
An Event-driven Architecture for MPI Libraries

Supratik Majumder and Scott Rixner

Rice University
Houston, TX 77005

{supratik,rixner}@rice.edu

Vijay S. Pai

Purdue University
West Lafayette, IN 47907

vpai@purdue.edu

Abstract

Existing MPI libraries couple the progress of message
transmission or reception with library invocations by the
user application. Such coupling allows for simplicity of
implementation, but may increase communication latency
and waste CPU resources. This paper proposes the addi-
tion of an event-driven communication thread to make mes-
saging progress in the library separately from the applica-
tion thread, thus decoupling communication progress from
library invocations by the application. The asynchronous
event-thread allows messages to be sent and received con-
currently with application execution. This technique dra-
matically improves the responsiveness of the library to net-
work communication. Microbenchmark results show that
the time spent waiting for non-blocking receives to complete
can be significantly reduced or even eliminated entirely. Ap-
plication performance as measured by the NAS benchmarks
shows an average of 4.5% performance improvement, with
a peak improvement of 9.2%.

1 Introduction

The Message Passing Interface (MPI) standard includes
primitives for both blocking and non-blocking communica-
tion [10]. The latter are designed to enable overlap between
an application’s communication and computation, with the
initiation of a message send or receive followed by inde-
pendent computation. However, almost all existing MPI li-
braries (and all freely-available ones) only make progress
on the transmission or reception of messages when the ap-
plication calls into the library. Thus, if a message could not
be sent to or received from another node at the time of the
first non-blocking send or receive call, the actual commu-
nication could be arbitrarily delayed waiting for the appli-
cation to re-enter the library through an MPI call. At such

This work is supported in part by a donation from AMD and by theDepart-
ment of Energy under Contract Nos. 03891-001-99-4G, 74837-001-03 49
and/or 86192-001-04 49 from Los Alamos National Laboratory.

points, a progress engine attempts to make as much progress
on each pending message as possible, but no communica-
tion progress takes place between library invocations.

Such MPI implementations lead to several problems.
First, communication performance is tied to the rate at
which an application makes MPI library calls. If the ap-
plication calls the library too frequently, the progress en-
gine wastes resources determining that there are no pend-
ing messages. If the application calls the library too rarely,
communication latency increases, as no progress is made
in between calls. Furthermore, such library implementa-
tions technically violate the MPI standard which stipulates
that communication progress must be made even if no other
calls are made by the sender or receiver to complete the send
or receive, respectively1.

This paper proposes the addition of an event-driven com-
munication thread to actually make messaging progress in
an MPI library, independent of whether or not the applica-
tion layer enters the library again after the initial send orre-
ceive call. An asynchronous event thread allows messages
to be sent and received concurrently with application execu-
tion. This can improve the responsiveness of an MPI library
and improve application performance by decreasing mes-
sage latency and increasing message bandwidth. An imple-
mentation of the event-driven communication model on top
of Los Alamos MPI (LA-MPI) using TCP-based commu-
nication shows the value of this technique. In addition to
providing low cost, portability, and well-studied reliability
mechanisms, TCP is also tied in with efficient event notifi-
cation mechanisms in standard operating systems (such as
select andpoll in all UNIX implementations,epoll
in Linux, andkqueue in FreeBSD). This event-driven ap-
proach to MPI communication enables up to 9.2% perfor-

1The MPI 1.1 progress rule specifically states: “A call toMPI WAIT
that completes a receive will eventually terminate and return if a matching
send has been started, unless the send is satisfied by anotherreceive. In
particular, if the matching send is non-blocking, then the receive should
complete even if no call is executed by the sender to completethe send.
Similarly, a call toMPI WAIT that completes a send will eventually return
if a matching receive has been started, unless the receive issatisfied by
another send, and even if no call is executed to complete the receive.” [10]

1

mance improvement on 5 NAS benchmarks tested, with an
average of 4.5% performance improvement.

This event-driven approach is an efficient technique for
handling asynchronous I/O, such as network communica-
tion, and is commonly used in the network server do-
main [5, 21]. Network servers must efficiently handle a
large number of incoming requests and outgoing responses
to maximize the number of simultaneous clients they can
support. To do so, they only execute event handlers in
response to network events—available buffering for out-
going connections or available data on incoming connec-
tions. This approach enables network servers to handle
large amounts of network traffic and, as this paper shows,
can also apply to MPI libraries.

The rest of this paper proceeds as follows. Section 2
presents the architecture of the LA-MPI library, a repre-
sentative MPI library that can use TCP as a message layer.
Section 3 then shows how LA-MPI was modified to use an
asynchronous event-driven communication thread and Sec-
tion 4 presents the performance improvements achieved by
these modifications. Section 5 then discusses related work
and Section 6 concludes the paper.

2 Architecture of Los Alamos MPI Library

The Los Alamos MPI (LA-MPI) library is a high-
performance, end-to-end, failure-tolerant MPI library de-
veloped at the Los Alamos National Laboratory [15]. The
LA-MPI version 1.4.5 library implementation consists of
three almost independent layers: theMPI Interface Layer,
theMemory and Message Layer(MML), and theSend and
Receive Layer(SRL). The interface layer provides the API
for the MPI standard version 1.2 specification. The MML
provides memory management, storage of message status
information and support for concurrent and heterogeneous
network interfaces. Finally, the SRL interfaces with the spe-
cific network hardware in the system and is responsible for
sending and receiving messages over the network. LA-MPI
supports a range of systems with varied interconnect hard-
ware using independent SRL modules for each type of net-
work.

All communication within LA-MPI is controlled by the
progress engine, which is the mechanism responsible for
making progress on pending requests in the library. The
progress engine mainly belongs to the MML with helper
routines in the SRL. The MML maintains a list of all pend-
ing messages—incomplete sends and receives—currently
active in the library. Conceptually, the progress engine
loops over all of these incomplete requests and attempts to
send or receive as much of each message as possible. In
order to make progress on each request, the engine invokes
the appropriate send or receive routine within the SRL to ac-
cess the operating system and/or the networking hardware.
Most calls into the interface layer of the library also invoke

the progress engine. On a blocking MPI call, the progress
engine continues to loop through all pending requests un-
til the specified request is completed and the blocking call
can return. In contrast, on a non-blocking MPI call, the
progress engine just loops through all of the pending re-
quests once and then returns regardless of the state of any
of the requests.

2.1 The TCP Path

Within the SRL, there are several differentpath implemen-
tations, corresponding to the supported network types. The
TCP path supports TCP message communication over Eth-
ernet using the socket interface to the operating system’s
network protocol stack. The TCP path utilizes events to
manage communication. An event is any change in the state
of the TCP sockets in use by the library. There are three
types of events: read events, write events, and exception
events. A read event occurs when there is incoming data on
a socket, regardless of whether it is a connection request or
a message itself. A write event occurs when there is space
available in a socket for additional data to be sent. An ex-
ception event occurs when an exception condition occurs on
the socket. Currently, the only exception event supported by
the socket interface to the TCP/IP protocol stack is the no-
tification of out-of-band data. The current LA-MPI library
does not use any out-of-band communication, so exception
events are only included to support possible future exten-
sions.

