality, with
shorter distances being more likely to represent cache hits,
and longer distances less so. However, if a thread accesses a
location and then a second thread writes the same location,
the first thread will experience a miss when it next accesses
the location, irrespective of the reuse distance. Similarly, if
two threads share a cache, then a thread can experience a
cache hit even if it never accessed a location before, provided
the other thread accessed the location earlier.

Schuff et al. present a multicore-aware model of reuse dis-
tance analysis that accounts for these inter-thread interac-
tions during measurement [14]. For shared cache model-
ing, all threads share a single reuse stack in a straightfor-
ward manner. Modeling private caches is more subtle. Each
thread has its own reuse stack. In a real cache, when a block
is evicted due to an invalidation, it leaves a “hole” that can
be filled in by the next block fetched into the cache; similarly,
each thread tracks the holes in its private reuse stack left by
invalidations. If a block from below the hole (or a never-
before-seen block) is accessed, the hole is filled in. A new
hole is placed at the prior location of the accessed block.
This ensures that blocks do not decrease in depth unless
they are accessed. If the hole is filled in by a newly-accessed
block, the hole can be removed.

These approaches to handling private and shared caches
effectively model both the constructive and destructive in-
terference experienced by multithreaded programs at the
cost of analysis efficiency. In general, reuse distance anal-
ysis is a high overhead analysis technique; the problem is
exacerbated due to the inter-thread interactions modeled by
the multicore-aware analysis. In fact, this close coupling
precludes the exploitation of parallelism.

2.1 Sampled, parallel analysis
One possible solution to the problem of analysis perfor-

mance is to perform re-use distance sampling. Rather than
tracking the reuse distance of every access, the analysis
will instead randomly sample addresses from the reference
stream and collect reuse distances only for the sampled ad-
dresses. If the sampling is performed infrequently enough,
the majority of the analysis will be spent waiting for the
next sample to be selected (at low overhead)—this is the
fast mode of operation. When a sample is selected, each
thread need merely count how many accesses to distinct ad-
dresses are performed until that address is reused (allowing
the use of hash-sets rather than stacks to track the reuse
distance)—this is the analysis mode.

An added attraction of the sampled analysis is that it
lends itself to parallelization. While the analysis is in fast
mode, each thread is simply counting references until the
next sample. As this is a purely local operation, this mode
can be readily parallelized, and its performance is con-
strained only by the parallelism of the profiled application.
While in analysis mode, parallelism can be obtained because
threads only need to synchronize when a sampled address is
reused or an address accessed by one thread is invalidated by
another. We can gain additional parallelism by exploiting
a relaxed consistency model: reuse distances are not signif-



Table 1: Accuracy, slowdown (relative to uninstru-
mented code), and fraction of references analyzed
for sampled histograms

Benchmark Samples Acc. Slwdn. %Refs

applu 141814 98.6% 20.2 8.1%
CG 2335 95.9% 26.8 22.9%
ferret 9804 97.1% 24.5 6.8%

icantly affected by delaying the propagation of an invalida-
tion until the next synchronization point [13], reducing the
frequency of synchronization between threads.

We implemented both the full multicore reuse distance
analysis and a parallel, sampled analysis, using PIN [10] to
instrument our target applications. Table 1 shows the accu-
racy of the sampled analysis compared to the full analysis
for a selection of benchmarks from the NAS, SpecOMP and
Parsec suites. The sampled analysis took one sample every
one million references, on average. The accuracy represents
the similarity of the reuse distance histograms generated by
the sampled and full analyses. This is determined by nor-
malizing the histograms from full and sampled analyses to
make each histogram bin represent the fraction of references
in the given range of reuse distances, and then summing up
the absolute difference between the two histograms at each
bin to get a cumulative error value from 0% to 200% (called
E). The accuracy is then computed as 1 − E

2 . The slow-
down column gives the slowdown of the sampled analysis
relative to the uninstrumented application. %Refs gives the
percentage of references seen by the sampled analysis while
in analysis mode. We see that the sampled analysis is both
highly accurate and reasonably fast. Detailed analysis shows
that sampling analysis is (on the average) 177x faster than
full analysis, with benefits from the use of fast mode, intel-
ligent parallelization (e.g., synchronization reduction, priva-
tization of data structures), and because sampling enables
the use of hash sets rather than trees for analysis.

3. COMMUNICATION ANALYSIS
Although the details of communication performance bot-

tlenecks are typically considered to be intimately connected
to the implementations of specific architectures and inter-
connects, communication itself most often arises from in-
teractions between different threads. Thus, architecture-
independent analysis of a program execution can also high-
light inter-thread interactions as sources of potential com-
munication bottlenecks.

