RSIM Reference Manual

Version 1.0

Vijay S. Pai
Parthasarathy Ranganathan
Sarita V. Adve

DEPT. OF ELECTRICAL AND COMPUTER ENGINEERING
RicE UNIVERSITY

6100 SouTH MAIN

HoustoN, TEXAS 77005

Email: rsim@ece.rice.edu
URL: http://www-ece.rice.edu/~rsim

TECHNICAL REPORT 9705

August 1997

(© Copyright by Vijay Sadananda Pai, Parthasarathy Ranganathan,
and Sarita Vikram Adve 1997

All Rights Reserved

Acknowledgments

We thank other past and present members of the RSIM group for their contributions. Hazim Abdel-Shafi
contributed parts of the memory system simulator code and documentation. Murthy Durbhakula provided
valuable support in setting up the RSIM distribution. Jonathan Hall worked on initial versions of the memory
system simulator. Tracy Harton supported our development effort over the last two years.

We are also grateful to the Rice Parallel Processing Testbed (RPPT) group. Significant parts of the
RSIM memory and network system are based on code from RPPT, a project led by Prof. J. R. Jump and
Prof. J. B. Sinclair and involving several graduate students.

The development of RSIM was funded in part by the National Science Foundation under Grant No.
CCR-9410457, CCR-9502500, CDA-9502791, and CDA-9617383, the Texas Advanced Technology Program
under Grant No. 003604016, and funds from Rice University. Vijay S. Pai is also supported by a Fannie and
John Hertz Foundation Fellowship.

Contents

1 Overview
1.1 Key features of simulated systems
1.2 Simulation technique L
1.3 Platforms supported L
1.4 Applications interface L
1.5 Future announcements and user feedback 0oL
1.6 Organization of this manual oo
I RSIM USER’S GUIDE
2 Installing RSIM
2.1 Unpacking the RSIM software distribution00 ..
2.2 Building the RSIM simulator
2.3 Building the RSIM applications library
2.4 Building applications ported to RSIM
2.4.1 Using the generic makefileo o o
2.4.2 Using ordinary UNIX command sequences
2.5 Statistics processing utilities oL oL Lo
3 Architectural Model
3.1 RSIM instruction set architecture
3.2 Processor microarchitecture
3.2.1 Pipelinestage details
3.2.2 Branch prediction
3.2.3 Processor memory unit Lo
3.2.4 Exception handling
3.3 RSIM memory and network systems
4 Configuring RSIM
4.1 Command line options
4.1.1 Processor parameters e
4.1.2 Memory unit parameters e
4.1.3 Cache parameters L
4.1.4 Approximate simulationmodels o Lo
4.1.5 Other architectural configuration parameters
4.1.6 Parameters related to simulation input/output 0L
4.1.7 Simulator control and debugging o o
4.2 Configuration file L
4.2.1 Overall system parameters.
4.2.2 Processor parameters L
4.2.3 Cache hierarchy parameters

v

LW N NN

[S4¢

—_
— O O WO o -1~

—_

12
12
13
15
15
18
19

CONTENTS

7

8

9

4.2.4 Bus parameters L e
4.2.5 Directory and memory parameters
4.2.6 Interconnection network parameters 0L
4.2.7 Queue sizes connecting memory and network modules
4.3 Compile-time parameters L
Porting Applications to RSIM
5.1 Process creation and shared memory modelo
5.2 RSIM applications library
5.3 Synchronization support for multiprocessor applications
5.4 Statistics collection
5.5 Performance tuning L L
5.6 Options to improve simulation speed
5.6.1 Moving data initialization offline oo oo oo
5.6.2 Avoiding memory system simulation00 o000
Statistics Collection and Debugging
6.1 Statistics collection
6.1.1 Overall performance statistics L oo Lo
6.1.2 Processor statistics
6.1.3 Cache, network, and memory statistics
6.2 Utilities to process statistics
6.2.1 The stats and pstats programs
6.2.2 The plotall Program ot v vt e e e
6.2.3 The statsmiss program
6.2.4 The MSHR program« ot v i it e e e
6.3 Debugging L
6.3.1 Support for debugging RSIMo
6.3.2 Debugging applications
IT RSIM DEVELOPER’S GUIDE
Overview of RSIM Implementation
Event-driven Simulation Library
8.1 Event-manipulation functionso
8.2 Semaphore functions L
8.3 Memory allocation functions
Initialization and Configuration Routines in RSIM
10 RSIM EVENT and the Out-of-order Execution Engine
10.1 Overview of RSIM_EVENT ottt e e
10.2 Instruction fetch and decode
10.3 Branch prediction L
10.4 Instruction issue
10.5 Instruction execution L
10.6 Completion L
10.7 Graduation L
10.8 Exception handling

10.9 Principal data structures L

30
30
31
32
33
33
34
34
34

39
41

43
43
45
45

46

vi CONTENTS

11 Processor Memory Unit 56
11.1 Adding new instructions to the memory unit00 oL 56
11.2 Address generationo 56
11.3 Issuing instructions to the memory hierarchy a7
11.4 Completing memory instructions in the memory hierarchy 59

12 Memory Hierarchy and Interconnection System Fundamentals 61
12.1 Fundamentals of memory system modules L 61
12.2 Memory system message data structure 63

12.2.1 The s.typefield 63
12.2.2 The req.type field 63
12.2.3 The s.replyfield 65
12.2.4 The s.nackst field 65
12.3 Memory system simulator initialization. 65
12.4 Deadlock avoidance L 66

13 Cache Hierarchy 67
13.1 Bringing in Messagest ui e e e e e e 67
13.2 Processing the cache pipelines 67
13.3 Processing L1 cache actions L 68

13.3.1 Handling REQUEST type o o i i e 68
13.3.2 Handling REPLY type 69
13.3.3 Handling COHE type 71
13.4 Processing L2 tag array accesses e e e 72
13.5 Processing L2 data array accesses oo 74
13.6 Cache initialization and statisticso 74
13.7 Discussion of cache coherence protocol implementation 74
13.8 Coalescing write buffero 75
13.9 Deadlock avoidance L 75

14 Directory and Memory Simulation 76
14.1 Obtaining a new or incomplete transaction to process 76
14.2 Processing incoming REQUESTS o e 77
14.3 Sending out COHE MESSAZES« o v v vt i e e 78
14.4 Processing incoming write-back and replacement messages 78
14.5 Processing other incoming COHE REPLYS 78

14.5.1 Handling positive acknowledgmentso 78
14.5.2 Handling negative acknowledgments o000 78
14.6 Deadlock avoidance L 79

15 System Interconnects 80
15.1 Node bus 80
15.2 Network interface modules 80
15.3 Multiprocessor interconnection network o oL 0oL 81
15.4 Deadlock avoidance L 82

16 Statistics and Debugging Support 83
16.1 Statistics L 83
16.2 Debugging Support 84

17 Implementation of predecode and unelf 85
17.1 The predecode utility 85

17.2 The unelf utility 85

CONTENTS vii

A RSIM Version 1.0 License Terms and Conditions 89

viil CONTENTS

Chapter 1

Overview

Simulation has emerged as an important method for evaluating new ideas in both uniprocessor and multi-
processor architecture. Compared to building real hardware, simulation provides at least two advantages.
First, it provides the flexibility to modify various architectural parameters and components and to analyze
the benefits of such modifications. Second, simulation allows for detailed statistics collection, providing a
better understanding of the tradeoffs involved and facilitating further performance tuning.

This document describes RSIM - the Rice Simulator for ILP Multiprocessors (Version 1.0). RSIM is
an execution-driven simulator primarily designed to study shared-memory multiprocessor architectures built
from state-of-the-art processors. Compared to other current publicly available shared-memory simulators,
the key advantage of RSIM is that it supports a processor model that aggressively exploits instruction-
level parallelism (ILP) and is more representative of current and near-future processors. Currently available
shared-memory simulators assume a much simpler processor model, and can exhibit significant inaccuracies
when used to study the behavior of shared-memory multiprocessors built from state-of-the-art ILP proces-
sors [14]. A cost of the increased accuracy and detail of RSIM is that it is slower than simulators that do
not model the processor.

We have used RSIM at Rice for our research in computer architecture [14, 15, 16, 17], as well as for un-
dergraduate and graduate architecture courses covering both uniprocessor and multiprocessor architectures.

1.1 Key features of simulated systems

RSIM provides many configuration parameters to allow the user to simulate a variety of shared-memory
multiprocessor and uniprocessor architectures. Key features supported by RSIM are:

Processor features:

e Multiple instruction issue

e Out-of-order (dynamic) scheduling

e Register renaming

e Static and dynamic branch prediction support

e Non-blocking loads and stores

e Speculative load execution before address disambiguation of previous stores

e Simple and optimized memory consistency implementations

Memory hierarchy features:
e Two-level cache hierarchy
e Multiported and pipelined L1 cache, pipelined L2 cache

e Multiple outstanding cache requests

2 CHAPTER 1. OVERVIEW

e Memory interleaving

e Software-controlled non-binding prefetching

Multiprocessor system features:
e CC-NUMA shared-memory system with directory-based cache-coherence protocol
e Support for MSI or MESI coherence protocols
e Support for sequential consistency, processor consistency, and release consistency

e Wormbhole-routed mesh network

RSIM models contention at all resources in the processor, caches, memory banks, processor-memory bus,
and network.

1.2 Simulation technique

RSIM interprets application executables. We chose to drive RSIM with application executables rather
than traces so that interaction between events of different processors during the simulation can affect the
course of the simulated execution. This allows more accurate modeling of the effects of contention and
synchronization in simulations of multiprocessors, and more accurate modeling of speculation in simulations
of multiprocessors and uniprocessors. We chose to interpret application executables rather than use direct
execution because modeling ILP processors accurately with direct execution is currently an open problem.

RSIM is a discrete event-driven simulator based on the YACSIM library [3, 8]. Many of the subsystems
within RSIM are activated as events only when they have work to perform. However, the processors and
caches are simulated using a single event that is scheduled for execution on every cycle, as these units are
likely to have activity on nearly every cycle. On every cycle, this event appropriately changes the state of
each processor’s pipelines and processes outstanding cache requests.

1.3 Platforms supported

The RSIM simulator is written in a modular fashion using C++4 and C to allow ease of extensibility and
portability. Currently, the simulator has been tested on:

e Convex Exemplar running HP-UX version 10
e SGI Power Challenge running IRIX 6.2
e SUN machines running Solaris 2.5 or above

Section 2.2 discusses the possibility of porting the simulator to other systems.
Requirements for application executables interpreted by RSIM are described in the next section.

1.4 Applications interface

RSIM simulates applications compiled and linked for SPARC V9/Solaris using ordinary SPARC compilers
and linkers, with the following exceptions.

First, although RSIM supports most important user-mode SPARC V9 instructions, there are a few unsup-
ported instructions. More specifically, all instructions generated by current C compilers for the UltraSPARC-1
or UltraSPARC-II with Solaris 2.5 or 2.6 are supported. Unsupported instructions that may be most impor-
tant on other SPARC systems include 64-bit integer register instructions and quadruple-precision floating-
point instructions.

Second, the system trap convention supported by RSIM differs from that of Solaris or any other operating
system. Therefore, standard libraries and functions that rely on such traps cannot be directly used. We
provide an RSIM applications library to support such commonly used libraries and functions; all applications

1.5. FUTURE ANNOUNCEMENTS AND USER FEEDBACK 3

must be linked with this library. Nevertheless, there are some unsupported traps and related functions (e.g.,
strftime), and our library has only been tested for application programs written in C. More details are
given in Chapter 5.

For faster processing and portability, the RSIM simulator actually interprets applications in an expanded,
loosely encoded instruction set format. A predecoder is provided to convert SPARC application executables
into this internal format, which is then fed into the simulator.

1.5 Future announcements and user feedback

We are currently engaged in various additions to the features supported by RSIM as well as improvements
in implementation organization and efficiency. Users interested in announcements on the current and future
releases of RSIM may send us email at rsim@ece.rice.edu. We also welcome feedback and contributions
for future releases at the above mailing address.

1.6 Organization of this manual

The remainder of this manual is split into two parts. Part I is the RSIM User’s Guide and provides
information of interest to all users of RSIM. Part II is the RSIM Developer’s Guide and provides information
about the implementation of RSIM for users interested in modifying RSIM. Part Il assumes the reader is
familiar with Part 1.

Within Part I, Chapter 2 describes how to obtain and install RSIM version 1.0. Chapter 3 explains the
architectural model simulated by RSIM. Chapter 4 explains how to configure RSIM to model the system
desired, including command line, configuration file, and compile-time options. Chapter 5 explains how to
port applications for simulation with RSIM. Chapter 6 describes the statistics collection and debugging
support provided by RSIM.

Within Part II, Chapter 7 gives an overview of the various subsystems in the RSIM implementation.
Chapter 8 explains the YACSIM event-driven simulation library functions used in RSIM. Chapter 9 de-
scribes the functions used for initializing and configuring RSIM. Chapter 10 gives an overview of the pro-
cessor out-of-order execution engine, along with the event that controls processor and cache simulation.
Chapter 11 describes the processor memory unit, which interfaces the processor pipelines with the memory
hierarchy. Chapter 12 explains the fundamentals of the memory hierarchy and interconnection system sim-
ulator provided by RSIM. Chapter 13 examines the cache hierarchy implementation. Chapter 14 explains
the implementation of the directory and memory module. Chapter 15 describes the interconnection systems
simulated in RSIM. Chapter 16 gives information about the statistics and debugging support provided by
RSIM. Chapter 17 describes the implementation of the predecode and unelf utilities.

CHAPTER 1. OVERVIEW

Part 1

RSIM USER’S GUIDE

Chapter 2

Installing RSIM

RSIM version 1.0 is available from http://www-ece.rice.edu/~rsim/dist.html at no cost with a non-
commercial license agreement (Appendix A reproduces the license terms and conditions). This chapter
describes how to install the software on the local system.

Section 2.1 describes how to unpack the software distribution on the local system. Section 2.2 explains
the steps to build the RSIM executable, as well as other executables needed to simulate applications with
RSIM. Section 2.3 describes the steps to build the RSIM applications library, which provides some of the
library functions needed for building applications to run under RSIM. Section 2.4 describes the steps to build
the sample applications provided with RSIM. Section 2.5 explains the requirements for using the statistics
processing utilities provided with RSIM.

2.1 Unpacking the RSIM software distribution

RSIM version 1.0 is available as a UNIX tar file rsim-1.0.tar (uncompressed format) or rsim-1.0.tar.gz
(compressed with gzip). Unpacking the file requires the UNIX tar utility. The compressed format also
requires the gunzip utility (available from the Free Software Foundation at http://wuw.gnu.org).

For the compressed format, first uncompress the file (some web browsers will uncompress the file auto-
matically) with:

prompt% gunzip rsim-1.0.tar.gz

This will create the file rsim-1.0.tar. Now unpack this file with:

prompt% tar -xf rsim-1.0.tar

This will produce a directory rsim-1.0, containing the following subdirectories:

apps Example applications ported to RSIM (including source, executable, and output files), the RSTM
applications library, header files, and generic application makefile

bin RSIM utilities for statistics processing
docs Documentation related to RSIM, including this manual
incl Header files for RSTM

inputs Sample configuration files for simulated systems, a Javascript utility to construct new configuration

files
obj Makefiles for compiling RSIM for all supported platforms

src C and C4+4 source files for the RSIM simulator

8 CHAPTER 2. INSTALLING RSIM

2.2 Building the RSIM simulator

Each of the following directories in rsim-1.0 contains a Makefile for a specific simulation host platform and
simulation target store-ordering policy. RSIM versions with store-ordering support the memory consistency
models of sequential consistency and processor consistency, while versions without store-ordering support
release consistency. (See Chapter 3 for more details.) Except where noted otherwise, the makefiles in the
directories below compile a simulator for a release-consistency target system. Debugging makefiles are also
provided to compile RSIM with debugging and tracing options. All makefiles are provided for the standard
make utility for each system.

obj/hp Convex Exemplar platform with HP PA-8000 processors and HP-UX version 10
Makefile assumes GNU C and C++ compilers, version 2.5.8 or above

obj/sgi SGI PowerChallenge platform with MIPS R8000 processors and TRIX 6.2
Makefile assumes SGI C and C++ compilers, version 6.2 or above

obj/ss10 Sun SPARCstation-10 with Solaris 2.5 or above
Makefile assumes SUN C and C++ compilers, version 4.0 or above

obj/ultral40 Sun Ultra-1/140 workstation with Solaris 2.5 or above
Makefile assumes SUN C and C++ compilers, version 4.0 or above

obj/ultral70 Sub Ultra-1/170 workstation with Solaris 2.5 or above
Makefile assumes SUN C and C++ compilers, version 4.0 or above

obj/SC_hp,SC_ultra,SC_sgi As above, except compiles a simulator for a target system with store-ordering
(to simulate systems with sequential consistency or processor consistency). SC_ultra is optimized for
Sun Ultra-1/140 workstations, but can also be used on Ultra-1/170 workstations.

obj/dbg,0bj/SC_dbg Debugging makefiles for Sun workstations with Solaris 2.5 or above
Makefile assumes GNU C and C++ compilers, version 2.5.8 or above

These makefiles create an executable called rsim. For example, to make an rsim executable that will
run on a Convex Exemplar target to simulate a system with processor consistency, the user should type the
following in the rsim-1.0 directory:

prompt% cd obj/SChp
prompt% make rsim

This sequence should cause the system to start compiling all of the C and C++ source files of RSIM into
relocatable object files. After this, the make utility links these object files to form the rsim executable. The
compile-time parameters specified in the Makefile are listed in Section 4.3.