The TCP path, like other paths supported by LA-MPI,
provides its own progress routine which gets invoked by
the library’s main progress engine. The TCP path main-
tains three separate lists, one for each type of event, to keep
track of all the events of interest. At various points of ex-
ecution, the TCP path pushes these events of interest on to
the respective event lists. In addition, callback routinesare
registered for each event. The progress mechanism of the
TCP path uses these lists to inform the operating system
that it would like to be notified when these events occur.
Theselect system call is used for this purpose.Select
takes three event arrays (read, write, and exception) and a
timeout period as arguments. If any of the events of interest
occurs,select returns with three new arrays of events of
interest. If no events have occurred,select blocks un-
til either an event of interest occurs or the timeout period
is exceeded. In LA-MPI, these calls toselect are non-
blocking and return immediately. If any events of interest
have occurred, they are each handled in turn by the appro-
priate callback routines and finally control is returned to
the progress engine. The progress engine attempts to make
progress on all active paths in the library in turn, and thus
could invoke the TCP progress routine several times in the
process of satisfying a blocking MPI request.

2

for A completea blocking
rendezvous receive

Remaining fragments
of message A arrive

RTS

CTS for A
sent back to
peer

arrives from peer
First fragment of A

MPI_Recv(A)

CTS

Receive requestApplication posts

Figure 1. The rendezvous message transfer protocol at a LA-MPI receiver node

For communication in the TCP path, the library uses at
least one bidirectional TCP connection between each pair
of communicating nodes. These connections are not es-
tablished during initialization. Rather, they are established
only when there is an actual send request to a node that
does not already have an open connection to the sending
node. Once a connection is established, it remains open for
future communication, unless an error on the socket causes
the operating system to destroy it. In that case, a new con-
nection would be established for future messages between
those nodes.

2.2 Sending Messages

The TCP path starts the send process on a message by first
fragmenting it—the first fragment is 16 KB in size, and all
subsequent fragments are 64 KB. Each message fragment
includes a header to allow the receiving node to identify
the fragment. The fragments, along with their headers, are
placed on a send queue within the library prior to being sent
over the network. A write event for the appropriate con-
nection is then added to the write event list to indicate that
there is data in the send queue waiting to be sent. The MPI
specification does not strictly require fragmentation, butit
helps to limit the necessary buffering on the receiving node.
If the message is small enough (< 16 KB), it is sent as a
single fragment directly to the destination. This is theea-
gerprotocol, as the sender does not request permission from
the receiver to send the message. Larger messages are sent
using therendezvousprotocol which involves a request-to-
send (RTS) and clear-to-send (CTS) message exchange be-
tween the peers before the sender can send the whole mes-
sage to the receiver. Figure 1 shows the steps of thisren-
dezvousprotocol at the receiver node. The sender initi-
ates this protocol by sending the first fragment of a multi-
fragment message, which also serves as the RTS message,
to the receiver. As depicted in the figure, the receiver re-
ceives this message and if the corresponding MPI receive
has already been posted, sends a CTS message back to the
sender. The sender, on receiving the CTS message, sends
the remaining fragments to the receiver to complete the send

operation. On the receiver node, the reception of these frag-
ments completes the receive operation.

When the TCP progress routine processes the write event
(because there is space available in the socket buffer for
writing), the first fragment is sent from the send queue and
the write event is removed from the event list. This first
fragment serves as a RTS message to the receiver. The
sender then adds a read event for this connection to wait
for the CTS message, which the receiver sends when it is
ready to receive the rest of the message. Note that the use of
RTS/CTS is not strictly necessary in TCP for flow control,
as the socket buffer provides implicit flow control. If the
receiver is not ready to receive the message, the receiver’s
socket buffer will fill up, and TCP flow control will stop
the sender from sending further data. However, TCP does
not allow the receiver to reorder messages within the same
connection, so the library relies on RTS/CTS messages to
achieve this. Note that TCP does allow the receiver to re-
order messages from different senders trivially since they
are using different connections. Once theclear-to-sendhas
been received, the write event is placed back on the write
event list until all fragments in the send queue have been
sent. Depending on the size of the message and the size of
the socket buffer, this could require numerous invocations
of the appropriate callback routine.

The TCP path marks a send request as complete when
all the fragments of that send message have been enqueued
on the socket buffer. Since TCP guarantees delivery of the
message to the receiver, the TCP path of LA-MPI itself does
not provide any additional reliability features, instead rely-
ing purely on the reliability mechanisms provided by the
TCP protocol. Completion of a send request signals the li-
brary to release all of the resources held for this message
and to notify the application appropriately.

2.3 Receiving Messages

Message receives also use network events, as in the send
case. However, there is an additional complication in that
received messages can either be expected or unexpected,
since the application may or may not have notified the li-
brary that it is waiting for a particular message (posteda

3

receive) before that message arrives. To handle this, the
MML maintains two independent queues, theUnexpected
Receives Queue(URQ) and thePosted Receives Queue
(PRQ).

The receive handler of the TCP path is invoked through
the progress engine of the library whenever there is incom-
ing data on any of the established connections. All estab-
lished connections are always active on the read event queue
since messages may arrive at any time. The receive handler
first reads the header of the incoming fragment from the
socket buffer. Then, the messages on the PRQ are checked
to find a match for the incoming fragment. If a match is
found, the receive routine directly copies the data from the
socket buffer into the user buffer posted by the application.

If the receive has not yet been posted, buffer space for the
unexpected fragment is allocated and the fragment is added
to the URQ. Subsequent receives posted by the application
are first matched against fragments in the URQ before be-
ing posted on the PRQ. The library buffer used to allocate
unexpected receives is freed when a match is found in the
URQ and the data from the buffer has been copied into the
user buffer. At that point, the fragment is also removed from
the URQ.

For RTS messages, the receiver does not send a CTS to
the sender until the corresponding receive has been posted
by the application. So, if a match for an incoming fragment
is found on the PRQ, the CTS is sent back immediately.
Otherwise, the CTS is delayed until the application posts a
receive that matches in the URQ. This ensures that at most
one fragment of any unexpected message gets buffered in
the library at a node. Again, this is only necessary to allow
the receiver to easily reorder messages from a single sender,
since TCP already provides flow control for unread mes-
sages. The receive message operation is completed when all
the fragments of a message have been received and copied
into the user buffer.

3 Event-driven MPI Communication

The LA-MPI library implementation executes the progress
engine every time the application calls into the library, and
only when the application calls into the library. Therefore,
the execution of the progress engine is not related to the oc-
currence of network events. This can be wasteful if library
calls occur more often than network events. In that case,
the entire progress engine must execute despite the fact that
there is nothing for it to do. The use of callback routines
mitigates this cost to some extent, as these handlers will
only be called when events do occur. However, every time
the progress engine is executed, it incurs the overhead of
calling into the operating system to check for events. On
the other hand, since the progress engine is only invoked
when the application calls into the library, messages cannot
be sent or received until that time. This requires a deli-

cate balancing act for the application programmer. If the
library is called too frequently, resources will be wasted,
and if the library is called too rarely, then messages will
not be transferred promptly leading to unnecessary latency
increases. From the programmer’s perspective, the applica-
tion should only be required to access the library when mes-
saging functions are required, and not to allow the library to
make progress on in-flight messages. Furthermore, the MPI
standard specifies that the library should make progress on
all pending messages (send/receive) regardless of whether
the application is executing library code or not.