To study these interactions, we have designed a tool that
processes an execution trace generated by Simics or Pin and
tracks data addresses that are touched by more than one
thread. Every load or store is monitored according to the
thread that triggered it; additionally, every store of an ad-
dress by one thread followed (at any point in the future
execution) by a load or store of that same address by some
other thread is marked as a communication event. Every
data memory reference is thus turned into a 5-tuple with
the following information: data address, thread, PC, source
thread, source PC. The source fields are only relevant on
communication events.

The tool then allows various visualizations of the commu-
nication pattern. Figure 1 shows how data is partitioned
among threads in the SpecOMP benchmark equake. Fig-
ure 1(a) splits a data region among threads (shown in difer-

(a) Partitioning by first touch

(b) Partitioning by access frequency

Figure 1: Data partitioning among 4 threads in
SpecOMP benchmark quake

ent colors) based on first-touch. In contrast, Figure 1(b)
partitions the same data according to access frequency: the
thread that accesses a given address most frequently is said
to be the owner of that piece of data. While first-touch
splits the data evenly and predictably, it is not consistent
with the actual data access frequency. First-touch is com-
monly used in NUMA systems for data allocation, with some
systems supporting page-level migration to account for vari-
ations during execution [8]. Such coarse-grained migration,
however, will not compensate for the fine-grained variations
in access frequency implied by these figures.

3.1 Sampled communication analysis
The full communication analysis tool relies on memory

traces from every thread. These logs can be very large,
and processing them to generate communication profiles is
time consuming. As a result, applying communication anal-
ysis tool to larger data sets is infeasible. Unfortunately,
unlike reuse distance analysis, it is unclear how to apply
sampling techniques to communication analysis. Communi-
cation analysis relies on turning a stream of memory refer-
ences into a stream of tuples that associates each memory
reference with the previous “owner” of the memory loca-
tion. It is apparent that sampling from the tuple stream can
provide useful communication information. Unfortunately,
the chief cost of communication analysis is in generating
the tuple stream from memory traces; rather than applying
sampling at this downstream point in the analysis, we must
apply it earlier.

There are several possible sampling methods that may be
profitable. One option is to sample in space rather than time.
Such an analysis would sample from the accessed memory
locations (rather than sampling from memory references)
and track all accesses to those locations. This may produce
accurate results under the assumption that nearby memory
locations have similar communication characteristics. An
alternate approach is to use “on-off” sampling, where the
full analysis is run during sampled intervals of the program.
This allows us to precisely capture communication during
the period we analyze at the cost of losing all information
during other periods; provided the program runs for long



enough, and our choice of “on” periods is unbiased, we may
still be able to generate accurate results. As a final alterna-
tive, we can use static analysis to (conservatively) identify
which addresses are involved in communication, and apply
the analysis only to references to those addresses, ignoring
the remainder.

4. APPLICATIONS

4.1 Reuse distance analysis

4.1.1 PC selection
One application of reuse distance analysis is determining

which portions of a program contribute most to poor locality
and assisting the programmer in making improvements [2,
4, 11]. This requires identifying which PCs are responsible
for the bulk of misses suffered by a program.

Suppose we would like to concentrate our optimization
effort on a small number of PCs. For example, the top N
PCs that are responsible for the misses at a particular cache
size C. This can be easily achieved by using multicore reuse
distance analysis: we perform a single run of the analysis,
and for each memory access record both the stack depth of
the reuse and the PC that performed the access. We can
then select only the PCs that incur reuses of depth greater
than C (and hence would be misses if the application were
executed on a machine with caches of size C). By ranking
the PCs according to the number of predicted misses they
cause, we can select the top PCs that are responsible for
the bulk of misses in a program, narrowing the focus of our
optimization efforts.

This simple version of PC selection can be extended to
provide additional information that programmers can use
when optimizing their programs. For example, by including
information about which code is executed between a use
and its reuse, an analysis can guide refactoring [3]. This
information can easily be recorded during a run of multicore
reuse distance analysis.

4.1.2 Modeling hierarchies of private/shared caches
A natural extension of multicore-aware reuse distance

analysis is to model the behavior of modern cache hierar-
chies, which often consist of private L1 caches and shared
L2 caches. This means that short reuse-distance accesses
should be treated as if their data reside in private caches,
while longer-distance accesses should be modeled as if they
are manipulating a shared cache. Unfortunately, the thresh-
old at which an access has a “short” reuse distance versus
a “long” reuse distance is dependent on the size of the L1
cache, and hence entails architecture dependence.

However, it may be possible to simultaneously model all
possible private/shared cache hierarchies. This can be done
by performing both a private-cache analysis and a shared-
cache analysis concurrently during a profiling run. To de-
termine the miss rate for a particular cache hierarchy, the
results of the private cache run are consulted first to deter-
mine if a particular access misses in the private, L1 cache. If
it does, then the stack distance of the access in the shared-
cache profile is used to determine if the access misses in the
shared, L2 cache.