Additionally, the predecode executable must be created on any of the Sun platforms listed above by
typing the commands below from the rsim-1.0 directory (any of the Sun directories listed above may be
used in place of ss10):

prompt% cd obj/ss10
prompt% make predecode

predecode translates the instructions of a SPARC application executable into a form that can be pro-
cessed by RSIM, as explained in Section 1.

unelf must be built and run only if the user intends to run RSIM on platforms that do not support the
ELF library functions!. unelf must be built on a platform that supports ELF (such as a Sun platform with

L Currently, the only tested platform that does not use ELF is the Convex Exemplar with HP-UX.

2.3. BUILDING THE RSIM APPLICATIONS LIBRARY 9

Solaris). For example, unelf can be built on a SPARCstation 10 by typing the following command sequence
from the rsim-1.0 directory:

prompt% cd obj/ss10
prompt% make unelf

It should be relatively simple to compile rsim, predecode, and unelf for related systems in the same
processor and operating system families as specified above. The optimization options in the makefile may
need to be changed to represent a processor of a different generation, and some C preprocessor flags may
need to be defined or left undefined according to the characteristics of the specified system. Additionally,
it should also be straightforward to change the Makefiles to run with another make utility on a supported
platform, such as gnumake. The file obj/README documents the possible changes needed.

Porting RSIM to other architectures may or may not be straightforward. In particular, porting to 64-bit
platforms or little-endian platforms may require additional effort.

2.3 Building the RSIM applications library

The RSIM applications library provides some of the library functions needed for linking the applications to
be simulated, as described in Chapters 1 and 5.

The RSIM applications library is located in the directory apps/utils/lib. This directory includes a
makefile used for actually building the library on a SPARC Solaris platform. The user should type make
install to use this makefile. This will create the RSIM libraries. Additionally, it will also produce a separate
modified version of the standard system C library in the directory apps/utils/1lib. This modified C library
excludes many of the functions used internally by other functions in the C library to insure that the linker
properly resolves these references to the RSIM applications library, rather than to standard functions in the
system C library.

Details on supported and unsupported system library functions appear in Chapter 5.

2.4 Building applications ported to RSIM

The apps directory includes two example applications ported to RSIM: a parallel red-black SOR (in the
directory apps/SOR) and a parallel quicksort algorithm (in the directory apps/Qs). The inputs taken by
these applications and the outputs provided are described in the README files in each of the application
directories. These applications are provided primarily for instructional purposes. Both programs can be
meaningfully run with inputs small enough to fully trace a large part of their execution. Additionally, these
applications are useful for familiarizing oneself with the RSIM command line and configuration file.

To facilitate use of the SPLASH [20] and SPLASH-2 [27] applications, the RSIM distribution includes a
set of PARMACS macros appropriate for RSIM in the file apps/utils/lib/rsimmacros.

2.4.1 Using the generic makefile

The RSIM distribution contains a generic makefile that can be used for building applications. This generic
makefile includes all the needed steps for compiling, linking, and predecoding applications to be simulated.
If needed, the generic makefile also expands the RSIM PARMACS macros in source files with the suffixes
.C, .U, and .H (as appear in the SPLASH and SPLASH-2 applications). Invocation of the unelf command
is not included in the generic makefile, as this command is only used on some target systems; thus, this
command must be invoked separately if the user intends to run RSIM on non-ELF host platforms.

The generic makefile is in apps/utils/lib/makefile generic in rsim-1.0. This makefile uses rules
specified according to the rules of the Sun make utility for Solaris. At installation time, the fully-specified
pathname of the directory in which this file is located should be inserted in the LIBDIR variable of the
makefile (This field is set by default to /home/rsim/rsim-1.0/apps/utils/1ib).

Makefiles for a specific application can include the generic makefile, so long as they define the SRC,
HEADERS, and TARGET variables. The generic makefile assumes that the application-specific makefile is located

10 CHAPTER 2. INSTALLING RSIM

in the top-level directory for a given application, that all source and header files are located in the src
directory of the application, that the relocatable object files will be placed in the obj directory, and that
the linked and predecoded executables will be in the execs directory of the application. For example, if an
application consisted of the source files src/sourcel.c and src/source2.c, the header files src/headeri.h
and src/header2.h, and seeks to produce a predecoded executable named execs/app.rc.out.dec, the
application makefile should simply read:

SRC = sourcel source2
HEADERS = headerl header2
TARGET = app

include ../../utils/lib/makefile.generic

Then, to actually construct the desired predecoded executable, the user should type the following from
the application directory:

prompt% make execs/app.rc.out.dec

Once the generic makefile is invoked, it will expand the PARMACS macros (if needed) in the source files,
and compile, link, and predecode the target.

Note that with the generic makefile, all source files will be recompiled if any of the source or header-files
changes. Thus, the user may wish to appropriately modify the generic makefile before using it for large
applications that will change frequently.

2.4.2 Using ordinary UNIX command sequences

Some users may want to invoke the commands for building applications directly rather than using the generic
makefile. In particular, users intending to run RSIM on platforms without the ELF library must directly
run unelf on the Solaris executables of the applications to be simulated.

The first step is to generate relocatable object files (.o files) from the source-code files. This can be
done using an ordinary SPARC C compiler for Solaris. The recommended options for invoking the Sun C
compiler version 4.0 to generate object code from the source file src/sourcel.c are:

prompt% cc -x04 -xtarget=ultral/170 -xarch=v8plus -dalign -o obj/sourcel.o -c
src/sourcel.c

These options generate code with all optimizations recommended by the compiler, with code scheduled
for Sun Ultra-1 workstations with a 170 MHz UltraSPARC processor. The code uses the SPARC V8plus
subset of the V9 architecture, and assumes that double-precision accesses are properly aligned, allowing use
of double-precision floating-point loads and stores.

Next, a SPARC application executable must be generated. Recommended options for invoking the
Sun linker to generate the file execs/appname.out from the files obj/sourcel.o and obj/source2.o are
(substituting the fully-specified pathname of the RSIM distribution for /path_to_rsim/rsim-1.0 below):

prompt% /usr/ccs/bin/ld -dn -z muldefs -L /path torsim/rsim-1.0/apps/utils/1lib
-emystart -o execs/appname.out /path_to_rsim/rsim-1.0/apps/utils/lib/crt0.obj
obj/sourcel.o obj/source2.0 -1 rsim -1 ¢ -1 m -1 rsim

This generates a statically-linked executable that starts with the function mystart, linking the RSIM
application startup object file (crt0.obj) with the application object files, and resolving unknown references
with the RSIM library, the C library, and the system math library. The RSIM library is included twice so
that unresolved references from the C and math libraries are resolved to RSIM library functions, when
applicable.

If a different set of linker options is chosen, the user must guarantee that the linker output produced is a
statically-linked application executable and that the entry point for the executable is the same as the base

2.5. STATISTICS PROCESSING UTILITIES 11

of the text segment, which in turn must correspond to the mystart function. Additional constraints on the
application executable are given in Chapter 5.

After generating a SPARC application executable, the file to be run through RSIM must be predecoded,
as described in Section 1. The syntax of predecode is:

prompt% predecode execs/appname

where execs/appname.out is the name of the SPARC application executable file to be predecoded. This
command produces a file called appname.out.dec and also produces output on the screen related to the
file being predecoded. As this output is generally not needed, the user will usually want to redirect this to
/dev/null.

Users intending to run RSIM on target platforms that do not support ELF will need to first process the
application executables to be simulated with the unelf utility as follows:

prompt% unelf execs/appname.out
where appname.out is the name of the file to be expanded. This command produces a file called

app.out_unelf. unelf itself must be run on an ELF platform; however, we do not expect this to add
any difficulty, as the applications themselves are currently built using an ELF platform.

2.5 Statistics processing utilities

The bin directory in rsim-1.0 includes shell-scripts and awk-scripts for processing statistics files output by
RSIM. This directory should be added to the PATH environment variable of each RSIM user. For csh and
tcsh users, the following can be typed at the shell-prompt or added to the user’s .cshrc or .tcshrc files
(substitute the actual fully-specified path of the RSIM distribution for /path_to_rsim/rsim-1.0/ below).

prompt% setenv PATH /path_to_rsim/rsim-1.0/bin:${PATH}

For sh, ksh, and bash users, the following command sequence is appropriate:
prompt$ export PATH=/path to rsim/rsim-1.0/bin:$PATH

Three of the shell scripts included in this directory must be modified according to the directory in
which the RSIM distribution is download. Namely, the scripts analyze misses, rsim_analyze, and
prsim_analyze currently include a reference to the directory /home/rsim/rsim-1.0/bin. This reference

should be changed to point to the actual fully-specified path of the RSIM distribution. For example, the file
prsim_analyze contains the line:

nawk -f /home/rsim/rsim-1.0/bin/prsim_analyze.awk
This line must be changed to:
nawk -f /path_torsim/rsim-1.0/bin/prsim_analyze.awk

where /path_to_rsim/rsim-1.0/ is replaced by the actual fully-specified path of the RSIM distribution.
The usage of the statistics-processing utilities is explained in Chapter 6. These utilities do not require
compilation.

Chapter 3

Architectural Model

The following sections describe the instruction set, the processor microarchitecture, the cache and memory
subsystem, and the multiprocessor interconnection network supported by RSIM.

3.1 RSIM instruction set architecture

RSIM simulates applications compiled and linked for SPARC V9/Solaris using ordinary SPARC compilers
and linkers, with the following exceptions.

First, although RSIM supports most important user-mode SPARC V9 instructions, there are a few unsup-
ported instructions. More specifically, all instructions generated by current C compilers for the UltraSPARC-1
or UltraSPARC-II with Solaris 2.5 or 2.6 are supported. Unsupported instructions that may be most im-
portant on other SPARC systems include 64-bit integer register operations and quadruple-precision floating-
point instructions. The other unsupported instructions are tcc, flush, flushw, and tagged add and subtract
(described in the SPARC V9 ISA definition [23]).

Second, the system trap convention supported by RSIM differs from that of Solaris or any other operating
system. Therefore, standard libraries and functions that rely on such traps cannot be directly used. We
provide an RSIM applications library to support such commonly used libraries and functions; all applications
must be linked with this library. Nevertheless, there are some unsupported traps and related functions (e.g.,
strftime), and our library has only been tested for application programs written in C. More details are
given in Chapter 5.

The main simulator actually interprets input files generated by running an offline predecoder on the
application executables generated. The predecoder generates a more loosely-encoded target format, which
is used for all internal processing in RSIM. This removes the overhead of runtime instruction decoding and
will facilitate modifications of RSIM to simulate other RISC ISAs. RSIM can use a predecoder because this
simulator does not support self-modifying or dynamically generated code.

3.2 Processor microarchitecture

RSIM models a processor microarchitecture that aggressively exploits ILP. It incorporates features from a
variety of current commercial processors. The default processor features include:

e Superscalar execution — multiple instructions issued per cycle.
e Out-of-order (dynamic) scheduling!
o Register renaming

e Static and dynamic branch prediction

1 An option for in-order scheduling is provided as a straightforward modification to the out-of-order scheduling pipeline, but
is not well tested. Details of the implementation of this feature are provided in Section 10.2.

12

3.2. PROCESSOR MICROARCHITECTURE 13

Completion
Graduation :
Exception Handling > FPU
Floating-point
Register File
Register mapping { pata
Instruction
i Cache
Fetch (renaming) Memory
Logic] i
: Active List unit
Integer || Addr.
Register File Gen. |
L. ALU/
Branch ||

Branch Prediction !

Figure 3.1: RSIM Processor Microarchitecture.

e Non-blocking memory load and store operations

Speculative load execution before address disambiguation of previous stores

Software-controlled non-binding prefetching

Support for multiple memory consistency models and various implementations of these models [15]
e Precise exceptions

o Register windows

The processor microarchitecture modeled by RSIM is closest to the MIPS R10000[13] and is illustrated
in Figure 3.1. In particular, RSIM models the R10000’s active list (which holds the currently active instruc-
tions, corresponding to the reorder buffer or instruction window of other processors), register map table (which
holds the mapping from logical to physical registers), and shadow mappers (which store register map table
information on branch prediction to allow single-cycle state recovery on mispredictions). The pipeline par-
allels the Fetch, Decode, Issue, Execute, and Complete stages of the dynamically scheduled R10000 pipeline.
Instructions are graduated (i.e. retired, committed, or removed from the active list) after passing through
this pipeline. Instructions are fetched, decoded, and graduated in program order; however, instructions can
issue, execute, and complete out-of-order. In-order graduation allows RSIM to implement precise interrupts.

Most processor parameters are configurable at runtime. These parameters are listed in Chapter 4.

3.2.1 Pipeline stage details

The instruction fetch stage reads instructions from the predecoded input file. RSIM currently does not
model an instruction cache. The maximum number of instructions brought into the processor per cycle is a
configurable parameter.

14 CHAPTER 3. ARCHITECTURAL MODEL

The instruction decode stage handles register renaming and inserts the decoded instruction into the
active list. The key data structures used in this stage are the register map table, the free list, the active list,
and the shadow mappers. These data strucutres closely follow the corresponding microarchitectural features
of the MIPS R10000. The RSIM processor follows the MIPS R10000 convention for maintaining registers, in
which both architectural register state and speculative register state are kept in a unified physical register
file [28]. The register map table keeps track of the logical to physical register mapping, and the free list
indicates the physical registers available for use. A logical register is mapped to a new physical register
whenever the logical register is the destination of an instruction being decoded. The new physical register
(taken from the free list) is marked busy until the instruction completes. The previous value of the logical
register remains in the physical register to which it was formerly mapped. This physical register is not
returned to the free list until the instruction with the new mapping has graduated. Integer and floating
point registers are mapped independently. Currently, RSIM assumes that the processor will always have
sufficient renaming registers for its specified active list size?.

An instruction is entered into the active list when it is decoded, and it remains in the active list until it
graduates. This stage also dispatches memory instructions to the memory unit, which is used to insure that
memory operations occur in the appropriate order, as detailed in Section 3.2.33. The size of the active list
and memory unit are configurable.

For branch instructions, the decode stage allocates a shadow mapper to allow a fast recovery on a
misprediction, as discussed in Section 3.2.2. The prediction of a branch as taken stops the RSIM processor
from decoding any further instructions in this cycle, as many current processors do not allow the instruction
fetch or decode stage to access two different regions of the instruction address space in the same cycle. The
number of shadow mappers is configurable.

The instruction issue stage issues ready instructions. For an instruction to issue, it must have no
outstanding data dependences or structural hazards. With one exception, the only register data dependences
that affect the issue of an instruction in RSIM are RAW (true) dependences; other register dependences are
eliminated by register renaming*. RAW dependences are detected by observing the “busy bit” of a physical
register in the register file.

Structural hazards in the issue stage relate to the availability of functional units. There are 3 basic
types of functional units supported in RSIM: ALU (arithmetic/logical unit), FPU (floating point unit),
and ADDR (address generation unit). If no functional unit is available, the processor simulator notes a
structural dependence and refrains from issuing the instruction. The number of each type of functional unit
is configurable. A memory instruction issues to the cache only if a cache port is available and if the address
of the instruction has already been generated. Additional constraints for memory issue are described in
Section 3.2.3.

The instruction execute stage calculates the results of the instruction as it would be generated by its
functional unit. These results include the addresses of loads and stores at the address generation unit. The
latencies and repeat rates of the ALU and FPU instructions for this stage are configurable.

The instruction complete stage stores the computed results of an instruction into its physical register.
This stage also clears that physical register’s busy bit in the register file, thus indicating to the issue stage
that instructions stalled for data dependences on this register may progress. This stage does not affect
memory store operations, which have no destination register.

The completion stage also resolves the proper outcome of predicted branches. If a misprediction is
detected, later instructions in the active list are flushed and the processor program counter is set to the
proper target of the branch. The shadow mapper for a branch is freed in this stage.

The instruction graduate stage ensures that the instructions graduate and commit their values into
architectural state in-order, thereby allowing the processor to maintain precise exceptions. When an instruc-
tion is graduated, the processor frees the physical register formerly associated with its destination register

2Code for fewer renaming registers and consequent register stalls is included but has not been tested and is not exposed to
the user. Chapter 10 gives a more detailed explanation.