Since network events occur asynchronously to applica-
tion library calls, it does not make sense to handle these
events only during library invocations. This paper pro-
poses a novel technique to handle network events within an
MPI library autonomously—an event-driven progress en-
gine. An event-driven progress engine decouples execu-
tion of the progress engine from library invocation and thus
is able to handle asynchronous network events more effi-
ciently. Such an event-driven progress engine also satisfies
the MPI standard’s stipulation that the MPI library should
be able to progress pending requests at all times, regardless
of whether or not the application is executing library code.

3.1 Event-driven Architecture

An event-driven software architecture consists of event-
handling routines which only execute in response to events.
Such an event-driven application, in its simplest form, con-
sists of one tight loop, known as the event loop. The event
loop’s main function is to detect events and dispatch the ap-
propriate event handler when they occur. In the absence of
an event, the event loop simply blocks waiting for one. In
that case, the occurrence of an event wakes up the event
loop, which then dispatches the appropriate event handler.

For example, a web server is an inherently event-driven
application. A web server’s main function is to accept
and respond to client requests, which arrive over the net-
work. So, a web server only executes code when network
events occur—either the arrival of a request or the avail-
ability of resources to send responses. In modern web
servers, the event loop utilizes one of the operating system
event-notification facilities, such asselect, kqueue, or
epoll, to detect network events [12, 19]. These facili-
ties are centered around a system call that returns a list of
pending events. If desired, the system call can block until
such an event occurs. So, the event loop of a web server
makes one of these blocking system calls to wait for an
event. As soon as a client request arrives at the web server
or resources free up to send a response to a previous request
(both of which cause a network event), the operating system
wakes up the event loop by returning from the system call.
The event loop then dispatches the appropriate handler to
respond to the event. When the event handler completes, it

4

returns control to the event loop, which either dispatches the
next event handler if there were multiple events pending, or
it blocks waiting for the next event.

An event-driven software architecture provides an effi-
cient mechanism to deal with the latency and asynchrony
inherent in network communication. This design eliminates
the need for the application to query repeatedly about the
occurrence of an event, making it possible for the applica-
tion to instead accomplish other useful tasks while it waits
for the event to occur. An added advantage is the scalabil-
ity it offers in terms of the number of network events it can
simultaneously monitor without undue performance degra-
dation.

The LA-MPI library uses the notion of read and write
events to wait for the availability of resources to send and
receive message fragments, respectively. However, the oc-
currence of these events does not automatically trigger the
library to send or receive message fragments. Instead, the
library checks for these events only through its progress en-
gine. Even after an interesting event has occurred, the li-
brary might not execute the handler until the next invocation
of the library by the application, and subsequent execution
of the progress engine. Thus, the LA-MPI library architec-
ture is not strictly event-driven, since the tasks of sending or
receiving fragments are not performed directly in response
to the corresponding events.

3.2 An Event-driven MPI Library

An MPI application performs two main tasks: computa-
tion and communication. These tasks place different de-
mands on the system, as computation is driven by the con-
trol flow of the program and communication is driven by
asynchronous network events. An MPI library provides
such applications with two important services. First, the
functional interface of the library provides the application
a mechanism to transfer messages among nodes. Second,
the progress engine of the library performs the communi-
cation tasks that actually transfer those messages. Almost
all existing MPI libraries combine these tasks by executing
the progress engine only when the application invokes the
functional interface of the library. This favors the computa-
tion portion of the application, as communication progress
is only made when the application explicitly yields control
to the MPI library, rather than when network events actually
occur. This is a reasonable trade-off as it would be difficult
to efficiently handle the computation portion of the applica-
tion in an event-driven manner. However, the communica-
tion tasks of the MPI library are quite similar to the tasks of
a web server and match the event-driven architecture model
quite well.

This paper presents LA-MPI-ED, an event-driven ver-
sion of the TCP path of LA-MPI. LA-MPI-ED separates the
computation and communication tasks of an MPI applica-

tion. This enables the communication portion of the library
to use the event-driven model and the functional interface
of the library to work synchronously with the computation
portion of the application. The two tasks of the library occur
in separate threads. The main thread (MT) executes the ap-
plication and the functional interface of the library, as nor-
mal. The event thread (ET) executes the communication
tasks of the library in an event-driven fashion. When send-
ing messages, the main thread notifies the event thread that
there is a new message to be sent, and the event thread sends
it. When receiving messages, the event thread accepts the
message and then notifies the main thread that it has arrived
when the application invokes the library to receive the mes-
sage. In this manner, the most efficient software model can
be used for both components of the MPI application. This
also facilitates greater concurrency between executing the
MPI application and executing the progress engine of the
MPI library.

The MT provides the synchronous aspects of an MPI
library and executes the core of the library, including the
application linked against the library. Thus, the MT is re-
sponsible for performing library tasks such as initialization,
keeping track of pending messages, posting messages to be
sent or received, etc. The event-driven progress engine of
the library executes in the context of the ET and thus, can
run concurrently and independent of the MT. The ET, by
virtue of executing the progress engine, is responsible for
handling all the asynchronous network events which affect
the state of the library. The MT spawns the ET during li-
brary initialization and both threads exist until the end of
execution of the MPI application. The ET monitors all con-
nected sockets for incoming data (read events) and the sock-
ets over which messages are being sent for available buffer
space (write events) and is thus ultimately responsible for
the transmission and reception of messages whenever re-
sources become available. The threads communicate with
each other through shared queues of data structures. Us-
ing light-weight threads, such as POSIX threads (pthreads),
minimizes the overhead of thread switching and protected
accesses to the shared data. The programming effort of
sharing data between the two threads is also minimized
since pthreads execute in the same application address space
by design. The event-driven library can also support multi-
threaded MPI applications with one event thread catering
to all the threads of the application. This paper discusses
the support for multi-threaded applications in the libraryin
greater detail in Section 3.4.

Conceptually, the MT runs continuously until the appli-
cation makes a blocking MPI function call likeMPI Send,
MPI Recvor MPI Wait. A blocking MPI call signifies that
the application needs to wait for the library to accomplish a
certain task before it proceeds. In this case, the MT blocks
on a condition variable using a pthread library call until

5

the pending request has been completed. The ET then gets
scheduled by the thread scheduler for execution and wakes
up the MT upon completion of the request. In contrast, the
ET runs only when there is a network event of interest to
the library. In the absence of an interesting event the ET is
kept blocked on theselect system call. The occurrence
of an event causes the operating system to wake up the ET,
which then invokes the appropriate event handler to process
pending messages. In practice, if both threads have work to
be done, the thread scheduler must allow them to share the
system’s resources. In that case, the responsiveness of the
ET can be increased by running it at a higher priority than
the MT.

The TCP path of LA-MPI already utilizes three event
lists—read, write and except—to form the components of a
blockingselect call to retrieve events from the operating
system. Thus, the notion of events in the TCP path comple-
ments the event-driven architecture of the progress engine
very nicely. The event-driven approach in the design of the
progress engine also provides an efficient means to exploit
even more the event-centric design of the TCP path. Sep-
arating the handling of network events into the ET incurs
minimal alterations to the structure and functionality of the
LA-MPI TCP path. It still performs the tasks such as con-
nection establishment, message transmission and message
reception as before. The only difference with the event-
driven progress engine is that execution of these tasks is
now split between the MT and the ET, based on whether the
task is performed synchronously by the library or happens
as a result of an asynchronous network event. The event-
driven nature of the progress engine significantly alters only
the way the library interacts with the network. Thus, instead
of having the progress engine poll for events every time it is
invoked, the progress engine waits for the occurrence of an
event and processes it immediately.