While this approach does not directly model the behavior
of a private/shared hierarchy, it will accurately determine
the miss rate in the L1 (up to the accuracy of the underlying

private-cache analysis). The miss rate in the L2 may not be
accurately modeled due to the differences between inclusive
and exclusive L2 caches, and the exact operation of the L2
when an address is evicted from the L1. However, because
the L1 cache is typically much smaller than the L2, these
effects should be minimal, and the miss rate estimate should
be reasonable.

4.2 Communication analysis
Communication analysis is useful in distributed-memory

environments such as distributed shared memory and MPI,
because its definition as data produced by one thread and
consumed by another thread places a lower bound on the
amount of data that must be transmitted between threads.
In systems where the memory is truly shared this may not
matter because the cost of accessing data (e.g. in main mem-
ory) may be the same regardless of which thread has written
it; however, with distributed memory the data must always
at least be transmitted from the writer to the reader, either
explicitly (as in MPI) or implicitly (as in software DSM).
A program’s communication behavior then becomes a use-
ful indication of performance or resource usage in such an
environment.

4.3 Combined
As standalone analyses, both communication analysis and

multicore-aware reuse distance analysis are useful tools for
optimizing programs and architectures. However, they tar-
get different aspects of the locality and communication prob-
lem: reuse distance analysis tells a programmer which data is
likely to trigger cache misses, while communication analysis
tells a programmer which thread is likely to trigger com-
munication. To fully understand the behavior of a pro-
gram, it is necessary to combine this information. For exam-
ple, if communication analysis identifies several threads as
communicating amongst one another, reuse distance analy-
sis can identify whether this communication is a problem
or not. If the communication triggers frequent invalida-
tions, then it should be addressed; but if the memory lo-
cations have long reuse distances, they would rarely be in
cache and the communication would not trigger invalida-
tions. By combining the two analyses, we can provide an
architecture-independent analysis that allows programmers
to gain deeper insight into the locality, sharing, and com-
munication properties of their programs than using either
analysis alone.

4.3.1 Modeling memory systems
An important factor in the performance of an applica-

tion is the behavior of the memory system, as excessive
cache misses increase latency and cause bandwidth satura-
tion. Bandwidth is not only shared between cores access-
ing main memory, it is also needed for cache-to-cache data
transfers. Because cache misses and data traffic have a sig-
nificant impact on performance, it is crucial to be able to
model these behaviors.

Currently, the only ways to study application memory sys-
tem performance are through the use of performance coun-
ters, which can track cache misses and bus transactions, or
through simulation. Unfortunately, both approaches are tied
to a specific architecture and provide little insight into the
behavior of other memory system configurations. We pro-
pose a two-level modeling approach. First, we will charac-



terize an application according to its inherent, architecture-
independent behavior. Second, we will feed this information
to architecture-specific memory system models, predicting
the behavior of the application on various architectures with-
out running the application on each system.

Multicore-aware reuse distance analysis can predict the
miss ratio for any cache size, including systems with pri-
vate L1 caches and shared last-level caches. However, we
must also account for the effects of cache-to-cache trans-
fers. Unfortunately, reuse distance analysis does not provide
sufficient information to estimate the incidence of cache-to-
cache transfers. Communication analysis exposes the com-
munication behavior of threads, but an abstract message
sent between two threads does not necessitate a cache-to-
cache transfer. Combining the two analyses provides the
solution. If we record the current stack distance of a lo-
cation that is communicated between two threads, we can
determine if the communication triggers a cache-to-cache
transfer (which will be the case if the stack distance in the
source thread is shallow enough so that the data will be in
cache) or if it merely requires access to main memory. Note
that even though determining the effects of communication
requires knowledge of the memory system organization, the
data needed for that decision (stack distances and commu-
nication patterns) is inherent to the application, and not
dependent on the architecture. Combining multicore-aware
reuse distance analysis and communication analysis allows
a single architecture-independent run to collect data that
can be used to predict both cache misses and bandwidth
utilization for any memory system.

5. CONCLUSIONS
Architecture-independent performance metrics allow a

program to be characterized and studied without appeal-
ing to a particular hardware configuration. We propose two
such analyses to capture the behavior of multithreaded pro-
grams. Multicore-aware reuse distance analysis provides a
measure of locality that can be used to predict cache be-
havior, even in the presence of constructive and destruc-
tive cache effects, while communication analysis exposes the
sharing and communication behavior of threads in a shared-
memory program. We argue that these metrics can be used
to enable a number of optimization and performance analy-
sis tasks.

Ultimately, architecture-independent metrics for paral-
lel programs enable an attractive approach to performance
modeling and analysis. Rather than analyzing the behavior
of a particular program on a particular architecture, pro-
grams can be analyzed once using architecture-independent
metrics. The results of these metrics can then be used by
architecture-specific performance models to predict a pro-
gram’s behavior. By separating the collection of metrics
from the development of performance models for an archi-
tecture, the amount of time required to analyze the behav-
ior of multiple programs across multiple architectures can
be significantly reduced.
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