3 A command-line option is also provided to specify that non-memory instructions should also be dispatched to an issue
window; by default, these instructions are issued directly from the active list. More details about this option are provided in
Section 4.1.1.

4Single-precision floating-point operations experience WAW (output) dependences because floating-point registers are
mapped and renamed on double-precision boundaries. This is further discussed in Chapter 10

3.2. PROCESSOR MICROARCHITECTURE 15

(before this instruction was decoded). With the exception of stores, the graduation of an instruction marks
the end of its life in the system; stores are discussed separately in Section 3.2.3. After graduation, the in-
struction leaves the active list. The number of instructions that can graduate in a single cycle is configurable.

The RSIM processor also detects exceptions at the point of graduation. Section 3.2.4 describes how the
processor simulator handles exceptions.

3.2.2 Branch prediction

The RSIM processor includes static and dynamic branch prediction, as well as prediction of return instruc-
tions (other jumps are not currently predicted). As in the MIPS R10000, each predicted branch uses a
shadow mapper which stores the state of the register renaming table at the time of branch prediction. The
shadow mapper for an ordinary delayed branch is associated with its delay slot; the shadow mapper for an
annulling branch or a non-delayed branch is associated with the branch itself. If a branch is later discovered
to have been mispredicted, the shadow mapper is used to recover the state of the register map in a single
cycle, after which the processor continues fetching instructions from the actual target of the branch. Shadow
mappers are freed upon resolution of a branch instruction at the complete stage of the pipeline. The pro-
cessor may include multiple predicted branches at a time, as long as there is at least one shadow mapper for
each outstanding branch. These branches may also be resolved out-of-order.

RSIM currently supports three branch prediction schemes: dynamic branch predictors using either a
2-bit history scheme [22] or a 2-bit agree predictor [24], and a static branch predictor using only compiler-
generated predictions. Return addresses are predicted using a return address stack [9]. Each of the schemes
supported uses only a single level of prediction hardware.

The instruction fetch and decode stages initiate branch speculation; the instruction complete stage re-
solves speculated branches and initiates recovery from mispredictions.

3.2.3 Processor memory unit

The processor memory unit is the interface between the processor and the caches. Currently, instruction
caches are not simulated and are assumed to be perfect. RSIM also does not currently support virtual
memory®. A processor’s accesses to its private data space (described in Section 5.1) are currently considered
to be cache hits in all multiprocessor simulations and in uniprocessor simulations configured for this purpose.
However, contention at all processor and cache resources and all memory ordering constraints are modeled
for private accesses in all cases.

The most important responsibility of the processor memory unit is to insure that memory instructions
occur in the correct order. There are three types of ordering constraints that must be upheld:

1. Constraints to guarantee precise exceptions
2. Constraints to satisfy uniprocessor data dependences

3. Constraints due to the multiprocessor memory consistency model

Constraints for precise exceptions

The RSIM memory system supports non-blocking loads and stores. To maintain precise exceptions, a
store cannot issue before it is ready to be graduated; namely, it must be one of the instructions to graduate
in the next cycle and all previous instructions must have completed successfully. A store can be allowed to
graduate, as it does not need to maintain a space in the active list for any later dependences. However, if it
is not able to issue to the cache before graduating, 1t must hold a slot in the memory unit until it is actually
sent to the cache. The store can leave the memory unit as soon as it has issued, unless the multiprocessor
memory constraints require the store to remain in the unit.

Loads always wait until completion before leaving the memory unit or graduating, as loads must write
a destination register value. Prefetches can leave the memory unit as soon as they are issued to the cache,

5RSIM also does not include the ability to mark certain regions of memory uncached, a feature commonly associated with
virtual memory

16 CHAPTER 3. ARCHITECTURAL MODEL

as these instructions have no destination register value. Furthermore, there are no additional constraints on
the graduation of prefetches.

Constraints for uniprocessor data depedences

These constraints require that a processor’s conflicting loads and stores (to the same address) appear to
execute in program order. The precise exception constraint ensures that this condition holds for two stores
and for a load followed by a store. For a store followed by a load, the processor may need to maintains this
data dependence by enforcing additional constraints on the execution of the load. If the load has generated
its address, the state of the store address determines whether or not the load can issue. Specifically, the
prior store must be in one of the following three categories:

1. address is known, non-conflicting
2. address is known, conflicting

3. address is unknown

In the first case, there is no data dependence from the store to the load. As a result, the load can issue
to the cache in all configuration options, as long as the multiprocessor ordering constraints allow the load to
proceed.

In the second case, the processor knows that there is a data dependence from the store to the load. If the
store matches the load address exactly, the load can forward its return value from the value of the store in
the memory unit without ever having to issue to cache, if the multiprocessor ordering constraints allow this.
If the load address and the store address only partially overlap, the load may have to stall until the store
has completed at the caches; such a stall is called a partial overlap, and is discussed further in Chapter 11.

In the third case, however, the load may or may not have a data dependence on the previous store. The
behavior of the RSIM memory unit in this situation depends on the configuration options. In the default
RSIM configuration, the load is allowed to issue to the cache, if allowed by the multiprocessor ordering
constraints. When the load data returns from the cache, the load will be allowed to complete unless there is
still a prior store with an unknown or conflicting address. If a prior store is now known to have a conflicting
address, the load must either attempt to reissue or forward a value from the store as appropriate. If a
prior store still has an unknown address, the load remains in the memory unit, but clears the busy bit of
its destination register, allowing further instructions to use the value of the load. However, if a prior store
is later disambiguated and is found to conflict with a later completed load, the load is marked with a soft
ezxception, which flushes the value of that load and all subsequent instructions. Soft-exception handling is
discussed in Section 3.2.4.

There are two less aggressive variations provided on this default policy for handling the third case. The
first scheme is similar to the default policy; however, the busy bit of the load is not cleared until all prior
stores have completed. Thus, if a prior store is later found to have a conflicting address, the instruction
must only be forced to reissue, rather than to take a soft exception. However, later instructions cannot use
the value of the load until all prior stores have been disambiguated.

The second memory unit variation stalls the issue of the load altogether whenever a prior store has an
unknown address.

Constraints for multiprocessor memory consistency model.
RSIM supports memory systems three types of multiprocessor memory consistency protocols:

e Relaxed memory ordering (RMO) [23] and release consistency (RC) [6]
e Sequential consistency (SC) [11]

e Processor consistency (PC) [6] and total store ordering (TSO) [26]

Each of these memory models is supported with a straightforward implementation and optimized imple-
mentations. We first describe the straightforward implementation and then the more optimized implemen-
tations for each of these models.

3.2. PROCESSOR MICROARCHITECTURE 17

The relared memory ordering (RMO) model is based on the memory barrier (or fence) instructions, called
MEMBARSs, in the SPARC V9 ISA [23]. Multiprocessor ordering constraints are imposed only with respect to
these fence instructions. A SPARC V9 MEMBAR can specify one or more of several ordering options. An
example of a commonly used class of MEMBAR is a LoadStore MEMBAR, which orders all loads (by program
order) before the MEMBAR with respect to all stores following the MEMBAR (by program order). Other common
forms of MEMBAR instructions include StoreStore, LoadLoad, and combinations of the above formed by
bitwise or (e.g. LoadLoad |LoadStore). Instructions that are ordered by the above MEMBAR instructions must
appear to execute in program order. Additionally, RSIM supports the MemIssue class of MEMBAR, which
forces all previous memory accesses to have been globally performed before any later instructions can be
initiated; this precludes the use of the optimized consistency implementations described below®.

Release consistency is implemented using RMO with LoadLoad | LoadStore fences after acquire operations
and LoadStore|StoreStore fences before release operations.

In the sequential consistency (SC) memory model, all operations must appear to execute in strictly serial
order. The straightforward implementation of SC enforces this constraint by actually serializing all memory
instructions; 1.e. a load or store is issued to the cache only after the previous memory instruction by program
order is globally performed? [19]. Further, stores in SC maintain their entries in the memory unit until they
have globally performed to facilitate maintaining multiprocessor memory ordering dependences from stores
to later instructions. Unless RSIM is invoked with the store buffering command line option (discussed in
Chapter 4), stores in SC do not graduate until they have globally performed. Forwarding of values from
stores to loads inside the memory unit is not allowed in the straightforward implementation of sequential
consistency. MEMBARs are ignored in the sequential consistency model.

The processor consistency (PC) and total-store ordering (TSO) implementations are identical in RSTM.
With these models, stores are handled just as in sequential consistency with store buffering. Loads are ordered
with respect to other loads, but are not prevented from issuing, leaving the memory unit, or graduating if
only stores are ahead of them in the memory unit. Processor consistency and total store ordering also do
not impose any multiprocessor constraints on forwarding values from stores to loads inside the memory unit,
or on loads issuing past stores that have not yet disambiguated. MEMBARs are ignored under the processor
consistency and total store ordering models.

Beyond the above straightforward implementations, the processor memory unit in RSIM also supports
optimized implementations of memory consistency constraints. These implementations use two techniques
to improve the performance of consistency implementations: hardware-controlled non-binding prefetching
from the active list and speculative load execution [5].

In the straightforward implementations of memory consistency models, a load or store is prevented from
issuing into the memory system whenever it has an outstanding consistency constraint from a prior instruction
that has not yet been completed at the memory system. Hardware-controlled non-binding prefetching from
the active list allows loads or stores in the active list that are blocked for consistency constraints to be
prefetched into the processor’s cache. As a result, the access is likely to expose less latency when it is issued
to the caches after its consistency constraints have been met. This technique also allows exclusive prefetching
of stores that have not yet reached the head of the active list (and which are thus prevented from issuing by
the precise exception constraints).

Speculative load execution allows the processor not only to prefetch the cache lines for loads blocked for
consistency constraints into the cache, but also to use the values in these prefetched lines. Values used in
this fashion are correct as long as they are not overwritten by another processor before the load instruction
completes its consistency constraints. The processor detects potential violations by monitoring coherence
actions due to sharing or replacement at the cache. As in the MIPS R10000, a soft exception is marked on
any speculative load for which such a coherence action occurs [28]; this soft exception will force the load to
reissue and will flush subsequent instructions. The soft exception mechanism used on violations is the same
as the mechanism used in the case of aggressive speculation of loads beyond stores with unknown addresses.
Speculative load execution can be used in conjunction with hardware-controlled non-binding prefetching.

6We do not expect applications to use this type of MEMBAR. It is currently used in RSIM only in the RSIM system trap library.

7 A store is globally performed when its value is visible to all processors; i.e. all other caches with a copy of the line have
been invalidated. In RSIM, this is indicated when an acknowledgment for the store is received by the processor. A load is
globally performed when its return value is bound and when the store whose value it returns is globally performed. In RSIM,
this is detected when the load returns its value to the processor.

18 CHAPTER 3. ARCHITECTURAL MODEL

3.2.4 Exception handling

RSIM supports precise exceptions® by prohibiting instructions from committing their effects into the pro-
cessor architectural state until the point of graduation. Excepting instructions are recognized at the time of
graduation.

RSIM supports the following categories of exceptions: division by zero, floating point errors, segmentation
faults, bus errors, system traps, window traps, soft exceptions, serializing instructions, privileged instructions,
illegal or unsupported instructions, and illegal program counter value. RSIM simply emulates the effects of
most of the trap handlers; a few of the trap handlers actually have their instructions simulated, and are
indicated below. (Soft exceptions are handled entirely in the hardware and do not have any associated trap
handler.)

A dwvision by zero exception is triggered only on integer division by zero. Floating point exceptions can
arise from illegal operands, such as attempts to take the square root of a negative number or to perform
certain comparisons of an “NaN” with a number. Both of these exception types are non-recoverable.

Segmentation faults are currently split into two types. The first type is a fault that occurs whenever a
processor wishes to grow its stack beyond its current limits. For this trap, pages are added to the stack
to accommodate stack growth, and execution recovers from the point of the excepting instruction. In the
second type of fault, the processor attempts to access a page of memory that has not been allocated and is
not within the limits of the stack. This type of exception is nonrecoverable.

A bus error occurs whenever a memory access is not aligned according to its length. Generally, these
exceptions are nonrecoverable. However, the SPARC architecture allows double-precision floating-point loads
and stores to be aligned only to a word boundary, rather than to a double-word boundary®. RSIM currently
traps these accesses and emulates their behavior. However, the cache accesses for these instructions are not
simulated.

System traps are used to emulate the behavior of operating system calls in RSIM. The system traps
supported are listed in Section 5.2 and serve several important functions, such as I/O, memory allocation,
and process management. Additionally, some system traps are specific to RSIM and serve roles such as
statistics collection or explicitly associating a home node to a region of shared memory. Some operating
system calls are currently not supported; consequently, functions using these system calls (such as strftime
and signal) cannot currently be used in applications to be simulated with RSIM. The RSIM simulator trap
convention does not currently match the system trap convention of Solaris or any other operating system;
however, a library is provided with RSIM to insure that the correct system traps are invoked for each
supported function, as described in Section 5.2. The system trap handler restarts program execution at the
instruction after the excepting instruction.

A window trap occurs when the call-depth of a window-save chain exceeds the maximum allowed by RSIM
(called an overflow), forcing an old window to be saved to the stack to make room for the new window, or
when a RESTORE operation allows a previously saved window to once again receive a register window (called
an underflow) [23]. The instructions used in the window trap handler are actually simulated by the RSIM
processor, rather than merely having their effects emulated. The window trap handler returns control to the
excepting instruction. The number of register windows is configurable, and can range from 4 to 32 (in all
cases, | window is reserved for the system). The effect of window traps is not likely to significantly affect the
performance of scientific codes written in C; however, code written in a functional language such as Scheme
or an object-oriented language such as C++ may experience some performance degradation from window
traps.

Soft exceptions are distinguished from other exception types in that even a regular system would not
need to trap to any operating system code to handle these exceptions; the exception is handled entirely in
hardware. The active list is flushed, and execution restarts at the excepting instruction. These are used for
recovering from loads incorrectly issued past stores with unknown addresses or from consistency violations
caused by speculative load execution (as described in Section 3.2.3).

RSIM uses traps (referred to as serialization traps in the code) to implement certain instructions that
either modify system-wide status registers (e.g. LDFSR, STFSR) or are outdated instructions with data-paths

8 We use the terms exception and trap interchangably
9The SPARC architecture also allows word-alignment for quadruple-precision floating-point loads and stores, but RSIM does
not support such instructions.

3.3. RSIM MEMORY AND NETWORK SYSTEMS 19

that are too complex for a processor with the aggressive features simulated in RSIM (e.g. MULScc). This
can lead to significant performance degradation in code that uses old libraries, many of which internally
use MULScc. The trap handler for the STFSR instruction is actually simulated, rather than merely emulated.
The LDFSR instruction is slightly different in that it does not have a trap handler, but functions more like
a soft exception. Specifically, the function of the trap on this instruction is to prevent later instructions
from committing their values computed with an old floating-point status. Thus, the trap for LDFSR can be
thought of as a soft-exception that does not retry the excepting instruction.

Privileged instructions include instructions that are valid only in system supervisor mode, and lead to
an exception if present in user code. Illegal instruction traps are invalid instruction encodings and some
instructions unsupported by RSIM (i.e. tcc, flush, flushw, and tagged addition and subtraction)!® An
llegal program counter value exception occurs whenever a control transfer instruction makes the program
counter invalid for the instruction address region (e.g. out of range or unaligned program counters). These
three exception types are all non-recoverable.

3.3 RSIM memory and network systems

Figure 3.2 shows the memory and network system organization in RSIM. RSIM simulates a hardware cache-
coherent distributed shared memory system (a CC-NUMA), with variations of a full-mapped invalidation-
based directory coherence protocol. Each processing node consists of a processor, a two level cache hierarchy
(with a coalescing write buffer if the first-level cache is write-through), a portion of the system’s distributed
physical memory and its associated directory, and a network interface. A pipelined split-transaction bus
connects the secondary cache, the memory and directory modules, and the network interface. Local commu-
nication within the node takes place on the bus. The network interface connects the node to a multiprocessor
interconnection network for remote communication.

Both cache levels are lockup-free and store the state of outstanding requests using miss status holding
registers (MSHRs)[10].

The first-level cache can either be a write-through cache with a no-allocate policy on writes, or a write-
back cache with a write-allocate policy. RSIM allows for a multiported and pipelined first level cache. Lines
are replaced only on incoming replies. The size, line size, set associativity, cache latency, number of ports,
and number of MSHRs can be varied.

The coalescing write buffer is implemented as a buffer with cache-line-sized entries. All writes are buffered
here and sent to the second level cache as soon as the second level cache 1s free to accept a new request. The
number of entries in the write buffer is configurable.

The second-level cache is a write back cache with write-allocate. RSIM allows for a pipelined secondary
cache. Lines are replaced only on incoming replies; more details of the protocol implementation are given
in Chapter 13. The secondary cache maintains inclusion with respect to the first-level cache. The size, line
size, set associativity, cache latency, and number of MSHRs can be varied.