LA-MPI-ED, like LA-MPI, utilizes events to send or re-
ceive message fragments. However, as explained in Sec-
tion 3.1, LA-MPI is not event-driven since the execution
of the library is governed by the MPI application, and not
by the occurrence of these events. On the other hand, in
LA-MPI-ED, all message communication in the library is
performed by the ET in direct (and immediate) response to
such events. This makes communication in LA-MPI-ED
truly event-driven in nature. The computation tasks of the
application are still performed synchronously, and indepen-
dent to communication, by the MT of the library.

The design of LA-MPI-ED relies heavily on the notion
of events in the TCP path. Since the other paths within
LA-MPI do not utilize network events, they do not easily
fit into the event model. Messages transferred using other
paths in the library currently revert to using the MT for all
tasks, including communication. To enable specialized net-
working hardware, such as Quadrics or Myrinet, to utilize

the event-driven model, those paths within LA-MPI, pos-
sibly including device firmware, would need to be rewrit-
ten to use network events for communication. While this is
certainly possible and would likely improve communication
performance, it is beyond the scope of this paper.

3.3 Example

Figure 2 illustrates the operational differences between the
two library versions—LA-MPI and LA-MPI-ED. Subfigure
(i) shows a simple MPI request sequence executing at a par-
ticular node. Subfigure (ii) shows the progression of this
MPI request sequence in both versions of the library. For
ease of understanding, the progression is shown on 3 dif-
ferent timelines. The topmost timeline shows the sequence
of steps performed by the MPI application and events that
are external to the library (such as arrival of the RTS mes-
sage). The middle and the bottom timeline show the steps
as they occur in LA-MPI and LA-MPI-ED respectively. As
shown in the topmost timeline, the MPI application posts
a rendezvousreceive request for message A at time-stepa.
Then the application performs some computation tasks be-
fore invoking the MPI wait call at time-stepc to wait for the
arrival of message A. At some time-stepb, betweena and
c, the node receives the RTS message from the peer node in
the form of the first fragment of the posted receive.

As mentioned in Section 3.2, the event-driven progress
engine only alters the way in which the library interacts
with and responds to network events. The behavior of LA-
MPI and LA-MPI-ED differs when the RTS message arrives
from the peer node. The LA-MPI library takes no action in
response to the RTS message arriving at the node until time-
stepd (= c), when the application makes the MPIWait call.
At that point, the RTS is received and the CTS message sent
to the peer node. After this, the library spins in the progress
engine as it waits for the rest of the fragments of message
A to arrive. The entire message is received at this node by
time-stepe. This completes the receive request along with
the wait call and control is returned to the application.

With an event-driven asynchronous progress engine, the
LA-MPI-ED library starts to process the RTS message im-
mediately upon receiving it and sends the CTS back to the
peer node at time-stepf (< c, d). Note that at this time,
the application (and MT) is still busy with its computation
tasks, but the ET is free to handle incoming data. This en-
ables the ET to perform communication concurrently with
the computation being performed by the MT. Finally, at
time-stepg, the receive of message A is completed and the
ET goes back to waiting for the next network event. The MT
meanwhile finishes its computation and makes the wait call
at time-steph (= c, d; > g). Since by this time the receive
of message A is already complete, the wait call returns back
to the application immediately. As a consequence, there is

6

completes and control

and control

returns to application

c

g h

(ii)

d e

returns to application

First fragment

arrives from peer

node

Application starts

wait for pending

Receive

request

completes

Wait / receive request

to peer node

LA−MPI

MPI Application

LA−MPI−ED

Reduction in wait−time

with LA−MPI−ED over

LA−MPI

to peer node

CTS sent

Application posts

non−blocking

rendezvous receive

b

CTS sent
f

a

RTS Arrives

MPI_Irecv(A) MPI_Wait(A)

(i)

MPI_Irecv (A)

(computation)

MPI_Wait (A)

Computation

receive−request A

Remaining fragments

of A arrive

Remaining fragments

of A arrive

Wait completes

Figure 2. A simple MPI request sequence and its progression in LA-MPI and LA-MPI-ED libraries

a significant reduction in effective wait-time with the LA-
MPI-ED library as pointed out in the figure.

Even though the example only illustrates the operational
distinctions between the two versions of the library in per-
forming a non-blocking receive, non-blocking sends also
exhibit almost identical behavior. With the event-driven
progress engine, the ET can continue sending fragments of
a message without requiring the completion of the compu-
tation tasks of the MPI application.

The example presented in Figure 2 is relatively simple
and is only intended to convey a hint about the behavior of
an event-driven asynchronous progress engine. In practice,
in LA-MPI-ED when computation and communication pro-
ceed concurrently, the net time spent for the computation
task would increase because the execution of the progress
engine would take away compute cycles from the applica-
tion. As a result, the application would make the wait call
later, so time-steph would shift further right along the time-
line. However, as long as the overlap of computation and
communication more than offsets the increase in effective
computation time, this technique provides a performance
benefit over the original LA-MPI library.

3.4 Performance Issues of LA-MPI-ED

The event-driven LA-MPI library effectively satisfies the
objective of separating the synchronous and asynchronous
aspects of the library and handling them independently. An

event-driven progress engine is much more responsive to
network events and can much more efficiently transmit and
receive messages. As an added advantage the progress en-
gine thread, which runs independent of and concurrent to
the core of the library, is now able to process pending re-
quests even in the absence of library invocations by the ap-
plication.

The thread library does impose a limited amount of over-
head for thread switching and thread management tasks.
However, for a well designed MPI application, the improve-
ment in performance due to the concurrency of computation
and communication should offset this overhead. It also re-
lieves the programmer from having to worry about enabling
the library to make progress on outstanding messages.

MPI applications can also be very sensitive to message
latency, especially for the really short messages which are
frequently used to implement communication barriers. The
extra latency introduced by thread switching on the send
path can thus potentially hamper application performance.
The event-driven LA-MPI library tries to mitigate this short-
coming of its threaded design by a simple optimization—
the MT, after posting a message to be send, optimistically
tries to send it, as well. If the socket buffer has enough space
for the message, the message can be sent immediately with-
out the use of the progress engine. This ensures that when-
ever there is available space on the socket buffer, which will
be the case for most single fragment messages, the message

7

will be sent directly without incurring any thread switching
overhead. The event thread will be used to send messages
only when there is not enough space in the socket buffer
to send the first fragment immediately, or for subsequent
fragments of a multi-fragment message. This optimization
effectively makes the send side performance of the event-
driven and non-event-driven libraries equivalent.

The addition of an asynchronous event-management
thread in the event-driven LA-MPI library does not alter
the original library’s support for multi-threaded MPI appli-
cations. Since different threads of a multi-threaded MPI
application can be executing the progress engine simulta-
neously, the correct handling of message communication
by the library requires special consideration. The original
LA-MPI library ensures correctness by allowing access to
message queues only one thread at a time. Thus, multi-
ple threads executing the progress engine iterate through
the lists of pending requests one after the other, which en-
sures their consistency across the different threads. Further-
more, progress on any particular message request is not tied
to the thread that initiated this request. Hence, all pend-
ing requests in the library are progressed whenever any ap-
plication thread invokes the progress engine. If there are
multiple threads waiting for the completion of different re-
quests simultaneously, the completion of any particular re-
quest only causes the corresponding thread to return to the
application, while the other threads continue to wait in the
progress engine. The event-driven LA-MPI library provides
identical behavior for threaded MPI applications by having
one event thread to progress requests initiated by all appli-
cation threads. The only case which requires special con-
sideration is when multiple application threads are sleeping
during blocking MPI calls. Since the event thread does not
know in advance which request a particular thread is wait-
ing on, all sleeping threads are woken up by the event thread
on completion of a request. Each thread re-checks the status
of the request immediately after being woken up, and thus,
only the thread whose request was completed resumes exe-
cution; the remaining threads return to sleep until the event
thread awakens them the next time, repeating the process.