The memory is interleaved, with multiple modules available on each node. The memory is accessed
in parallel with an interleaved directory, which implements a full-mapped cache coherence protocol. The
memory access time, the memory interleaving factor, the minimum directory access time, and the time to
create coherence packets at the directory are all configurable parameters.

The directory can support either a MESI protocol with Modified, Exclusive, Shared, and Invalid states,
or a three-state MSI protocol. The RSIM directory protocol and cache controllers support cache to cache
transfers (shown in Figure 3.3 as “$ to $”). Figure 3.3 gives simplified state diagrams for both protocols,
showing the key states and transitions at the caches due to processor requests and external coherence actions.
Internally, the protocols also include transient states at the directory and caches; these conditions are handled
according to mechanisms specified in Chapters 13 and 14.

For local communication within a node, RSIM models a pipelined split-transaction bus connecting the
L2 cache, the local memory, and the local network interface. The bus speed, bus width, and bus arbitration
delay are all configurable.

10RSIM does not yet raise any exception on some unsupported instructions, such as 64-bit integer operations or quadruple-
precision floating-point accesses. It is the user’s responsibility to insure that such instructions are not used. The compiler
options we provide in Section 2.4 inform the compiler not to generate these instructions.

20 CHAPTER 3. ARCHITECTURAL MODEL

Processor
|
e L1 Cache
- }
L2 Cache Ery | . . . L2 Cache Directory |
BUS BUS
Network Interface Network Interface

f i

Figure 3.2: The RSIM memory system

For remote communication, RSIM currently supports a two-dimensional mesh network'!. RSIM models
a pipelined wormhole-routed network with contention at the various switches. For deadlock avoidance, the
system includes separate request and reply networks. The flit delay per network hop, the width of the
network, the buffer size at each switch, and the length of each packet’s control header are user-configurable

parameters.

11 The potential for supporting other network models is discussed in Section 15.3.

3.3. RSIM MEMORY AND NETWORK SYSTEMS

write (ack to dir) read

——————— N
replacement
Shared
read (w/ sharers) /"\
/

- - Invalid
/
/
I
I replacement , /7
: read (otify dir) writel 1
| (no sharers) | eng
! | $tos,
/ replacement | copyback to dir)
| read /7 (writeback |
| s, 7 write to dir) I
l‘ ack to dir) .
write —
! Modified
~ -
\ ~ _ _
-
\ Mot ()
vite . rocessor
' read readiwrite | = P
\ o ($to 9,
h -7 ack to dir) — _p external
(a) MESI protocol
write (ack to dir) read
- - - - = = - o
replacement \
Invalid Shared
read
I
\ write] |
\ |
\ | read
\ write replacement | (108, _
\ (to, (writeback copyback to dir)
\.ack to dir) write to dir) |
N I
N

Modified

read/write

= Processor

— _p €external

(b) MST protocol

Figure 3.3: Coherence protocols in RSIM

Chapter 4

Configuring RSIM

This chapter discusses the various run-time and compile-time options available to configure RSIM, and
specifies the default values for the parameters. The parameters most frequently modified in our experience
are available to the user on the RSIM command line; most other parameters are presented to RSIM via a
configuration file. Many configuration files can be used for different simulation runs, as the name of the
configuration file is passed to RSIM on the command line. Many of the parameters ask for time in processor
cycles; this 1s the main metric used in RSIM. By default, we assume a processor with 300 MHz and choose
some of the default latencies with this in mind.

4.1 Command line options

Many of the parameters controlling the simulation and the simulated configuration are passed to RSIM on
the command line. Command line arguments to the application being simulated are given after a double-
dash. For example, to simulate the application program sort with an active list of size 64 and with the
application parameters -n 1024 -p8, one would use the command line:

rsim -a64 -f sort -- -n1024 -p8

The remainder of this section describes the command line parameters of RSIM. In each case, num
specifies a non-negative integer and file represents a filename on the host file system (may be relatively or
absolutely specified). Other option specifiers are explained as needed below.

4.1.1 Processor parameters
-1 num Number of instructions to fetch in a cycle. Defaults to 4.

-a num Active list size. Defaults to 64.

-g num Maximum number of instructions to graduate per cycle. If the value 0 is given, then the processor
will be able to graduate an unbounded number of instructions per cycle. Defaults to the same value

as the instruction fetch width (specified in “i”, or 4 if no “-i” is given).

-u Simulate fast functional units — all ALU and FPU instructions have single cycle latency. This option
overrides any latencies specified in the configuration file.

-E num Number of instructions to flush per cycle (from the active list) on an exception. If the value of 0
is given, the processor will flush all instructions immediately on an exception. Defaults to the same
value as the graduation rate.

-q num,num Many processors include one or more issue windows (corresponding to different sets of func-
tional units) separate from the active list. These issue windows only hold instructions that have not

22

4.1. COMMAND LINE OPTIONS 23

yet issued to the corresponding functional units (or, in the case of memory instructions, instructions
that have not completed all of their ordering constraints). Thus, the issue logic only needs to examine
instructions in the corresponding windows for outstanding dependences. The “-q” option supports a
processor that has separate issue windows for memory and non-memory instructions, and stalls further
instruction decoding when a new instruction cannot obtain a space in its issue window. The first
number specified with this option represents the size of the issue window for non-memory operations.
The second number represents the size of the memory unit, and overrides any earlier use of the “-m”
option below). Note that when “-q” is not used, the processor still supports a memory unit, but does
not stall if the memory unit is full. This option has not yet been extensively tested. Unused by default.

-X Static scheduling. Supported only with the straightforward implementation of release consistency. The
static scheduling supported in RSIM includes register renaming and out-of-order completion. Memory
instructions are considered issued once they have been sent to their address generation units; memory
fences and structural hazards beyond that point may cause additional delays. This option has not yet
been extensively tested. Unused by default.

4.1.2 Memory unit parameters

-m num Maximum number of operations in the processor memory unit, described in Section 3.2.3. Defaults
to 32.

-L num Represents the memory ordering constraint for uniprocessor data dependences in the situation of
a load past a prior store with an unknown address (as described in Section 3.2.3). The following table
specifies the policies supported:

Policy number Description

0 Stall load until all previous store addresses known (supported only with release consistency)
1 Issue load, but do not let other instructions use load value until
all previous store addresses known (supported only with release consistency)
2 Issue load and let other instructions use load value even when addresses of previous stores are unkn

If prior store later discovered to have conflicting address,
cause soft exception. This is the default.

-p Turn on hardware-controlled prefetching for optimized consistency implementations (discussed in Sec-
tion 3.2.3). Bring all hardware prefetches to L1 cache.

-P Same as °

-p”, but brings write prefetches only to L2 cache.
-J All prefetches (software and hardware) go only to L2 cache.
-K Enable speculative load execution for optimized consistency implementations (discussed in Section 3.2.3).

-N Store buffering in SC: allows stores to graduate before completion [4, 17] (useful in SC only; stores
graduate before completion in all other models by default; discussed in Section 3.2.3)

-6 Processor consistency, if RSIM compiled with -DSTORE_ORDERING. RSIM compiled with
-DSTORE_ORDERING provides SC by default.

4.1.3 Cache parameters

Most cache parameters are specified in the RSIM configuration file. The command line parameters available
are:

-H num,num Number of MSHRs [10] supported at the L1 and L2 cache, respectively. Defaults to “8,8”.

-T Discriminate prefetching. If a hardware or software prefetch is stalled for resource constraints at the L1
cache (e.g. all MSHRs full), it will be dropped (to make place for later demand accesses that may also
be stalled).

-x Drop all software prefetches. Useful only for measuring instruction overhead of prefetching.

24 CHAPTER 4. CONFIGURING RSIM

4.1.4 Approximate simulation models

These parameters allow RSIM to simulate simple processors with single instruction issue, static scheduling,
and blocking reads, possibly with increased processor and/or cache clock rates. These parameters were used
in our previous work to investigate the effectiveness of models based on simple processors in approximating
the behavior of ILP processors [14]. It is important to note that the change in processor speed brought about
by these parameters do not affect the latencies in absolute times for the other modules. For example, if the
DRAM memory latency is specified to be 18 processor cycles with the default processor speed of 300 MHz,
this translates to a 60 ns access time. With the “~F4” option, which speeds up the processor by a factor
of 4, RSIM automatically increases the DRAM speed in terms of processor cycles by a factor of 4 (i.e. 72
processor cycles and 60 ns in absolute time).

These approximate simulation models are not intended to speed up the performance of RSIM, but are
provided only for purposes of comparison.

-k Turn off ILP simulation;i.e. simulate a processor with single-issue, static scheduling, and blocking reads.
Supported only for RC.

-F num Increase processor clock speed by the factor specified in num. Defaults to 1.

-y num Increase L1 cache access speed by the factor specified in num. Defaults to 1.

4.1.5 Other architectural configuration parameters

-n Turn on simulation of private accesses. Currently supported only in single processor mode. It is highly
recommended that this option be used if RSIM is used in uniprocessor studies.

-W Addresses in the shared region of the RSIM application address space are normally associated with
a specific home node, which provides the directory services for those addresses. If an address being
accessed has not been associated with a specific home node using AssociateAddrNode (described in
Chapter 5), the default action for RSIM is to print a warning message and associate the cache line
using a first-touch policy. If the “-“W” option is used, no warning message is printed.

4.1.6 Parameters related to simulation input/output

In this section, we distinguish between “simulation” input and output and “standard” input and output.
Standard input and output refer to the standard input and output streams provided to the application being
simulated. By default, these are the same as the input and output streams used by the simulator. However,
the simulator input and output streams can be redirected separately from the application input and output,
as described below.

-0 file Redirects standard input to file. Defaults to stdin.
-1 file Redirects standard output to file. Defaults to stdout.

-2 file Redirects standard error to file. The simulator outputs its concise statistics to this file. Defaults to
stderr.

-3 file Redirects simulator detailed statistics to file. This option can be used (either alone or in conjunction
with “-1”) to redirect detailed statistics separately from the output produced by the application. (If
“-1”7 is used without “-3”, both detailed statistics and application output are written to the same file.)
Defaults to stdout.

-D dir Directory for output files. This option can only be used in conjunction with the “-S” option. Unused
by default.

-S subj Subject to use in output filenames. This option overrides “-17, “-2” and “3”, and can only be
used in conjunction with “-D.” When this option is used, RSIM redirects application standard output
to a file titled dir/subjout, redirects application standard error and simulator concise statistics to
dir/subjerr, and redirects simulator detailed statistics to dir/subjstat. Unused by default.

4.2. CONFIGURATION FILE 25

-7 file Redirects simulator input (configuration file) to file. This option can be used (either alone or in
conjunction with “-0”) to redirect the input required by the simulator (such as the configuration
file) separately from the input required by the application. (If “-0” is used without “z”, both the
simulator input and application input come from the same file.) Note: to use the default values of all
configuration file parameters, file should be set to /dev/null. Defaults to stdin.

-e emailaddr Send an email notification to the specified address upon completion of this simulation. The
notification tells the user the location of the various output files and is sent using the subject specified
in “-S§”. Unused by default.

4.1.7 Simulator control and debugging

-f file Name of application file to interpret with RSIM, without the .out or .dec suffix. Defaults to “a”.

-A num Every num minutes, the simulator will print out partial statistics, which simply provide the number
of cycles since each processor last graduated an instruction. These are typically used to determine if
incorrect application synchronization or simulator source code modification has caused a deadlock.
Defaults to 60.

-¢c num Maximum number of cycles to simulate. Unused by default.

-t num Number of cycles to simulate before dumping detailed tracing information when RSIM is compiled
with the debugging makefiles described in Section 2.2. Defaults to 0.

4.2 Configuration file

Several configuration inputs can be passed to RSIM through the configuration file on the simulation in-
put (which can be redirected using “-0” or “=z” above). Sample configuration files are provided in the
inputs directory of the distribution. Additional files can be generated with the aid of the Javascript utility
rsimconfig.html in the inputs directory of the distribution. This utility can be used with any WWW-
browser that supports Javascript (e.g. Netscape 2.0 or higher): the utility produces a list of configuration
parameters for RSIM in the browser window. The configuration parameters produced should be copied from
the browser window (using cut, copy, and paste) into a file that can be used as the RSIM configuration file.

The parameters that can be specified in the configuration file are given below. Each parameter in the
input file will be followed by either a non-negative integer or a string, as specified below. The parameters
are not case sensitive. If any one of these is not included, RSIM will use the default value specified in the list
below (thus, if only default configuration is desired, the simulation input should be redirected to /dev/null).
If any parameter is listed multiple times in the configuration file, the last one specifies the actual value used.

If the same input file will be used for both the simulator input and the application input, the configuration
parameters should be given first, and the pseudo-parameter STOPCONFIG should be used to separate
the simulator input from the application input. As with all other parameters, STOPCONFIG must be
followed by an argument; however, this argument is ignored in this case.

4.2.1 Overall system parameters

numnodes The number given with this parameter specifies the number of nodes in the system. Defaults
to 16.

reqsz This parameter gives the length of the control header for each packet, in bytes. The control header
includes the requested address, the source node, the destination node, and the command type for the
packet. Defaults to 16.

26 CHAPTER 4. CONFIGURING RSIM

4.2.2 Processor parameters

bpbtype Type of branch predictor included in the processor. The argument is a string, and is specified as

follows:
2bit 2-bit history predictor [22]. This is the default.
2bitagree 2-bit agree predictor [24]
static static branch prediction using compiler hints

bpbsize This number specifies the number of counters in the branch prediction buffer (unused with static
branch prediction). Defaults to 512.

shadowmappers This number controls the number of shadow mappers provided for branch prediction.
Defaults to 8.

rassize The number provided here sets the number of entries in the return address stack. Defaults to 4.
numalus This number specifies the number of ALU functional units in the RSIM processor. Defaults to 2.
numfpus This number specifies the number of FPU functional units in the RSIM processor. Defaults to 2.

numaddrs This number specifies the number of address generation units in the RSIM processor. Defaults
to 2.

regwindows This number gives the number of register windows in the RSIM processor (one of these is
always reserved for the system). Must be a power of 2 between 4 and 32, inclusive. Defaults to 8.

maxstack This number specifies the maximum size of each simulated process stack, in KB. Defaults to

1024.

The following pairs of parameters specify the latencies and repeat delays of ALU and FPU instructions. In
each pair, the first element specifies the latency, while the second specifies the repeat delay. The latency
is the number of cycles after instruction issue that the calculated value can be used by other instructions.
The repeat delay 1s the number of cycles after the issue of an instruction that the functional unit type used
is able to accept a new instruction (a value of 1 indicates fully-pipelined units). Each parameter below is
expected to be followed by a positive integer used to specify the value of the corresponding parameter.

latint,repint Latency and repeat delay for common ALU operations (e.g. add, subtract, move). Default
latency and repeat delay of 1 cycle.

latmul,repmul Latency and repeat delay for integer multiply operations. Default latency of 3 cycles and
repeat delay of 1 cycle.

latdiv,repdiv Latency and repeat delay for integer divide operations. Default latency of 9 cycles and repeat
delay of 1 cycle.

latshift,repshift Latency and repeat delay for integer shift operations. Default latency and repeat delay
of 1 cycle.

latflt,repflt Latency and repeat delay for common FP operations (e.g. add, subtract, multiply). Default
latency of 3 cycles and repeat delay of 1 cycle.

latfmov,repfmov Latency and repeat delay for simple FP operations (e.g. move, negate, absolute value).
Default latency and repeat delay of 1 cycle.

latfconv,repfconv Latency and repeat delay for FP conversions (e.g. int-fp, fp-int, float-double). Default
latency of 5 cycles and repeat delay of 2 cycle.

latfdiv,repfdiv Latency and repeat delay for FP divide. Default latency of 10 cycles and repeat delay of 6
cycle.

4.2. CONFIGURATION FILE 27

latfsqrt,repfsqrt Latency and repeat delay for FP square-root. Default latency of 10 cycles and repeat
delay of 6 cycle.

Thus, to specify that common FPU operations have a latency of 5 cycles and a repeat delay of 2 cycles, the
configuration file should include:

latfit 5

repflt 2

4.2.3 Cache hierarchy parameters

lI1type This parameter specifies the L1 cache type. If “WT” is chosen, a write-through cache with no-
write-allocate is used. If “WB” is chosen, a write-back cache with write-allocate is used. With a
write-through cache, the system will also have a coalescing write-buffer. (In either case, the secondary
cache is write-back with write-allocate.) The default is “WT”.

linesize The number given here specifies the cache-line size in bytes. Defaults to 64.
11size This number specifies the size of the L1 cache in kilobytes. Defaults to 16.

I1assoc This number specifies the set associativity of the L1 cache. The cache uses an LRU-like replacement
policy within each set (the policy uses LRU ages, but prefers to evict lines held in shared state rather
than lines held in exclusive state, and unmodified lines rather than modified lines). Defaults to 1.

lI1ports Specifies the number of cache request ports at the L1 cache. Defaults to 2.

I1taglatency Specifies the cache access latency at the L1 cache (for both tag and data access). Defaults to
1. (With the assumption of a 300 MHz processor, this represents a 3 ns on-chip SRAM.)

12size This number specifies the size of the L2 cache in kilobytes. Defaults to 64.

12assoc This number specifies the set associativty of the L2 cache. The cache uses an LRU-like replacement
policy within each set. Defaults to 4.

12taglatency Specifies the access latency of the L2 cache tag array. Defaults to 3.
12datalatency Specifies the access latency of the L2 cache data array. Defaults to 5.

wrbbufextra The L2 cache includes a buffer for sending subset enforcement messages to the L1 cache and
write-backs to memory. Write-backs remain in the buffer only until issuing to the bus, and subset
enforcement messages remain only until issuing to the level 1 cache. This buffer must contain at least
one entry for each L2 MSHR, since each outbound request may result in a replacement upon reply.
The number specified with wrbbufextra indicates the number of additional entries to provide for the
write-back buffer in order to allow more outgoing requests while other write-backs still have not issued.
Defaults to 0. (More details about the write-back buffer are given in Chapter 13.)

ccprot The string given here specifies the cache-coherence protocol of the system; mesi and msi are accept-
able values. Defaults to mesi.

wbufsize If a write-through L1 cache is used, this parameter specifies the number of cache lines in the
coalescing write-buffer. With a write-back L1 cache, this parameter is ignored. Defaults to 8.

mshrcoal This number specifies the maximum number of requests that can coalesce into a cache MSHR or
a write buffer line. Defaults to 16 (64 is the maximum allowable).

4.2.4 Bus parameters
buswidth This number specifies the width of the bus, in bytes. Defaults to 32.

buscycle The number listed here gives the bus cycle time in processor cycles. Defaults to 3.

busarbdelay This parameter gives the bus arbitration delay in processor cycles. Defaults to 1.

28 CHAPTER 4. CONFIGURING RSIM

4.2.5 Directory and memory parameters

memorylatency This number specifies the DRAM access latency in cycles. (Note that this is only the
actual time at the DRAM, and does not include time on the bus, in the caches, or at any other
resource.) Defaults to 18 cycles (60 ns with a 300 MHz processor).

dircycle This number gives the minimum directory access latency, which is the latency incurred by non-
data responses to the directory. (Requests to the directory for data or data-carrying responses to the
directory must access the DRAM and thus incur the latency specified by memorylatency.) This
parameter is specified in processor cycles, and defaults to 3.

meminterleaving This number specifies the degree of memory and directory interleaving at each node.
Defaults to 4.

dirbufsize This number sets the maximum number of pending requests at the directory at any time. If
additional requests are received, they are bounced back to the sender with a retry request.

dirpacketcreate Some transactions require the directory to send coherence requests to the other caches
(such as invalidations or cache-to-cache transfer requests). This number specifies the time to produce
the first such coherence request for a given transaction, in processor cycles. Defaults to 12.

dirpacketcreateaddtl This number specifies the additional delay in processor cycles for each subsequent
coherence request for a given transaction (after the first one). Defaults to 6.

4.2.6 Interconnection network parameters

flitsize This parameter specifies the number of bytes in each network flit, which is equivalent to the width
of the network in bytes. Defaults to 8.

flitdelay This parameter gives the latency for each flit to pass through a network switch, in processor cycles.
Defaults to 4 (with a 300 MHz processor, this delay indicates a 13 ns flit latency).

arbdelay This parameter gives the delay invoked by arbitration at each network multiplexer for the head
flit of any packet. Defaults to 4.

pipelinedsw This parameter allows the use of pipelined network switches, in which the flit delay of multiple
flits can be partially overlapped. With pipelined switches, the flit delay for each successive flit in a
packet will begin pipelinedsw number of cycles after the start of the previous flit delay. If the number
0 or a number greater than the flit delay is specified here, the switches are not pipelined. Defaults to 2
(with an assumption of 300 MHz processors, this implies a 150 MHz network cycle for a fully pipelined
switch.)

netbufsize This parameter specifies the number of flits that can be buffered in each network switch. Defaults
to 64.

netportsize This parameter specifies the network interface buffer sizes, in packets. Each node has 2 network
interfaces, one for sending messages to the network, and one for receiving messages from the network.
Each network interface has 2 port queues (described in Section 12.1) connecting the network interface to
the bus (one for requests and one for replies). This parameter specifies the number of entries available
in each port queue. This parameter is also used to specify the number of internal buffer entries in
each network interface for actually sending messages to the network or receiving messages from the
network. Each network interface has two internal buffers: one for requests and one for replies. The
total number of packets in these two internal buffers is set by the parameter netportsize, split evenly
between requests and replies. The network interface and interconnection network is described more
thoroughly in Chapter 15.3.

4.3. COMPILE-TIME PARAMETERS 29

4.2.7 Queue sizes connecting memory and network modules

The modules in the memory system are connected through ports, which are FIFO queues (see Section 12.1
for more information). Each port is a bidirectional connection, but the queues in each direction can have
different lengths. An entry in the port queue is removed as soon as the appropriate module can start
processing it. Thus, the port queue size also limits the number of requests that can be processed by the
module each time the module is activated. For example, if a cache is intended to initiate processing for four
requests each cycle, the request port queue should contain at least four entries.

The port queue can also contain more than the minimum number of entries; in these cases, the queue
acts a buffer to decouple a faster module from a slower module. For this reason, the default port sizes from
the L2 cache to the bus are larger than most of the other cache ports; these port sizes are chosen so that
the potentially slow processing rate of the bus will not cause the L2 cache itself to stall.

The configurable port sizes are listed below, along with their default values. When applicable, the
transaction type carried by each specified port is included in parentheses. These transaction types are
explained in more detail in Section 12.2.

| Name | Description | Default |
portszllwbreq L1 — Write buffer (data request) 2
portszwbllrep Write buffer — L1 (data reply) 1
portszwbl2req Write buffer — L2 (data request) 1
portszl2wbrep L2 — Write buffer (data reply) 1
portszl1]2req L1 — L2 (data request) 1
portszl2l1rep L2 — L1 (data reply) 1
portszl2l1cohe L2 — L1 (coherence request [including subset enforcement]) | 1
portszl112cr L1 — L2 (coherence reply) 1
portszl2busreq L2 — Bus (data request) 8
portszl2buscr L2 — Bus (coherence reply, cache-to-cache data reply) 8
portszbusl2rep | Bus — L2 (data reply) 2
portszbusl2cohe | Bus — L2 (coherence request) 2
portszbusother | Bus — other modules 16 (per port)
portszdir Directory — bus 64 (per port)

4.3 Compile-time parameters

Some parameters are specified at compile time only. This table lists the file where each of the following
parameters is specified, as well as the variable or macro controlling the value of the parameter.

| Filename | Description | Variables | Defan
Makefile Simulate sequential consistency or processor consistency system | STORE_ORDERING RC (
architecture.c | Width of module ports INTERCONNECTION WIDTH BYTES | 16
exec.cc Address generation unit latency latencies[uADDR] 1 cyc
exec.cc Address generation unit repeat rate repeat [uADDR] 1 cyc
state.h Page size (used for loading executable or increasing stack size) ALLOC_SIZE 4 KB

Chapter 5

Porting Applications to RSIM

When porting applications to run under RSIM, the user must consider the following issues:

1. RSIM process creation and shared memory model

2. RSIM applications library

3. Synchronization support for multiprocessor applications
4. Statistics collection

5. Performance tuning of the application

6. Options to improve simulation speed

This chapter describes each of the above issues and the effect they have on porting applications to RSIM.
Assembly programmers will also need to account for the unsupported instructions discussed in Section 3.1.
The reader is encouraged to see the example applications included in the apps directory of the RSIM
distribution as illustrations of the concepts discussed in this section.

5.1 Process creation and shared memory model

The RSIM multiprocessor memory model is depicted in Figure 5.1. The regions below the dividing line
are all private memory, while the regions above the dividing line are shared memory allocated with the
shmalloc function. The stack for each process grows automatically, while the heap and shared region grow
only through explicit memory allocation calls.

At the beginning of execution, RSIM starts an application with a single processor in the specified archi-
tectural configuration. The application must then use the fork() system call to spawn off new processes,
each of which is run on its own processor. The semantics of fork() are identical to those of UNIX fork().
In the context of RSIM, fork() causes the new processor to have its own copy of the application code
segment, global and statically allocated variables, private heap, and process stack, but the new processor has
the same logical version of the shared portion of the address space. Since RSIM currently does not support
multitasking, indeterminate results will arise if more processes are started than the number of processors
specified in the configuration file.

The only way to allocate shared memory is through the shmalloc function (which has syntax similar
to malloc). Memory allocated using shmalloc cannot currently be freed; code that needs a substantial
amount of runtime dynamic shared-memory allocation and freeing should implement its own shared-memory
allocator, using the shmalloc call only to allocate large regions of shared memory.

In multiprocessor mode, RSIM assumes a perfect hit rate for private accesses. Resource contention and
instruction scheduling for private accesses is simulated, but the actual cache behavior is not. Private memory
includes the process stack, statically allocated data structures, and heap space allocated by malloc and its

30

5.2. RSIM APPLICATIONS LIBRARY 31

Shared shared
(shmalloced) | region

Stack
‘A VAVAVAY

Unused
private
Heap region
Static/Global
Program

Unused

Figure 5.1: RSIM multiprocessor memory model

standard variants. All memory to be fully simulated must be explicitly allocated using shmalloc. Note
that shmalloc can be used even in the case of uniprocessor simulations. However, in uniprocessor mode, all
accesses (private and shared) can be simulated at the caches through the use of the “n” option, discussed
in Chapter 4.

Each region of shared memory has a “home node,” which provides the directory services for the
cache lines in that region. Shared-memory regions can be associated to specific home nodes using the
AssociateAddrNode function. Regions can be associated at the granularity of a cache line. (The semantics
for AssociateAddrNode are specified in more detail in Section 5.2.) If the user does not explicitly associate
a shared region with a home node, the home node is chosen using a first-touch policy with a cache-line
granularity.

5.2 RSIM applications library

As discussed in section 3.2.4, RSIM’s trap convention differs from that of Solaris, so libraries that in-
clude Solaris system traps cannot be directly used with an application. Thus, RSIM is distributed with
the RSIM Applications Library, which provides some of the library functions needed for linking the ap-
plications to be simulated. The RSIM Applications Library includes code derived from the GNU C
Library and is distributed under the terms of the GNU Library General Public License, described at
http://wuw.gnu.org/copyleft/lgpl.html.

The RSIM applications library includes the UNIX /0O functions (close, dup, dup2, lseek, open, read,
and write), the stdio library (e.g. printf, fscanf, fopen), the sbrk memory allocation system trap,
system traps associated with timing (time and times), the exit function, the atexit function, and the
getopt function. The semantics of these functions are almost always identical to those on an ordinary UNIX
system; however, in the case of an error, these functions will not set the errno variable (set by many of the
standard UNTX functions).

Additionally, the RSIM applications library provides important multiprocessor primitives for process
management, memory allocation, memory mapping, and synchronization. (The synchronization primitives
are described in Section 5.3.) Other functions, such as the math library, the string library, the standard
memory-allocation functions (malloc, free, calloc, etc.), and random-number generators can be linked
from the ordinary system libraries.

Besides the above system traps used for supporting UNIX functions, a few additional system traps are
provided with RSIM to enable ease of programming. The call getpid() returns the processor number of
the calling process. The trap sys_bzero(void *addr, int sz) performs a fast, non-simulated clearing of
a region of memory. This trap can be useful for speeding up initialization in some applications.

As described in Section 5.1, new processes are generated in RSIM using the fork() call, which spawns
off a new process on a separate processor. RSIM also provides a new library function called atfork() which
provides a set of optional cleanup functions to be called by the parent process before executing a fork(),

32 CHAPTER 5. PORTING APPLICATIONS TO RSIM

just as the standard UNIX function atexit() does for the exit () call.

Shared memory can only be allocated through the use of the function void *shmalloc(int size). This
function returns a pointer to a region of shared memory with a size of size, just as malloc does for the
private heap. Currently, this function returns regions starting at a cache-line boundary.

AssociateAddrNode(void #start, void #*end, int proc, char *name) assigns proc as the home
node for the memory range from start (inclusive) to end (exclusive). This assignment can be done at
the granularity of a cache line. This function is an optional performance-tuning technique for applications;
if a cache line being accessed is not associated, it will be associated using a first-touch policy on a cache-line
granularity. The name argument is required and can be used internally for debugging, but currently has no
externally visible role.

abort(int code) forces all processors to stop immediately; this differs from exit(int code) in that
exit only terminates the calling process. Further, exit calls the cleanup functions provided through the
atexit library functions, whereas abort does not.

GET _L2CACHELINE SIZE() returns the cache-line size of the secondary cache, which is the system’s coher-
ence granularity. This can be useful for padding out array accesses to avoid false-sharing.

Some system traps support timing functions. time and times report the simulated time of the application
execution and have nearly the same semantics as in Unix, although time starts the clock at the beginning
of simulation rather than the beginning of 1970. sysclocks() gives a more detailed measurement, actually
returning the number of simulated processor clock cycles since the start of the simulation.

Currently, some UNIX system traps are not supported with RSIM at all; consequently, functions based
on these traps (such as strftime and signal) are not supported. Additionally, self-modifying code is not
supported.

5.3 Synchronization support for multiprocessor applications

The RSIM applications library supports three types of multiprocessor synchronization primitives — locks,
flags (or pauses), and barriers. To use the lock and flag synchronization functions, the application must
include the header file <locks.h>; for barriers, the application must include <treebar.h>.

Locks are supported through a test-and-test-and-set mechanism. The lock functions act on a single
integer in a shared region (one allocated with shmalloc). These locks should be declared volatile in order to
prevent the compiler from optimizing accesses to them. The macro GETLOCK (int *lock) takes a pointer to
the lock as an argument and spins with a test-and-test-and-set loop until the lock is available. The macro
FREELOCK (int #*lock) takes a pointer to the lock as an argument and frees the lock. Both of these macros
invoke functions which perform the necessary operations. These macros also include the MEMBAR instructions
required for release consistency. All instructions within a lock acquire form an aggregate class of type ACQ
for statistics purposes, while instructions within a lock release are aggregated as REL.

Flags are supported through an ordinary spinning mechanism. The macro
WAITFLAG(int *flag, int val) spins on the flag pointed to by flag until the integer value held in
that address reaches the value of val. Similarly, the macro WRITEFLAG(int *flag, int val) sets the
value addressed by flag to val. The functions associated with both of these macros include the necessary
MEMBAR instructions for RC. Flag instructions are not aggregated by default, as these are often used in code
to form novel synchronization types (such as prefix-summing trees). If the user desires to have flags counted
as an aggregate class, he or she must explicitly place a START <agg> and END_<agg> around flag macros,
where <agg> represents one of the aggregate classes discussed in Section 5.4. The aggregate class SPIN is
provided specifically for this purpose; alternatively, the USR<num> aggregates can be used to isolate several
independent flags.

The only type of barrier supported is a simple binary tree barrier. A tree barrier is a structure of type
TreeBar and can be declared as an ordinary global variable. The function TreeBarInit(TreeBar *bar, int
numprocs) is used to initialize the tree barrier to a barrier that requires the specified number of processors.
This function should be called before the fork() system call is invoked. When synchronizing, each processor
should call the macro TREEBAR(TreeBar *bar, int pid), where pid is the processor’s unique ID number
(initially determined through getpid()). The function called by this macro includes the necessary MEMBAR
instructions. All instructions within a barrier are aggregated as type BAR.

5.4. STATISTICS COLLECTION 33

The set of PARMACS macros provided with the RSIM distribution (described in Section 2.4) defines all
the synchronization macros used in SPLASH and SPLASH-2 applications.

The user will need to provide any other synchronization desired (such as more advanced mutual exclusion
mechanisms or barriers). The user should be careful to place the appropriate MEMBARs in any such synchro-
nizing libraries. The macros ACQ_MEMBAR and REL_MEMBAR are provided in the header file <traps.h> for
the user’s convenience: ACQ_MEMBAR should be inserted after an acquire, while REL_MEMBAR should be placed
before a release operation to ensure that the appropriate fence operations are used with the RC model.

5.4 Statistics collection

RSIM automatically generates statistics for many important characteristics of the simulated system. RSIM
has special functions and macros that can be used to subdivide these statistics according to the phases of
an application.

The user can add the newphase and endphase functions to indicate the start and end of an application
phase. The newphase function takes a single integer argument that represents the new phase number (the
simulation starts in phase 0). This function also clears out all current processor simulation statistics. The
endphase function takes no arguments. This function prints out both a concise summary and a detailed set
of processor simulation statistics, described in Chapter 6.