In addition to improving the efficiency and responsive-
ness of communication, an independent messaging thread
can also improve the functionality of the MPI library. The
event thread could also be used for such tasks as run-time
performance monitoring, statistics gathering, and improved
run-time library services. Furthermore, in the event of a
dropped TCP connection, the ET could also reestablish the
connection faster and further improve messaging perfor-
mance.

4 Evaluation

This section presents an evaluation of the LA-MPI-ED li-
brary and compares it against the current version of the

Figure 3. Comparision of ping-latency between
LA-MPI and LA-MPI-ED

LA-MPI library. The evaluation is performed using both
microbenchmarks and application benchmarks. The mi-
crobenchmarks measure the ping latency, the one-way com-
munication bandwidth of the MPI library, and the ability of
the MPI library to overlap communication with computa-
tion, all on Gigabit Ethernet. The application benchmarks
are from the NAS set of parallel benchmarks and reflect
real-world MPI computations [1].

The evaluation is performed on a FreeBSD worksta-
tion cluster of up to 9 processing nodes. Each worksta-
tion has one AMD Athlon XP 2800+ processor, 1GB DDR
SDRAM, and a 64bit/66Mhz PCI bus. Each of the nodes
also has at least 20GB of hard drive capacity (none of
the benchmarks are disk intensive). Each workstation also
has one Intel Pro/1000 Gigabit Ethernet network adapter.
The nodes are connected to each other through one 24-
port Gigabit Ethernet switch. Each node runs an unmodi-
fied FreeBSD-4.7 operating system with various socket and
networking parameters tuned in order to provide maximum
TCP/IP performance. LA-MPI-ED uses the default POSIX
thread library implementation in FreeBSD (libc r).

4.1 Microbenchmark Performance

The ping latency of messages between two communicating
MPI nodes is measured by a simple benchmark involving
2 nodes—node 0 sends a message of fixed size to node 1
and then receives the same message back from node 1. The
ping latency between these two nodes is then half the total
time elapsed in this two-way message transfer. The bench-
mark only uses the default blocking versions of sends and
receives for all MPI communication. Figure 3 shows the
ping latency for 4 B–32 KB messages, for both LA-MPI-
ED and LA-MPI libraries. The figure shows that the ping
latency of messages with LA-MPI-ED is always slightly
higher than with LA-MPI. The difference in ping latencies
between the two libraries is nearly constant at 15µsec for

8

all message sizes between 4-byte to 16 KB; this difference
stems from thread-switching overheads in LA-MPI-ED. Al-
though this is a 23% increase for 4-byte message latency, it
is only 5% for 16 KB messages. Beyond 16 KB, the ping
latency for both library versions more than doubles as the
messaging protocol shifts fromeagerto rendezvous(Sec-
tion 2.2) and the number of message fragments increases
from one to two. Again, because of thread-switching over-
head on the receive path, the ping latency in LA-MPI-ED is
slightly higher than in LA-MPI (approximately 42µsec or
6% difference).

A separate microbenchmark is used to measure the uni-
directional bandwidth of the MPI library using blocking
sends and receives. This benchmark consists of one node
sending a fixed size message to a receiver a given num-
ber of times; the receiver simply receives the messages.
The sender and receiver use the default blocking versions
of MPI send and receive routines, respectively. The band-
width is measured by dividing the total number of bytes sent
by the time elapsed to complete a given number of mes-
sages. Figure 4 shows the message bandwidths obtained on
this benchmark by the LA-MPI and LA-MPI-ED libraries
for message sizes ranging from 1 KB to 2 MB. Each data
point is obtained by iterating over 1000 messages. LA-
MPI always outperforms LA-MPI-ED, with performance
gaps up to 22% at 1 KB messages and 19% at 32 KB mes-
sages (when the rendezvous protocol is first invoked), but
with smaller gaps for larger messages within each sending
protocol. Besides the thread library overhead, LA-MPI-ED
suffers from a greater number of unexpected message re-
ceives, each of which results in extra memory copies. The
LA-MPI library, which executes its progress engine syn-
chronously with calls into the library, first posts the mes-
sage receive and then reads the incoming message by in-
voking the progress engine. Even if the message arrives
earlier, the library would only read the message from the
socket at this time, and hence encounters all expected re-
ceives, which are read directly into the posted buffer. On
the other hand, the LA-MPI-ED library receives a message
as soon as it arrives up on the socket and thus invariably
ends up receiving the message into a library buffer before
the actual application buffer has been posted. The simplic-
ity of the benchmark causes this drop in performance as a
side effect to the increased responsiveness of LA-MPI-ED.
Under the rendezvous protocol, only the first fragment of
any message is received unexpected. Thus, the performance
difference between LA-MPI and LA-MPI-ED drops with
message size and is only 2% for 2 MB messages.

Figure 5 shows the CPU utilization, of both the sender
and receiver, for the unidirectional bandwidth test with the
LA-MPI and LA-MPI-ED libraries, respectively. The base
LA-MPI library performs blocking MPI library calls by
constantly spinning in the progress engine, repeatedly iter-

ating over all pending requests and trying to make progress
on all active paths in the library. This results in 100% CPU
utilization with any MPI application as the progress engine
remains active whenever the library (or application) is not
performing other tasks. However, for comparing the effec-
tive CPU utilization (time spent by CPU doing useful work)
of LA-MPI and LA-MPI-ED, the base library is modified
suitably to block on theselect system call while it waits
for the completion of an incomplete request. Note that in
general such a modification compromises library correct-
ness, since it assumes that there is only one pending request
active in the library at any given time. However, for the
simple bandwidth benchmark employed here, this assump-
tion is valid, and does not affect library functionality in any
way. Figure 5 shows that the sending side, with either ver-
sion of the library, has almost equal CPU utilization across
the range of message sizes shown. At 32 KB message size,
the sender’s CPU utilization with the LA-MPI-ED library is
about 4% below that of the LA-MPI library. At this message
size therendezvousprotocol comes into effect. The receiver
receives the first fragment as an unexpected fragment and
delays the transmission of the CTS until the correspond-
ing receive is posted. This causes lower CPU utilization
on the sending side with the event-driven library as the li-
brary waits for the CTS message before proceeding with the
remaining fragments. With increasing message sizes, the
relative fraction of this additional waiting-time diminishes,
resulting in converging CPU utilizations of the sender with
either versions of the library. For the receiver, at small mes-
sage sizes the thread context-switch overhead is substantial
and results in considerably higher CPU utilization with the
event-driven library. However, the effect of this additional
overhead is largely marginalized with therendezvouspro-
tocol, and consequently for message sizes of 32 KB and
beyond the CPU utilization plots of the two libraries are al-
most coincident.