There are additional macros that can be used within a processor phase to aggregate a set of instructions
into a single statistics class. These macros are START USR<num> and END_USR<num>, where num is an integer
between 1 and 9. When RSIM prints the processor statistics for a phase, all the time spent between a set of
these aggregation macros is lumped together, rather than being associated with the individual instructions
included therein. In addition to the USR<num> aggregation classes, there are also aggregation classes for
various synchronization operations called ACQ, SPIN, REL, and BAR. These aggregation classes can be used
with START_ACQ, END_ACQ, and so forth.

Note that aggregate classes cannot be nested. Additionally, an aggregate class is not counted as graduat-
ing until all instructions in the class have graduated. Consequently, the partial statistics printed according to
the “~A” option in Section 4.1.7 (i.e. the the number of cycles since each processor graduated an instruction)
do not count instructions graduated within an aggregate class.

The functions StatReportAll and StatClearAll handle the statistics associated with the caches, mem-
ory system, and network. Each one applies to the entire system, and thus should usually be called only by
processor 0 just after a barrier. StatReportAll prints out a detailed set of statistics associated with the
caches, memory system, and network of the system, while StatClearAll clears all the statistics gathered.

5.5 Performance tuning

For best performance, the user should invoke the compiler with full optimization flags as described in
Section 2.4. With such options, the compiler will not generate code using outdated instructions such as
MULScc [23], which lead to poor performance with RSIM (see Section 3.2.4).

Whenever possible, the user should use double-precision floating-point operations rather than single-
precision, as single-precision floating-point operations currently require additional overhead. Specifically,
floating-point registers in the RSIM processor are mapped and renamed according to double-precision bound-
aries. As a result, operations with single-precision destination registers are must read the previous value of
the destination register before writing a portion of the register. This causes single-precision floating point
instructions to suffer from output dependences.

The user should also inform the compiler to assume that accesses are aligned, as this will avoid unnecessary
single-precision floating point loads. The makefile provided with the sample applications has this option set
for the Sun C compiler.

34 CHAPTER 5. PORTING APPLICATIONS TO RSIM

5.6 Options to improve simulation speed

RSIM provides a few special functions and macros to increase the speed of simulation. These functions
allow faster simulation in two ways: by moving application initialization offline and by simulating less of the
memory system.

5.6.1 Moving data initialization offline

The RSIM applications library provides two special-purpose functions, SpeciallnitInput and
SpecialInitOutput, that can be used in some cases to bypass the initialization phase of an application. In
applications that spend a large amount of time in initialization, the initialization phase can be run through
RSIM or natively on the host machine once. After the initialization phase, a “snapshot” of the state of the
memory can be taken, such that later simulation runs can load this snapshot into their memory space in lieu
of actually simulating the initialization phase.

The SpecialInitOutput function allows the memory values of a program variable to be stored to a file
specified in the arguments. For example,

SpecialIlnitOutput(char *array, int size, char *filename);

allows the contents of the program variable specified by bigarray of size (in bytes) specified by size to
be stored in the file specified by filename’.

The SpecialInitInput function can then be used in the actual simulated run of the application to load
the contents of this file into the data array and quickly initialize the data structures. SpecialInitInput

can be invoked as follows,

SpecialInitInput(char *array, int size, char *filename);

The SpecialInitInput and SpecialInitOutput functions thus provide a simple way to facilitate offline
(faster) initialization to be interfaced with a more detailed simulation methodology.

Note that the values held in these data arrays should not include pointers, as the pointers used in the
native or simulated run which invoked SpecialInitOutput may not correspond to the pointers needed by
the simulated runs which will call SpecialInitInput.

5.6.2 Avoiding memory system simulation

In cases, where a detailed memory system simulation is not important (for example, initialization and
testing phases), the macro MEMSYS_OFF can be used to speed up the simulation. This macro turns off the
multiprocessor and memory system simulation and instead assume a perfect cache hit rate. This macro can
be useful for initialization and cleanup phases; the macro MEMSYS_ON is used to restart full memory system
simulation. Note that each processor must independently invoke MEMSYS_OFF and MEMSYS_ON; the decision of
whether or not to simulate the full memory system is made on a processor-by-processor basis.

lspecialInitOutput is simply an fopen followed by an furite.

Chapter 6

Statistics Collection and Debugging

6.1 Statistics collection

RSIM provides a wide variety of statistics related to the processors, the caches, the network, and the memory
system. RSIM prints a concise summary of the most important statistics on the standard error file and a
detailed set of statistics on the simulation output file; both can be redirected through command line options.
An application can use the phase-related functions and statistics-reporting functions described in Chapter 5
to print statistics for relevant portions of the application separately, rather than for the entire application
at once.

Additionally, RSIM provides partial statistics periodically (with a period set by the “-A” option), in
which each processor specifies the amount of simulated time it has been executing, and the number of cycles
since the last graduation (for this statistic, an aggregate class is not considered to provide any graduations
until all instructions in the set have graduated). This information can be useful for detecting application
deadlocks (if each synchronization is made into an aggregate class), or for detecting deadlocks caused by
simulator changes. RSIM can be forced to print partial statistics immediately if the user sends an alarm
signal to the RSIM process by invoking a kill -ALRM <pid> at the shell prompt, where <pid> is the
UNIX process ID of the simulator.

6.1.1 Overall performance statistics

RSIM displays the total execution time and the TPC (instructions per cycle) achieved by the program on
the system simulated. In order to better characterize the bottlenecks in application performance, the total
execution time is further categorized into busy time and stalls due to various classes of instructions. These
classes of instructions include ALU, FPU, data reads, data writes, exceptions, branches, synchronization,
and up to 9 user-defined aggregate classes discussed in Section 5.4. Data read and write stalls are further
split according to the level of the memory hierarchy at which the memory operations were resolved: L1
cache, L2 cache, local memory, or remote memory.

With ILP processors, the various components of execution time described above are not easily separable,
as multiple instructions can execute in parallel and out of order on such systems. We use the following
policy, also used in other studies (e.g. [14, 15, 18]) to attribute execution time to the various components.
If, in any given cycle, the processor retires the maximum allowable number of instructions, we count that
cycle as part of busy time. Otherwise, we charge that cycle to the stall time component corresponding to
the first instruction that could not be retired. Thus, the stall time for a class of instructions represents the
number of cycles that instructions of that class spend at the head of the active list before retiring.

6.1.2 Processor statistics

RSIM provides statistics on the branch prediction behavior, the occupancy of the active list, and the utiliza-
tion of various functional units. RSIM also provides statistics related to the performance of the instruction

35

36 CHAPTER 6. STATISTICS COLLECTION AND DEBUGGING

fetching policy according to the metrics of availability, efficiency, and utility [1]. Deficiencies in each of these
metrics are categorized according to the type of instruction or event that prevented peak performance.

6.1.3 Cache, network, and memory statistics

RSIM classifies memory operations at various levels of the memory hierarchy into hits and misses. Misses are
further classified into cold, conflict, capacity, and coherence misses. The method for distinguishing between
conflict and capacity misses is discussed in Section 13.6. Statistics on the average latency of various classes
of memory operations, MSHR occupancy, and prefetching effectiveness are also provided by default. RSIM
also provides statistics on bus utilization, write-buffer utilization, network contention, traffic, the usage of
the network switch buffers, and the types of packets sent in the network (based on packet length and distance
traveled).

6.2 Utilities to process statistics

The RSIM distribution includes several shell-scripts and awk-scripts to process the statistics files produced
by the simulator. These are located in the bin directory. These are useful for collecting information about
the behavior and performance of applications being simulated.

Each of the example applications provided with the RSIM distribution includes a testoutputs directory
that has sample concise and detailed statistics generated by RSIM, as well as the output of several of the
utilities described in this section.

6.2.1 The stats and pstats programs

The stats program is used to further condense the concise statistics generated by RSIM. This program
displays the most important variables from the concise statistics file produced by RSIM, averaged across
all processors. The stats program takes as input the phase of interest for the application and the concise
statistics file of RSIM (the file redirected using the “-2” option, or the _err file produced as a result of
the “-S” option). Multiple files can be processed with a single invocation of stats; each file is processed
separately. For example, to condense the statistics of phase 2 from the files appl_err and appl_opt_err,
one would type:

stats appl_err appl_opt_err 2

The statistics displayed are execution time and its various components, as well as the average latencies
of memory operations, as seen from the point of entering the processor active list, from the point of address
generation, and from the point of issue to the caches.

pstats is invoked with the same arguments as stats: the only difference i1s that pstats gives a more
detailed categorization of the memory component of execution time according to the level of the memory
hierarchy at which each access was resolved.

6.2.2 The plotall program

The plotall program converts the application statistics generated by pstats into a form that can be
processed using the splot program. (At the time of this release, splot is available from the URL
ftp://cag.lcs.mit.edu/pub/splot/.) Multiple files can be specified with a single invocation of plotall.
The plotall script generates two different types of statistics. The first set of statistics gives the execution
time for each simulation run specified, split into the components discussed in Section 6.1.1. The execution
times for the various runs in this graph are normalized to the execution time of the first specified simula-
tion run. The second set presents the relative weights of each of the components of execution time; thus
the execution-time statistics for each application concise statistics file 1s normalized to its own execution
time. This set of statistics is useful for determining the relative contribution of each specific component of
execution time. The plotall program then invokes splot to produce PostScript plots from these statistics.

6.2. UTILITIES TO PROCESS STATISTICS 37

This final stage requires the splot program to be available and in a directory included in the user’s PATH
environment variable.

To create plots called appleff exec.ps (execution times) and appleff wt.ps (relative component
weights) of the phase 2 statistics from the files app1_err and appl_opt_err, one would type:

plotall appl eff appl_err applopt_err 2

The read and write components of execution time are shown in shades of red and green, respectively.
Four shades of these colors are used to represent L1 hits (the lightest shade), L2 hits, local memory accesses,
and remote memory accesses (the darkest shade).

6.2.3 The statsmiss program

The statsmiss program is used to generate some commonly used performance metrics from the concise and
detailed statistics output files produced by RSIM, averaging across all processors or caches. The statistics
displayed include the total number of read misses, the average absolute read miss latency from the point
of address generation, the average read miss latency overlapped by the ILP processor between the point
of address generation and graduation, and statistics about the number of references to various levels of
the cache hierarchy. The output from statsmiss also includes information about the MSHR (miss status
holding register) utilization at the L1 and L2 caches, as well as the average absolute latency beyond the L2
cache seen by read misses in the system.

Multiple simulation runs can be specified with a single invocation of statsmiss; each run is processed
separately. The stats miss program takes as input the the simulation output file names (without the _stat
or _err suffixes), as well as the phase of interest for the program. The processor phase is the same as the
phase used in the stats utility. However, the stats miss utility also introduces the concept of the cache
phase. The cache phase is the number of sets of statistics generated by StatReportAll before the specific
call to StatReportAll that is of interest. Thus, the first call to StatReportAll leads to cache phase 0, and
SO on.

The syntax for invoking stats_miss to process the files associated with two different runs of an application
(here appl_stat and appl_err, along with applopt_stat and applopt._err) is:

statsmiss -cache 1 appl applopt 2

where the cache phase of interest is assumed to be 1 and the processor phase of interest is assumed to
be 2. If the cache phase and processor phase are the same for the files specified, the cache phase does not
need to be specified.

6.2.4 The MSHR program

The MSHR utility interfaces with splot to generate plots of the request MSHR utilization at the caches.
These plots can be used to indicate overlap and contention in the system. Each plot gives the percentage of
the time spent in the phase of interest (on the Y-axis) for which misses occupy at least N MSHRs, where N
is the number on the X-axis. The phases understood by MSHR correspond to the cache phases of statsmiss.
The maximum X-axis value is currently set to 8 in this script. Multiple simulation runs can be plotted on
the same graph.

The MSHR program uses the following command line. MSHR plotname graphl appl_stat phasel

[graph2 app2_stat phase2]

plotname specifies the title of the plot. graph1 and graph?2 specify the names of the individual graphs in
the plot, and are used in the legend of the plot. appl_stat and app2_stat are the filenames of the detailed
statistics files generated by the simulation runs being plotted. phasel and phase2 specify the cache phase
to be used for each application detailed statistics file.

The program generates two command files for the L1 and L2 MSHR utilization in the working directory
called MSHR_plotnameLl.cmd and MSHR_plotnameL2.cmd respectively, where plotname is the title of the
graph specified in the command line. MSHR then runs splot on these command files to generate Postscript
output files, which are displayed using ghostview.

38 CHAPTER 6. STATISTICS COLLECTION AND DEBUGGING

6.3 Debugging

6.3.1 Support for debugging RSIM

RSIM provides compile-time options to enable copious debugging and diagnostic output to be printed to
the standard output and to separate files. Such tracing information is likely to be very important to anyone
seeking to modify RSIM. There are various compile time flags which the user can selectively turn on to get
debugging information for one section of the system (e.g., the network interfaces, the first level cache), but it
is often the case that the user will want all debugging flags available turned on together, as in the debugging
makefiles provided with the RSIM distribution.

The processor debugging output is written into files called corefiles. Each processor has its own corefile,
and the suffix of each file represents the processor number (with a corefile. i file for each processor with
processor number 7.) These files contain detailed information on each stage of simulation for every instruction.

The debugging output related to the memory hierarchy and network is printed on the simulation output
file. This debugging information is also very detailed, providing information about nearly all relevant activity
in the cache hierarchy, the directory, the busses, and the network interfaces.

Because of the amount of information provided by these debugging options, these files can quickly grow
into several megabytes of data in just thousands of processor cycles. The “-t” and “-c” options described in
Chapter 4 can be used to limit this tracing to the exact spot where the problem is suspected. In the case of
deadlocks, this moment of simulation time can be determined to some extent through the use of the periodic
partial statistics displayed by RSIM, as processors will usually stop graduating instructions soon after the
deadlock ensues.

6.3.2 Debugging applications

RSIM does not currently include support for debugging application programs with a debugger like gdb or
dbx, as RSIM does not expose information about the application being simulated to such a debugger. If
RSIM encounters a nonrecoverable exception (such as a segmentation fault or bus error), all processors
halt immediately and a termination message is printed on the standard error file. Application errors can
be debugged either by running the applications natively on a machine using an ordinary debugger, or by
running the application through RSIM instrumented with many printf calls. If the latter option is chosen,
the debugging code should include an £f1lush(stdout) after each printf, as stdio streams are not guaranteed
to be flushed on an abnormal exit in RSIM.

A common mistake in porting applications to RSIM is to forget the “volatile” declaration for shared
synchronization variables. This is important for avoiding compiler optimizations that may cause infinite
loops.

Part 11

RSIM DEVELOPER’S GUIDE

39

Chapter 7

Overview of RSIM Implementation

The remainder of this manual describes the implementation of RSIM. It is intended for users interested in
modifying RSIM, and assumes an understanding of Part I of this manual.

RSIM is organized as a discrete-event-driven simulator. The central data structure of such a simulator
is an event list consisting of events that are scheduled for the future in simulation time. Typically, an event
for a hardware module is scheduled for a given time only when it is known that the module will need to
perform some action at that time. Thus, discrete-event-driven simulators typically do not perform an action
for every cycle. In RSIM, however, the processors and cache hierarchies are modeled as a single event (called
RSIM_EVENT), which is scheduled every cycle. This is because we expect that some activity will be required
of the processor and caches every cycle. Note that RSIM is not a pure cycle-by-cycle simulator since events
for the busses, directories, and network models are scheduled only when needed.

RSIM 1is implemented in a modular fashion for ease of development and maintenance. The primary
subsystems in RSIM are the event-driven simulation library, the processor out-of-order execution engine, the
processor memory unit, the cache hierarchy, the directory module, and the interconnection system. These
modules perform the following roles:

Event-driven simulation library Steers the course of the simulation, activating the processors, memory
hierarchy, and network subsystem according to the demands of the simulated application and system.
This subsystem is based on the YACSIM event-driven simulation library [3, 8].

Processor out-of-order execution engine Maintains the processor pipelines described in Section 3.2.

Processor memory unit Interfaces the processor pipelines with the caches, maintaining the various or-
dering constraints described in Section 3.2.3.

Cache hierarchy Processes requests to the caches, including both demands from the processor and de-
mands from external sources. A significant part of this subsystem is based on code from the RPPT
(Rice Parallel Processing Testbed) direct-execution simulator.

Directory and memory module Processes requests from various sources, maintaining the cache-
coherence protocol of the system. This module is also based on code from RPPT.

Interconnection system Connects the various modules within each node, and the nodes within the mul-
tiprocessor system. The multiprocessor interconnection network is based on the NETSIM simulation
environment [7].

Each of the above subsystems acts as a largely independent block, interacting with the other units
through a small number of predefined mechanisms. Thus, we expect most modifications to RSIM to be quite
focussed, and affecting only the desired functionality. Our experience with RSIM in a classroom setting has
borne these expectations out to some extent; however, each type of simulator change does require detailed
knowledge of the subsytem being modified.