Figures 6 and 8 show the same bandwidth comparison
between LA-MPI and LA-MPI-ED for the cases where all
receives are expected and unexpected, respectively. Both
of these graphs show that the performance of the two li-
brary versions is almost matched except at small message
sizes. When message size is small, the thread library over-
head is a higher percentage of the total communication time
and causes a 8–10% drop in bandwidth performance with
LA-MPI-ED. A comparison of the graphs also reveals that
unexpected receives can cause up to 20% drop in library
bandwidth as compared to expected receives. Figure 7 and 9
show the comparison of CPU utilization between LA-MPI
and LA-MPI-ED, on both the sender and the receiver, for
the above two variants of the basic unidirectional bandwidth
test. These figures also show that the thread library over-
head manifests itself most clearly for small sized messages
at the receiving node. With increasing message sizes, the

9

Figure 4. Comparision of unidirectional message
bandwidth between LA-MPI and LA-MPI-ED

Figure 5. Comparision of CPU utilization for uni-
directional bandwidth test between LA-MPI and
LA-MPI-ED

Figure 6. Comparision of unidirectional mes-
sage bandwidth between LA-MPI and LA-MPI-
ED with all expected messages at the receiver

Figure 7. Comparision of CPU utilization for uni-
directional bandwidth test (all expected receives)
between LA-MPI and LA-MPI-ED

Figure 8. Comparision of unidirectional mes-
sage bandwidth between LA-MPI and LA-MPI-
ED with all unexpected messages at the receiver

Figure 9. Comparision of CPU utilization for
unidirectional bandwidth test (all unexpected re-
ceives) between LA-MPI and LA-MPI-ED

10

 MPI_Send(A);

while (i++ < NUM_TESTS)
{
 MPI_Irecv(A);

 /* computation */

 MPI_Wait(A);
 MPI_Send(B);
}

Receiver
i = 0;
while (i++ < NUM_TESTS)
{

 MPI_Recv(B);
}

Sender
i = 0;

Figure 10. Pseudo Code for the microbenchmark
used to evaluate the advantages of LA-MPI-ED
over LA-MPI

Figure 11. Percentage improvement in wait-time
of the microbenchmark with the event-driven LA-
MPI library

impact of this overhead on CPU utilization is increasingly
reduced, and LA-MPI and LA-MPI-ED achieve almost the
same CPU utilizations.

One of the main advantages of the event-driven LA-MPI
library is its ability to overlap computation and commu-
nication, both of which are essential to real MPI appli-
cations. However, this advantage cannot be seen in mi-
crobenchmarks that only perform communication. Fig-
ure 10 presents pseudo code for a microbenchmark that
highlights the benefits of LA-MPI-ED by carefully balanc-
ing computation and communication. The microbenchmark
involves two MPI nodes—one sender and one receiver. The
sender posts a message of user specified size to be sent
to the receiver with the blocking MPI send message rou-
tine. The receiver posts the corresponding receive through
a non-blocking MPI receive message call and then proceeds
to perform computation. The amount of computation per-
formed is again user specified and is in the form of inte-
ger increments. After the computation is completed, the
receiver waits for the receive request to complete through
the MPI wait call. Finally, it sends a 4 byte message back to
the sender which allows the sender and the receiver to syn-
chronize their iterations through the microbenchmark loop.
Statistics are collected at runtime from the library at the re-
ceiver node. Specifically, it collects (i) the duration of the
wait call (wait-time), and (ii) total time from the receive
being posted to the completion of wait for that particular
receive request (total-receive-time). Both the wait-timeand
total-receive-time values are averaged over the number of
iterations of the microbenchmark.

Figure 11 shows the percentage change in wait-time with
increasing message sizes for LA-MPI-ED over LA-MPI.
The three plots shown in the graph are obtained for different
computation amounts of 1 million increments (1M), 10 mil-
lion increments (10M) and 100 million increments (100M).
The 1M plot shows a degradation for small message sizes

because the wire latency for these messages is itself compa-
rable to the computation times. Thus, the message arrives
at the receiver too late to effectively overlap with compu-
tation, exposing the thread switching overhead. However,
with increasing message sizes, the communication time in-
creases and message receive is able to overlap with compu-
tation more. This results in the reduction in wait-time for
message sizes beyond 8 KB for LA-MPI-ED over LA-MPI.
This trend continues until message size reaches 64 KB, at
which point the overlap between communication and com-
putation is maximized. Beyond this, the communication
time is larger than the computation time, so the overlap be-
tween them gets limited to the amount of computation and
the plot flattens itself out. For the 10M and 100M plots,
the computation time is large enough to overlap almost all
of the communication time. This results in almost com-
plete elimination of the wait-times with LA-MPI-ED. How-
ever, even for the 10M plot there is a drop in the percent-
age improvement at the highest message size (2 MB). At
this message size the communication time exceeds the com-
putation time and hence the percentage wait-time improve-
ment of LA-MPI-ED over LA-MPI falls. The 100M plot
would show the same characteristic but for a much larger
message, whose communication time would be comparable
to the time required for 100 million increments.

Figure 12 shows the percentage improvement in the
total-receive-time of LA-MPI-ED over LA-MPI, again as a
function of message sizes. The three plots in the graph again
correspond to varying amounts of computation. Again, as
in Figure 11, the benefits of the event-driven library be-
come apparent only when the amount of computation is
high enough to overlap the communication time effectively.
For a particular amount of computation, the percentage im-
provement of total-receive-time increases with increasing
message sizes. However, with sufficiently large messages,
the communication time eventually becomes a magnitude

11

Figure 12. Percentage improvement in total-
receive-time of the microbenchmark with the
event-driven LA-MPI library

Figure 13. Execution times of NAS benchmarks
with LA-MPI-ED relative to that with LA-MPI
(scaled to 1)

greater than the computation time causing the plot to flatten
out. This is seen for the 1M plot beyond 256 KB message
size. The other plots do not show this behavior because the
range of message sizes is never large enough to reach this
stage. The 100M plot shows significantly lower improve-
ment than the others as the computation time dominates and
even a large reduction in the wait-time only has a very lim-
ited effect on the total-receive-time.

4.2 NAS Benchmarks

The NAS parallel benchmarks (NPB) is a set of 8 bench-
marks, comprised of five application kernels and three sim-
ulated computation fluid dynamics (CFD) applications [1,
2]. This paper uses five benchmarks from the NPB version
2.2 suite—BT, SP, LU, IS and MG—to provide a thorough
comparison of the event-driven LA-MPI library against the
original version of the library. Among the benchmarks, the
first three are simulated CFD applications and the latter two
are smaller application kernels. The NPB version 2.2 suite
supports up to three pre-compiled data-sets, A, B and C (in
increasing order of size), for each benchmark. These bench-
marks are run on a 4, 8 or 9 node cluster, depending upon
whether the benchmark requires a squared or power-of-2
number of nodes. The 4-node experiments are all run with
the mid-size data-set (B). The 8-node (or 9) experiments are
run for both the B data-set and the larger C data-set.

Figure 13 compares the performance of the five NAS
benchmarks achieved with LA-MPI-ED against LA-MPI.
Each bar of the graph corresponds to one particular config-
uration of the benchmark and is named accordingly—the
first part of name gives the benchmark name, the middle
part conveys the data-set size used for that particular exper-
iment and the last part conveys the number of participating
MPI nodes for the experiment. Each bar of the graph depicts
the normalized execution time of the corresponding bench-
mark using LA-MPI-ED relative to LA-MPI. Thus, a bar of

length less than 1.0 indicates a performance gain with the
event-driven library. Each data point for the graph is gen-
erated by averaging the execution times over 10 runs of the
experiment.

Figure 13 shows that the benchmarks obtain varying de-
grees of performance improvement with the LA-MPI-ED
library over LA-MPI. Each of the 15 benchmark configu-
rations show an improvement with LA-MPI-ED over LA-
MPI, ranging from 0.5% for BT.B.4 to 9.2% for LU.C.8,
yielding an average speedup of 4.5%. Overall, the IS
benchmark is the best performer with the event-driven li-
brary, showing an average speedup of 6.2%. The other 4
benchmarks achieve average speedups in the range of 2.3–
5.6%. Among each individual benchmark, for the same
data-set size, running the experiment over a larger cluster
improves the relative performance of LA-MPI-ED to LA-
MPI. Moving to a larger cluster for the same benchmark
(with a certain data-set size) increases the communication
component of the application with respect to the computa-
tion performed at any given node in the cluster. Thus, the
event-driven library, with its more efficient communication
mechanism, reaps greater benefits. On the other hand, go-
ing to a bigger data-set for the same benchmark, increases
the computation component of the application more than the
communication component. Thus, as shown in Figure 13,
the relative performance improvement of LA-MPI-ED com-
pared to LA-MPI sometimes increases and sometimes de-
creases when moving to the bigger data-set, depending on
the particular application.

The results in Section 4.1 show that the benefits of the
event-driven library depend on the amount of overlap be-
tween computation and communication. IS achieves greater
benefits than the other NAS codes because its communi-
cation consists primarily of very large messages which are
pre-posted before the benchmark goes into a computation
phase, enabling effective overlap. While the other bench-

12

marks do not overlap communication with computation as
much, they still do so to varying degrees, yielding notice-
able speedups.

4.3 Discussion

The results of the above experiments indicate several sit-
uations under which the LA-MPI-ED library either out-
performs or underperforms the base LA-MPI. LA-MPI-ED
uses an event management thread to improve library respon-
siveness to incoming messages and opportunities to send
messages. This structure leads to performance penalties
from thread switching overheads and from a greater num-
ber of unexpected receives, a negative side effect of the in-
creased responsiveness. These penalties were evident in the
ping and bandwidth microbenchmarks, but were not sub-
stantial for sufficiently large messages. Further, these penal-
ties were overcome by the opportunities to reduce message
waiting time and thus improve performance in all the other
tested codes, as the other codes used non-blocking receives
and were structured to overlap communication and compu-
tation. Both asynchronous messaging and overlap of com-
putation with communication have become standard tools
of high-performanceprogrammers; thus, the positive effects
of LA-MPI-ED on the performance of the NAS benchmarks
should be representative of the benefits of LA-MPI-ED in
other well-tuned applications.

The performance bottlenecks in LA-MPI-ED, such as
thread switching overhead and greater number of unex-
pected receives, may also be addressed by architectural im-
provements. For example, thread switching overhead be-
tween a small number of threads is largely eliminated in
processors that include multiple thread contexts for hyper-
threading or simultaneous multithreading [9, 18]. Although
these systems would still see some inter-thread communica-
tion overheads, those should be low as the communication
is only of metadata in shared memory regions that may be
cached. Additionally, the problem of extra memory copies
on unexpected receives can be resolved through the use of
network interface cards that attempt to buffer data until an
actual receive is posted. Such systems could then dispatch
data directly from the network interface to the application
buffer when needed. These and other architectural advances
help to mitigate the downside of LA-MPI-ED while still
maintaining the basic performance advantage of this library:
using increased responsiveness to overlap computation and
communication more effectively.

The current implementation of LA-MPI-ED only allows
for TCP-based communication, as only TCP/IP is well-
integrated with event notification in standard operating sys-
tems. In contrast, a more common approach to high-
performance cluster computing is through bypassing the
operating system and using specialized networks such as
Myrinet or Quadrics [4, 22]. While these specialized net-

works once outperformed Ethernet, with the advent of 1–10
Gbps Ethernet, it is no longer clear that there is a signif-
icant performance benefit in network speed. Specialized
user-level networks offer other advantages, such as reduc-
ing copies in data transmission, avoiding interrupts, and of-
floading message protocol processing onto a network inter-
face. However, many of these same techniques can be in-
tegrated into commodity networks using TCP and Ethernet.
For example, recent work looks to offload all or part of TCP
processing onto an Ethernet network interface, reducing
acknowledgment-related interrupts as a side-effect [3, 17].
Further, various techniques are available to eliminate ex-
traneous copies for sends and posted receives [8, 20, 23].
Copy avoidance could be provided for unexpected receives
through network interface support (as described above),
while preposting library buffers to the operating system in
conjunction with a system such as Fast Sockets would al-
low the reduction of one extra copy from the socket buffer
to the library buffers [23]. When used together with the
event-driven communication model described in this paper,
copy avoidance, interrupt avoidance, and TCP offloading
could help to make TCP a low-cost, portable, and reliable
alternative to specialized networks.

5 Related Work

The success of specialized networks and user level mes-
saging protocols has led to very little successful research
in using TCP as a high-performance messaging protocol.
One such research work has been TCP splintering, which
focusses on the limitations of TCP as a communication
medium in a cluster environment, especially those aris-
ing out of TCP’s congestion control and flow control poli-
cies [14]. Other research in high-performance TCP has
shown significant performance gains with optimizations
such as zero-copy send/receive and offloading specific tasks
like checksumming onto the NIC [11]. In practice, conges-
tion control and flow control policies, however unnecessary
in a cluster environment, become indispensable for reliable
MPI communication. Utilizing TCP’s inherent reliability
mechanisms turn out to be less error prone and more effi-
cient than providing the same at the library level. TCP/IP
optimizations such as zero-copy send/receive or checksum
offloading remain complementary to the MPI library en-
hancements proposed in this paper and can only help to
further improve the performance of TCP based MPI com-
munication.

Commonly used and publicly available MPI libraries,
such as MPICH and LAM/MPI both use some form of a
synchronous progress engine to handle pending requests [6,
16, 24]. Both of these libraries also support TCP messag-
ing over Ethernet. The progress engine for TCP in both of
these libraries uses aselect-based polling approach sim-
ilar to the technique employed in the original LA-MPI de-

13

sign. Hence these libraries also suffer from the same set of
drawbacks that were identified with LA-MPI—specifically,
progression of pending requests is dependent on library in-
vocation rather than on the occurrence of corresponding
network events. None of the research efforts on MPI com-
munication using TCP utilizes the well-known techniques
in the network server domain of event-driven software ar-
chitecture and threading, despite the fact that most recent
releases of common MPI libraries do incorporate the notion
of events for messaging over TCP.

A significant amount of research has been done in ex-
ploiting task concurrency in applications using threads.
This technique has been particularly popular for applica-
tions involving significant asynchronous activity such as
web-servers. Threading however, imposes overheads such
as cache and TLB misses, scheduling overheads and lock
contention. The overheads start becoming particularly se-
vere as the number of threads increases. Popular web
servers such as Microsoft’s IIS and Apache circumvent this
problem by using a size bounded thread pool from which
threads are utilized to process requests [13]. When the max-
imum number of threads are already in use, the server re-
jects additional requests. Since LA-MPI-ED uses only two
threads, it is free from these scalability problems associated
with a thread-based approach.