41

42 CHAPTER 7. OVERVIEW OF RSIM IMPLEMENTATION

The remaining chapters in this part of the manual describe the above subsystems in detail and provide
other additional information needed to understand the implementation of RSIM. Chapter 8 gives a brief
explanation of the event-driven simulation library underlying RSIM and the manner in which RSIM uses it.
Chapter 9 describes the initialization routines in RSIM. Chapter 10 gives an overview of RSIM_EVENT and
describes the details of each stage in the processor out-of-order execution engine. Chapter 11 explains the
implementation of the processor memory unit. Chapter 12 describes fundamental data structures used for
the cache, memory, and network systems. Chapter 13 explains the key functions within the simulation of
the cache hierarchy. Chapter 14 describes the implementation of the directory module. Chapter 15 explains
the principles of the interconnection system simulated in RSIM. Chapter 16 explains the additional support
provided by RSIM for statistics and debugging. Finally, Chapter 17 describes the RSIM predecoder and the
unelf utility.

Chapter 8

Event-driven Simulation Library

The event-driven simulation library underlies the entire RSIM simulation system, guiding the course of the
various subsystems in RSIM. The event-driven simulation library used in RSIM is a subset of the YACSIM
library distributed with the Rice Parallel Processing Testbed [3, 8].

Section 8.1 describes the YACSIM event-manipulation functions used by RSIM. Section 8.2 describes
the use of YACSIM semaphores, which can be used to control the interaction between YACSIM events.
Section 8.3 describes the fast memory-allocation pools used in RSIM.

8.1 Event-manipulation functions

Source files: src/MemSys/driver.c, src/MemSys/act.c, src/MemSys/pool.c, src/MemSys/userq.c,
src/MemSys/util.c

Header files: incl/MemSys/simsys.h

All actions that take place during the course of an RSIM simulation occur as part of YACSIM events.
Each event has a function for its body, an argument for use on invocation, and a state used for subsequent
invocations of the same event. Each time an event is scheduled, the body function is invoked. The event is
not deactivated until the body function returns control to the simulator (through a return statement or the
end of the function). Thus, an event can be thought of as a function call scheduled to occur at a specific
point in simulated time, possibly using a previously-set argument and state value and/or setting a state
value and argument for use on a future invocation.

An event is a specific type of YACSIM Actwity; however, it is the only type used in RSIM. The following
functions are used for manipulating events in RSIM.

e EVENT #NewEvent(char *ename, void (*bodyname)(), int delflg, int etype)

This function constructs a new event and returns its pointer. The state of the event is initialized to 0.
The ename argument specifies the name of the event. bodyname is a pointer to a function that will be
invoked on each activation of the event. The function must take no arguments and must have no return
value; the argument actually used by the event is passed in through ActivitySetArg described below
and 1s read with ActivityGetArg. delflg can be either DELETE or NODELETE, and specifies whether
the storage for the event can be freed at the end of its invocation. Events specified with DELETE can
only be scheduled once, whereas NODELETE events can reschedule themselves or be rescheduled multiple
times. The type argument is available for any use by the user of the event-driven simulation library.
RSIM events always have this field set to 0.

e int EventSetState(int stval)

This function can only be called within the body of an event, and it sets the state value of the event
to stval.

43

44

CHAPTER 8. EVENT-DRIVEN SIMULATION LIBRARY

int EventGetState()

This function returns the state value of the calling event, and can be used at the beginning of the event
to determine the current state of the event.

void ActivitySetArg(ACTIVITY *aptr, char *argptr, int argsize)

This function sets the argument of the event pointed to by aptr to the value of argptr, with argsize
the size of the argument structure in bytes. Note that the argument is passed in by pointer; conse-
quently, the value of the argument structure at the time of event invocation may differ from the value
of the argument strucutre at the time when the argument is set, if intervening operations reset the
value of the structure.

char *ActivityGetArg(ACTIVITY *aptr)

This function returns the argument pointer for a given event; if this function is called with a NULL
pointer or the predefined value ME, the function returns the argument pointer for the calling event.
int ActivityArgSize(ACTIVITY *aptr)

This function returns the size of the argument structure for a given event; if this function is called with
a NULL pointer or the predefined value ME, the function returns the argument size for the calling event.
ActivitySchedTime (ACTIVITY *aptr, double timeinc, int blkflg)

This operation schedules the event pointed to be aptr for timeinc cycles in the simulated future. The
only valid value of blkflg for events is INDEPENDENT.

EventReschedTime(double timeinc, int stval)

This operation schedules the next invocation of the event for timeinc cycles in the simulated future.
The state of the event upon rescheduling will be stval. (This function must be called within the event
to be rescheduled, whereas ActivitySchedTime can be called from another event or from outside an
event.)

ActivitySchedSema(ACTIVITY *aptr, SEMAPHORE *semptr, int blkflg)

This operation schedules the event pointed to be aptr for the time when the semaphore pointed to
by semptr becomes available (described in Section 8.2). The only valid value of blkflg for events is
INDEPENDENT.

EventReschedSema(SEMAPHORE *semptr, int stval)

This operation schedules the next invocation of the event according to the time when the semaphore
pointed to by semptr becomes available. The state of the event upon rescheduling will be stval. (This
function must be called within the event to be rescheduled, whereas ActivitySchedTime can be called
from another event or from outside an event.)

The YACSIM event-list is implemented as a calendar queue [2]. Event-list processing in YACSIM is

controlled by the function DriverRun(double timeinc), which processes the event list for timeinc cycles
or until the event list has no more events scheduled (if the value of timeinc given is less than or equal to 0).

The function void YS__errmsg(char *s) can be used at any point in the simulation to print out the

error message s and terminate the simulation. This function is commonly used for unexpected simulation
occurrences. The function void YS_warnmsg(char *s) prints out the warning message s on the simulation
output file, but does not terminate the simulation. This function can be used to warn of unexpected
happenings in the simulated system.

8.2. SEMAPHORE FUNCTIONS 45
8.2 Semaphore functions

Source files: src/MemSys/userq.c

Header files: incl/MemSys/simsys.h

YACSIM Semaphores are used for controlling the interaction of events in the simulator. The following
semaphore functions are supported in RSIM:
e SEMAPHORE *NewSemaphore(char *sname, int i)
This function creates a new semaphore with the name specified in sname and the initial semaphore
value 1.
e void SemaphoreSignal (SEMAPHORE #sptr)

This function activates the event at the head of the semaphore queue (added through a previous call to
ActivitySchedSema or EventReschedSema). If there is no event, the semaphore value is incremented.

8.3 Memory allocation functions

Source files: src/MemSys/pool.c
Header files: incl/MemSys/simsys.h

Many of the objects used in the event-driven simulation library and memory system simulator are allo-
cated using the YACSIM pool functions, which seek to minimize the number of calls to malloc and free.
Each structure in the pool must begin with the following two fields:

char *pnxt
char *pfnxt

These fields maintain the pool and the free list for the pool. The pool functions supported in RSIM are:

e YS_PoolInit(POOL #pptr, char *name, int objs, int objsz)

This function initializes the pool pointed to by pptr, setting the name of the pool to name and declaring
that this pool will allocate structures of size objsz (this size includes the pnxt and pfnxt fields).
Whenever the pool runs out of available objects, it will allocate objs structures of size objsz from the
system memory allocator.

e YS_PoolGetObj(POOL #*pptr)

This function returns an object from the given pool. If this pool does not have any objects, it should
allocate the number of objects specified on the original cool to YS_PoolInit.

This function also performs minimal initialization when allocating from the pool of memory system
transactions.
e YS_PoolReturnObj(POOL *pptr, void *optr)

This function returns the object pointed to by optr back to the pool pointed to by pptr, from which
the object was allocated. Indeterminate results will occur if an object is returned to a different pool
than the one from which it was allocated.

e void YS_PoolStats(POOL #pptr)
This function prints the number of objects allocated from and returned to a given pool. This function

can be used to detect memory leaks in certain cases.

Users further interested in the YACSIM simulation library should consult the YACSIM reference man-
ual [8].

Chapter 9

Initialization and Configuration

Routines in RSIM

Source files: src/Processor/mainsim.cc, src/Processor/simio.cc, src/Processor/config.cc,
src/Processor/exec.cc, src/Processor/units.cc, src/Processor/funcs.cc,
src/Processor/traptable.cc, src/MemSys/architecture.c, src/MemSys/net.c,

src/Processor/state.cc, src/Processor/startup.cc

Header files: incl/Processor/mainsim.h, incl/Processor/simio.h, incl/Processor/units.h,
incl/MemSys/arch.h

RSIM execution starts with the main function provided by YACSIM. This function takes the arguments
passed in on the command line and passes them to the UserMain function.

The first purpose of the UserMain function is to parse the command-line arguments. The appropriate
global variables (e.g., the size of the active list, the number of register windows) are set based on the options
described in Chapter 4.

The various input and output files used by the simulator and application are redirected according to the
command-line options. The FILE data structures called simin, simout, and simerr are set up through the
SimI0Init function; if the simulator input and output are redirected separately from the application input
and output, the function RedirectSimIO is called to point these to the appropriate files.

Next, the function ParseConfigFile is invoked to read in the options from the configuration file (de-
scribed in Chapter 4) and set global simulation variables based on these options. Each parameter recog-
nized by ParseConfigFile is associated with a global variable and a parsing function in the table called
configparams. The parsing function is used to convert the operand given for a parameter into an acceptable
input value. For example, the ConfigureCacheProt function converts the protocol names “mesi” and “msi”
to values of type enum CacheCoherenceProtocolType, while the ConfigureInt function merely calls atoi
to read a string into an integer variable. The parameter names and values are currently case-insensitive. If
the user adds any new entries to this table, the macro NUM_CONFIG_ENTRIES must also be changed accordingly.

The application to be simulated is chosen based on the command line options. The predecoded version of
the application executable is read through the read_instructions function. This sets the num_instructions
variable according to the number of instructions in the application. The hash table for the SharedPageTable
structure is initialized, and initially contains no elements.

UserMain calls the UnitArraySetup function, which defines the functional unit used by each of the
instruction types. For memory instructions, this function also specifies the type of memory access and the
amount of data read or written by each memory instruction, as well as the address alignment needed.

The FuncTableSetup function is called next to assign each instruction type to the function that emulates
its behavior at the functional units. After this, the function TrapTableInit sets up the instruction lists for
the simulator traps that are actually simulated (as opposed to only having their effects emulated). These
traps include window traps and stores of the floating-point status register.

46

47

Next, the SystemInit function is called to set up the RSIM memory system and multiprocessor intercon-
nection network according to the parameters earlier read from the configuration file with ParseConfigFile.
After setting some basic parameters according to whether or not certain features are present (such as
the write-buffer or pipelined network switches), this function calls dir net_init. More information about
dir net_init is provided in Section 12.3.

After this point, the first processor data structure (or state) is created. The constructor for this structure
sets up fundamental state parameters and initializes the auxiliary data structures used in the processor
pipeline (described in Section 10.9).

Now that the first processor data structure has been created, the system must load the application
executable and data segment into the processor’s address space, and must initialize the processor’s stack and
register set. The startup function performs each of these actions. For systems with ELF, startup interfaces
with the ELF library to extract the relevant sections from the application file; for systems without ELF,
startup relies on a version of the application file preprocessed with the unelf utility discussed in Section 2.
The stack is set up to hold the command line arguments passed to the application, and the registers %00 and
%o1 are set up to hold the corresponding values of arge and argv. (Environment variables are not currently
supported.) The PC (processor program counter) is set to the entry point of the application executable,
while the NPC (next program counter) points to the subsequent instruction.

After this point, the RSIM_EVENT function is scheduled for execution using YACSIM, and the event-driven
simulator is started.

Chapter 10

RSIM EVENT and the Out-of-order
Execution Engine

Section 10.1 gives an overview of RSIM_EVENT, the event corresponding to the processors and cache hierarchies.
The rest of this chapter focuses on the out-of-order execution engine. The other subsystems handled by
RSIM_EVENT are the processor memory unit and the cache hierarchy, and are discussed in Chapters 11 and 13.

The out-of-order execution engine is responsible for bringing instructions into the processor, decoding
instructions, renaming registers, issuing instructions to the functional units, executing instructions at the
functional units, updating the register file, and graduating instructions from the active list.

10.1 Overview of RSIM_EVENT

Source files: src/Processor/state.cc, src/Processor/pipestages.cc

RSIM_EVENT simulates the processors and cache hierarchies of the simulated system. It i1s scheduled every
cycle as described in Chapter 7. On every invocation, RSIM_EVENT loops through all the processors and
caches in the system, calling the functions described in this section.

Note that RSIM_EVENT should seek to process messages from other portions of the system without any
unexpected or unnecessary delays. Suppose, for example, that the bus unit provided a reply to the L2 cache
at time X. However, if the RSIM_EVENT planned for time X had already occurred, the RSIM_EVENT function
would not be able to pick up the reply until time X + 1. On the other hand, if the RSIM_EVENT function
had not already been processed for the cycle, RSIM_EVENT would pick up the reply at time X. Thus, the
timing behavior of the would be non-deterministic and could include unexpected delays. To avoid this sort
of problem, RSIM_EVENT is actually scheduled to occur at an offset of 0.5 cycles from the processor cycle.
RSIM_EVENT starts by completing operations that finished during the previous cycle, and then initiates new
operations based on the current cycle.

For each processor, RSIM_EVENT first calls L1CacheOutSim and L2CacheOutSim (described in Section 13),
which are used to process cache accesses. Then, CompleteMemQueue is called to inform the memory unit of
any operations that have completed at the caches. CompleteQueues is used to process other instructions
that have completed at their functional units.

Then, RSIM_EVENT calls maindecode. This function starts out by using update_cycle to update the
register file and handle other issues involved with the completion stage of the pipeline. Next, graduate cycle
is called to remove previously completed instructions in-order from the active list and to commit their
architectural state. Then, maindecode calls decode_cycle to bring new instructions into the active list.
After this, maindecode returns control to RSIM_EVENT.

RSIM_EVENT then calls IssueQueues, which sends ready instructions to their functional units. After this,
the functions LiCacheInSim and L2CacheInSim are called for the caches to bring in new operations that
have been sent to them. After this, RSIM_EVENT loops on to the next processor.

48

10.2. INSTRUCTION FETCH AND DECODE 49

Each of the functions mentioned above is more thoroughly discussed in the chapter related to its phase
of execution. In particular, CompleteQueues, update cycle, graduate _cycle, maindecode, decode cycle,
and IssueQueues are part of the out-of-order execution engine, which is discussed in the next several sections.

10.2 Instruction fetch and decode

Source files: src/Processor/pipestages.cc, src/Processor/tagcvt.cc, src/Processor/active.cc,
src/Processor/stallq.cc

Headers: incl/Processor/state.h, incl/Processor/instance.h, incl/Processor/instruction.h
incl/Processor/mainsim.h, incl/Processor/decode.h, incl/Processor/tagcvt.h
incl/Processor/active.h, incl/Processor/stallq.h

Since RSIM currently does not model an instruction cache, the instruction fetch and decode peline stages
are merged. This stage starts with the function decode_cycle, called from maindecode.

The function decode_cycle starts out by looking in the processor stall queue, which consists of instruc-
tions that were decoded 1n a previous cycle but could not be added to the processor active list, either because
of insufficient renaming registers or insufficient active list size. The processor will stop decoding new instruc-
tions by setting the processor field stall_the rest after the first stall of this sort, so the stall queue should
have at most one element. If there is an instruction in the stall queue, check_dependencies is called for
it (described below). If this function succeeds, the instruction is removed from the processor stall queue.
Otherwise, the processor continues to stall instruction decoding.

After processing the stall queue, the processor will decode the instructions for the current cycle. If the
program counter is valid for the application instruction region, the processor will read the instruction at that
program counter, and convert the static instr data strucutre to a dynamic instance data structure through
the function decode_instruction. The instance is the fundamental dynamic form of the instruction that
is passed among the various functions in RSIM. If the program counter is not valid for the application, the
processor checks to see if the processor is in privileged mode. If so, and if the program counter points to
a valid instruction in the trap-table, the processor reads an instruction from the trap-table instead. If the
processor is not in privileged mode, or the PC is not valid in the trap-table, the processor generates a single
invalid instruction that will cause an illegal PC exception. Such a PC can arise through either an illegal
branch or jump, or through speculation (in which case the invalid instruction will be flushed before it causes
a trap).

The decode_instruction function sets a variety of fields in the instance data structure. First, the
various fields associated with the memory unit are cleared, and some fields associated with instruction
registers and results are cleared. The relevant statistics fields are also initialized.