Event-driven software architecture is another technique
that has been favored by web servers to maximize con-
currency and handle the asynchronous behavior inherent
in the application. This approach also avoids the scala-
bility issues involved with threading. Several web-servers
have been developed using the event-driven model to han-
dle asynchronous network events and maximize web-server
throughput. For example, Flash employs non-blocking
threads not only to handle network events, but also to sat-
isfy filesystem requests [21]. The Harvest web cache has
an architecture very similar to to Flash but employs just one
thread since most of its workload can be kept in main mem-
ory, and thus file accesses are ensured not to block [5, 7].

6 Conclusions

MPI libraries which tie communication progress to library
invocations are inefficient and require the application to
balance library invocations with messaging responsiveness.
The addition of an event-driven communication thread en-
ables communication progress to occur in response to net-
work events, rather than when the MPI library is invoked.
This paper evaluates an event-driven communication thread
that utilizes TCP network events delivered by the operat-
ing system to process messages efficiently. This threaded
implementation of the TCP path of the LA-MPI library dra-
matically improves communication responsiveness, signifi-
cantly reducing the wait time for non-blocking receives, and
even entirely eliminating it in certain cases. This resultsin

an average of 4.5% performance improvement on 5 NAS
benchmarks, with a peak improvement of 9.2%. Overlap-
ping communication with computation is one step towards
making TCP a competitive high-performance MPI commu-
nications protocol. The further addition of copy reduction
and interrupt avoidance should make TCP over Ethernet a
viable alternative to specialized networks for MPI commu-
nication.

References

[1] D. H. Bailey, J. T. Barton, D. S. Browning, R. L. Carter,
L. Dagum, R. A. Fatoohi, P. O. Frederickson, T. A. Lasinki,
R. S. Schreiber, H. D. Simon, V. Venkatakrishnam, and S. K.
Weeratunga. The NAS Parallel Benchmarks.International
Journal of Supercomputer Applications, 5(3):63–73, 1991.

[2] D. H. Bailey, T. Harris, W. Saphir, R. van der Wi-
jngaart, A. Woo, and M. Yarrow. The NAS Paral-
lel Benchmarks 2.0. NASA Technical Report NAS-
95-020, NASA Ames Research Center, December 1995.
http://www.nas.nasa.gov/Software/NPB/.

[3] H. Bilic, Y. Birk, I. Chirashnya, and Z. Machulsky. Deferred
Segmentation for Wire-Speed Transmission of Large TCP
Frames over Standard GbE Networks. InHot Interconnects
IX, pages 81–85, Aug. 2001.

[4] N. J. Boden, D. Cohen, R. E. Felderman, A. E. Kulawik,
C. L. Seitz, J. N. Seizovic, and W. Su. Myrinet: A Gigabit-
per-second Local Area Network.IEEE MICRO, Feb 1995.

[5] C. M. Bowman, P. B. Danzig, D. R. Hardy, U. Manber, and
M. F. Schwartz. The Harvest information discovery and ac-
cess system.Computer Networks and ISDN Systems, 28(1–
2):119–125, 1995.

[6] G. Burns, R. Daoud, and J. Vaigl. LAM: An Open Cluster
Environment for MPI. InProceedings of Supercomputing
Symposium, pages 379–386, 1994.

[7] A. Chankhunthod, P. B. Danzig, C. Neerdaels, M. F.
Schwartz, and K. J. Worrel. A heirarchial Internet object
cache. InProceedings of the 1996 USENIX Annual Techni-
cal Conference, pages 153–163, Jan 1996.

[8] P. Druschel and L. L. Peterson. Fbufs: A High-Bandwidth
Cross-Domain Transfer Facility. InProceedings of the 14th
Symposium on Operating Systems Principles (SOSP-14),
pages 189–202, Dec. 1993.

[9] S. J. Eggers, J. S. Emer, H. M. Levy, J. L. Lo, R. L. Stam, and
D. M. Tullsen. Simultaneous Multithreading: A Platform for
Next-Generation Processors.IEEE Micro, 17(5), 1997.

[10] T. M. P. I. Forum. MPI: A Message-Passing Interface Stan-
dard. International Journal of Supercomputer Applications,
8(3/4), 1994.

[11] A. Gallatin, J. Chase, and K. Yocum. Trapeze/IP: TCP/IPat
near-gigabit speeds. InProceedings of 1999 USENIX Tech-
nical Conference, pages 109–120, June 1999.

[12] L. Gammo, T. Brecht, A. Shukla, and D. Pariag. Comparing
and Evaluating epoll, select, and poll Event Mechanisms. In
Proceedings of the Ottawa Linux Symposium, July 2004.

[13] D. Gaudet. Apache Performance Notes.
http://httpd.apache.org/docs/misc/perf-tuning.html.

14

[14] P. E. Gilfeather and A. B. Maccabe. Making TCP Viable as
a High Performance Computing Protocol. InProceedings of
the LACSI Symposium, 2002.

[15] R. L. Graham, S.-E. Choi, D. J. Daniel, N. N. Desai, R. G.
Minnich, C. E. Rasmussen, L. D. Risinger, and M. W.
Sukalski. A Network-Failure-Tolerant Message-Passing
System for Terascacle Clusters. InProceedings of the 16th
Annual ACM International Conference on Supercomputing,
June 2002.

[16] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A high-
performance, portable implementation of the MPI message
passing interface standard.Parallel Computing, 22(6):789–
828, Sept. 1996.

[17] Y. Hoskote, B. A. Bloechel, G. E. Dermer, V. Erraguntla,
D. Finan, J. Howard, D. Klowden, S. G. Narendra, G. Ruhl,
J. W. Tschanz, S. Vangal, V. Veeramachaneni, H. Wilson,
J. Xu, and N. Borkar. A TCP Offload Accelerator for 10
Gb/s Ethernet in 90-nm CMOS.IEEE Journal of Solid-State
Circuits, 38(11):1866–1875, Nov. 2003.

[18] K. Krewell. Intel’s Hyper-Threading Takes Off.Micropro-
cessor Report, 2002.

[19] J. Lemon. Kqueue: A generic and scalable event notifica-
tion facility. In Proceedings of the FREENIX Track: 2001
USENIX Annual Technical Conference, June 2001.

[20] E. Nahum, T. Barzilai, and D. Kandlur. Performance Issues
in WWW Servers. InProceedings of the SIGMETRICS Con-
ference on Measurement and Modeling of Computer Sys-
tems, pages 216–217, May 1999.

[21] V. S. Pai, P. Druschel, and W. Zwaenpoel. FLASH: An
Efficient and Portable Web Server. InProceedings of the
USENIX 1999 Annual Technical Conference, 1999.

[22] F. Petrini, W. Feng, A. Hoisie, S. Coll, and E. Frachtenberg.
The QUADRICS Network: High-Performance Clustering
Technology.IEEE MICRO, Jan 2002.

[23] S. H. Rodrigues, T. E. Anderson, and D. E. Culler. High-
Performance Local Area Communication With Fast Sockets.
In Proceedings of the 1997 USENIX Technical Conference,
pages 257–274, Jan. 1997.

[24] J. M. Squyres and A. Lumsdaine. A Component Archi-
tecture for LAM/MPI. In Proceedings, 10th European
PVM/MPI Users’ Group Meeting, number 2840 in Lecture
Notes in Computer Science, pages 379–387, Venice, Italy,
September / October 2003. Springer-Verlag.

15