Then, the tag field of the instance is set to hold the value of the processor instruction counter. The tag
field is the unique instruction id of the instance; currently, this field is set to be unique for each processor
throughout the course of a simulation. Then, the win_num field of the instance is set. This represents the
processor’s register window pointer (cwp or current window pointer) at the time of decoding this instruction.

decode_instruction then sets the functional unit type and initializes dependence fields for this
instance. Additionally, the stall_the rest field of the processor is cleared; since a new instruction is
being decoded, it is now up to the progress of this instruction to determine whether or not the processor will
stall.

At this point, the instance must determine its logical source registers and the physical registers to which
they are mapped. In the case of integer registers (which may be windowed), the function convert_to_logical
is called to convert from a window number and architectural register number to an integer register identifier
that identifies the logical register number used to index into the register map table (which does not account
for register windows). If an invalid source register number is specified, the instruction will be marked with
an illegal instruction trap.

At this point, the instance must handle the case where it is an instruction that will change the proces-
sor’s register window pointer (such as SAVE or RESTORE). The processor provides two fields (CANSAVE and
CANRESTORE) that identify the number of windowing operations that can be allowed to proceed [23]. If the

50 CHAPTER 10. RSIM_EVENT AND THE OUT-OF-ORDER EXECUTION ENGINE

processor can not handle the current windowing operation, this instance must be marked with a register
window trap, which will later be processed by the appropriate trap handler. Otherwise, the instance will
change its win_num to reflect the new register window number.

In a release consistent system, the processor will now detect MEMBAR operations and note the imposed
ordering constraints. These constraints will be used by the memory unit.

The instance will now determine its logical destination register numbers, which will later be used in
the renaming stage. If the previous instruction was a delayed branch, it would have set the processor’s
copymappernext field (as described below). If the copymappernext field is set, then this instruction is the
delay slot of the previous delayed branch and must try to allocate a shadow mapper. The branchdep field
of the instance is set to indicate this.

Now the processor PC and NPC are stored with each created instance. We store program counters with
each instruction not to imitate the actual behavior of a system, but rather as a simulator abstraction. If
the instance is a branch instruction, the function decode branch_instruction is called to predict or set
the new program counter values; otherwise, the PC is updated to the NPC, and the NPC is incremented.
decode branch_instruction may also set the branchdep field of the instance (for predicted branches that
may annul the delay slot), the copymappernext field of the processor (for predicted, delayed branches), or
the unpredbranch field of the processor (for unpredicted branches).

If the instance is predicted as a taken branch, then the processor will temporarily set the stall_the rest
field to prevent any further instructions from being decoded this cycle, as we currently assume that the
processor cannot decode instructions from different regions of the address space in the same cycle.

After this point, control returns to decode_cycle. This function now adds the decoded instruction to
the tag converter, a structure used to convert from the tag of the instance into an instance data structure
pointers. This structure is used internally for communication among the modules of the simulator.

Now the check_dependencies function is called for the dynamic instruction. If RSIM was invoked with
the “-q” option and there are too many unissued instructions to allow this one into the issue window, this
function will stall further decoding and return. If RSIM was invoked with the “-X” option for static scheduling
and even one prior instruction is still waiting to issue (to the ALU, FPU, or address generation unit), further
decoding is stopped and this function returns. Otherwise, this function will attempt to provide renaming
registers for each of the destination registers of this instruction, stalling if there are none available. As each
register is remapped in this fashion, the old mapping is added to the active list (so that the appropriate
register will be freed when this instruction graduates), again stalling if the active list has filled up. It is only
after this point that a windowing instruction actually changes the register window pointer of the processor,
updating the CANSAVE and CANRESTORE fields appropriately. Note that single-precision floating point registers
(referred to as REG_FPHALF) are mapped and renamed according to double-precision boundaries to account for
the register-pairing present in the SPARC architecutre [23]. As a result, single-precision floating point codes
are likely to experience significantly poorer performance than double-precision codes, actually experiencing
the negative effects of anti-dependences and output-dependences which are otherwise resolved by register
renaming.

If a resource was not available at any point above, check_dependencies will set stall_the rest and
return an error code, allowing the instance to be added to the stall queue. Although the simulator assumes
that there are enough renaming registers for the specified active-list size by default, check_dependences also
includes code to stall if the instruction could not obtain its desired renaming registers.

After the instance has received its renaming registers and active list space, check_dependences continues
with further processing. If the instruction requires a shadow mapper (has branchdep set to 2, as described
above), the processor tries to allocate a shadow mapper by calling AddBranchQ. If a shadow mapper is
available, the branchdep field is cleared. Otherwise, the stall the rest field of the processor is set and
the instance is added to the queue of instructions waiting for shadow mappers. If the processor had its
unpredbranch field set, the stall the rest field is set, either at the branch itself (on an annulling branch),
or at the delay slot (for a non-annulling delayed branch).

The instance now checks for outstanding register dependences. The instance checks the busy bit of
each source register (for single-precision floating-point operations, this includes the destination register as
well). For each busy bit that is set, the instruction is put on a distributed stall queue for the appropriate
register. If any busy bit is set, the truedep field is set to 1. If the busy bits of rs2 or rscc are set, the

10.3. BRANCH PREDICTION 51

addrdep field is set to 1 (this field is used to allow memory operations to generate their addresses while the
source registers for their value might still be outstanding).

If the instruction is a memory operation, it is now dispatched to the memory unit, if there is space for
it. If there 1s no space, either the operation is attached to a queue of instructions waiting for the memory
unit (if the processor has dynamic scheduling and “-q” was not used to invoke RSIM), or the processor is
stalled until space is available (if the processor has static scheduling, or has dynamic scheduling with the
“-q” option to RSIM).

If the instruction has no true dependences, the SendToFU function is called to allow this function to issue
in the next stage.

decode_cycle continues looping until it decodes all the instructions it can (and is allowed to by the
architectural specifications) in a given cycle.

10.3 Branch prediction

Source files: src/Processor/branchpred.cc, src/Processor/branchgelt.cc,
src/Processor/branchresolve.cc

Headers: incl/Processor/bpb.h, src/Processor/branchq.h,

Although branch prediction can be considered part of instruction fetching and decoding, it is sufficiently
important to be discussed separately. The decode branch_instruction calls StartCtlXfer to determine
the prediction for the branch.

If the branch is an unconditional transfer with a known address (either a call instruction or any variety
of “branch always”), then StartCtlXfer returns -1 to indicate that the branch is taken non-speculatively.
On call instructions, this function also adds the current PC to the return address stack. For other types
of branches, this function either predicts them using the return address stack (for procedure returns) or the
branch prediction buffer (for ordinary branches), or does not attempt to predict their targets (for calculated
jumps).

Based on the return value of StartCtlXfer and the category of branch (conditional vs. unconditional,
annulling vs. non-annulling), decode branch_instruction sets the processor PC and NPC appropriately,
as well as setting processor fields such as copymappernext (for speculative branches which always have a
delay slot) and unpredbranch (for branches that are not predicted). Additionally, this function may set the
branchdep of the instance for unpredicted branches or branches that may be annulling and thus need to
associate a shadow mapper with the branch itself (rather than with a delay slot).

The function AddBranchQ is called by check_dependencies to allocate a shadow mapper for a speculative
branch. If a mapper is available, this function copies the current integer and floating-point register map tables
into the shadow mapper data structure.

10.4 Instruction issue

Source files: src/Processor/pipestages.cc, src/Processor/exec.cc

Header files: incl/Processor/units.h

This stage actually sends instructions to their functional units. The SendToFU function is called whenever
an instruction has no outstanding true dependencies. This function reads the values of the various source
registers from the register file and holds those values with the instance data structure. This mechanism is
not meant to imitate actual processor behavior, but rather to provide a straightforward simulator abstraction.
At the end of this function, the issue function 1s called if there is a functional unit available; otherwise, this
instance is placed on a queue for the specified functional unit.

The issue function places the specified instance pm the ReadyQueue data structure and occupies the
appropriate functional unit (for memory operations, this function is used for address generation).

52 CHAPTER 10. RSIM_EVENT AND THE OUT-OF-ORDER EXECUTION ENGINE

The function IssueQueues processes instructions inserted in the ReadyQueues by issue. This function
then inserts the appropriate functional unit onto the FreeingUnits data structure, specifying that that unit
will be free a number of cycles later, according to the repeat delay of the instruction. This function places
the instance itself on the Running structure of the processor, which is used to revive the instruction for
completion after its functional unit latency has passed.

The IssueQueues function also calls IssueMem in the memory unit, which checks to see if any new
memory accesses can be issued.

This stage assumes no limit on register file ports. In real processors, port contention may cause additional
stalls that are not considered here.

10.5 Instruction execution

Source files: src/Processor/funcs.cc, src/Processor/branchresolve.cc

The actual execution of instructions at their functional units is simulated through the functions in the
file src/Processor/funcs.cc. These functions use the source register values previously set in the SendToFU
function and fill in the destination register values of the instance structure correspondingly.

Two instruction classes are significant with regard to their execution: branches and memory instructions.
For each branch instruction executed at the functional units, the branch-prediction buffer state is updated
appropriately to indicate the actual result of the branch. For memory instructions, the GetMap function
is used to map between the RSIM address of the reference to the corresponding address in the simulator’s
UNIX address space.

Some instructions are not currently supported in RSIM. These are tcc, flush, flushw, and tagged
addition and subtraction instructions. These are considered illegal instructions and see the corresponding
exception.

10.6 Completion

Source files: src/Processor/exec.cc, src/Processor/pipestages.cc,
src/Processor/branchresolve.cc, src/Processor/branchq.cc, src/Processor/stallq.cc,
src/Processor/active.cc,

Header files: incl/Processor/units.h, incl/Processor/state.h

The CompleteQueues function processes instructions from the Running heap that have completed in a
given cycle. For all non-memory instructions, this function calls the appropriate emulation function from
src/Processor/funcs.cc and then inserts the instance onto the processor’s DoneHeap. For memory in-
structions, this function marks the completion of address generation, and thus calls the Disambiguate
function (described in Section 11). This function is also responsible for freeing functional units that have
completed their functional unit delay, as determined from the FreeingUnits data structure. As each func-
tional unit is freed, the processor checks to see if a queue of ready instructions has built up waiting for that
unit. If so, one instruction is revived, and the issue function is invoked.

The function update_cycle processes instructions from the DoneHeap data structure. For each instruction
removed from the DoneHeap in a cycle, update_cycle first sees if the completion of this instruction will allow
a stalled processor to continue decoding instructions.

Next, update_cycle resolves completed branches. If the branch was unpredicted, update_cycle sets
the processor PC and NPC appropriately and allows execution to continue. On a correct prediction, the
GoodPrediction function is called. If this branch had already allocated a shadow mapper, this function
calls RemoveFromBranchQ to free the shadow mapper, possibly yielding that shadow mapper to a later stalled
branch. If the branch had not yet received a shadow mapper, it is no longer considered to be stalled for a
mapper.

10.7. GRADUATION 53

On the other hand, the BadPrediction function is called to resolve a mispredicted branch. If the branch
(or its delay slot, as approriate) had allocated a shadow mapper, CopyBranchQ is used to revive the correct
register mapping table. After that, FlushBranchQ is used to remove the shadow mapper associated with
the current branch and all later branches. Then, FlushMems is invoked to remove all instructions from
the memory unit after the branch or delay slot in question. FlushStallQ removes any possible item in the
processor stall queue, and is followed by FlushActiveList, which removes all instructions after the branch or
delay slot from the active list. FlushActiveList also removes entries from the tag-converter data structure,
frees the registers renamed as destinations for the instructions being flushed, and negates the effects of any
register windowing operations being flushed. After BadPrediction returns control to update_cycle, the
processor sets its PC and NPC appropriately.

update_cycle then updates the physical register file with the results of the completed instruction and
marks the instruction in the active list as having completed. The busy-bits of the destination registers
are cleared, and the instructions in the distributed stall queue for these registers are checked. If a waiting
instruction now has no more true dependencies, the function SendToFU is called to provide the register values
to that instruction and possibly allow it to issue. If a memory instruction in the memory unit had been
waiting on a destination register for an address dependence which is now cleared, the CalculateAddress
function (described in Section 11) is used to send the instruction to the address generation unit.

10.7 Graduation

Source files: src/Processor/graduate.cc

The graduate cycle function controls the handling associated with graduation. First, the
remove from_active list function is called. In this function, the processor looks at the head of the active
list. If this operation completed in the previous cycle (and thus, has already had time to write its result into
its register) and is not stalled for consistency constraints, the instruction is allowed to graduate from the
active list. If an exception is detected, graduation is stopped and control is returned to graduate _cycle.
If the instruction has no exception, then the old physical registers for its destinations are freed and the
operation is graduated. As a simulator abstraction, RSIM also maintains a “logical register file”, which
stores committed values. This file is also updated at this time. The active list element i1s removed, and
the instance is also freed for later use. remove from active_ list repeats until the first operation in the
active list 1s not ready to graduate, an exception is detected, or the processor’s maximum graduation rate is
reached. At that point, control is returned to graduate_cycle.

If remove from active_list returned an exception, the processor is put into exception mode and will
handle the exception as soon as possible, without decoding or graduating any further instructions in the
meantime.

graduate_cycle also calls mark_stores_ready. In this function, stores are marked ready to send data
to the data cache if they are within the next set of instructions to graduate. Namely, the store must be no
further from the head of the active list than the processor graduation rate, and all previous instructions must
be completed and guaranteed free of exceptions. The store itself must also have its address ready and must
not cause any exceptions; the only exception type currently detected at the time of mark_stores_ready is a
segmentation fault (other exceptions would have already been detected). Note that this function considers
stores primarily with regard to their effect on precise exceptions; even after being marked ready in this
fashion, a store may still have to wait many cycles to issue due to store ordering constraints. In any system
with nonblocking stores (PC, RC, or SC with the “-N” option), a store is considered ready to graduate as
soon as 1t has been marked; it need not wait for issue or completion in the external memory system.

10.8 Exception handling

Source files: src/Processor/except.cc, src/Processor/traps.cc, src/Processor/traptable.cc

Header files: incl/Processor/traptable.h, incl/Processor/instance.h, incl/Processor/hash.h

54 CHAPTER 10. RSIM_EVENT AND THE OUT-OF-ORDER EXECUTION ENGINE

When the processor 1is first set into exception mode by the graduation functions, it stops decoding new
instructions and instead calls the function PreExceptionHandler each cycle. This function makes sure that
all stores in the memory unit prior to the excepting instruction have issued to the caches before allowing
any exception to trap to the kernel. This step is important if a kernel trap can eventually result in context
termination or paging, as the pages needed for the store to take place may no longer be present in the system
after such an exception. Soft exceptions (described in Section 3.2.4) may be processed immediately, as these
are resolved entirely in hardware.

After the above conditions have completed, PreExceptionHandler calls ExceptionHandler, which starts
by flushing the branch queue, the memory unit, the processor stall queue, and the active list, just as in the
case of a branch misprediction. Although a real processor would also need to reverse process the register
mappings in order to obtain the correct register mapping for continuing execution, the RSIM processor uses
its abstraction of logical register files to reload the physical register file and restart with a clean mapping
table.

ExceptionHandler then processes exceptions based on the exception type.

ExceptionHandler handles soft-exceptions with the bare minimum amount of processing for an exception.
Specifically, the processor PC and NPC are reset, and normal instruction processing occurs as before starting
with the instruction in question.

In the case of segmentation faults, the processor must determine whether this is a fault that simply
indicates the need for growing the stack or an actual error. If the address i1s in a region that would be
considered appropriate for the processor stack, the function StackTrapHandle is called. This function
allocates space for the stack increase and adds those pages to the processor PageTable. For other types of
segmentation faults, the function FatalException is called to print information about the type of violation
and force all processors in the simulation to a halt.

In the case of an alignment error, this handler first checks to see if the alignment used is actually
acceptable according to the ISA (this can arise as double-precision and quadruple-precision floating point
loads and stores must only be aligned to single-word boundaries in the SPARC architecture). In such cases,
the simulator must seek to emulate the effect of these instructions and then continue. As we expect these
occurrences to be rare, RSIM currently does not simulate cache behavior for these accesses, instead calling the
corresponding functions in src/Processor/funcs.cc immediately. In cases of genuine alignment failures,
the exception is considered nonrecoverable, and FatalException is called.

The function SysTrapHandle handles the emulation of all supported system traps, which include some
functions with UNIX-like semantics (close, dup, dup2, exit, 1lseek, open, read, sbrk, time, times, and
write), and some additional traps provided by RSIM (corresponding to the following functions and macros:
abort, AssociateAddrNode, endphase, fork, GET_L2CACHELINE SIZE, getpid, MEMSYS_OFF, MEMSYS_ON,
newphase, shmalloc, StatClearAll, StatReportAll, sys_bzero, and sysclocks). The UNIX I/O func-
tions are emulated by actually calling the corresponding functions in the simulator and setting the %00
register value of the simulated processor to indicate the return value. Note that these accesses are processed
by the host filesystem: as a result, simulated programs can actually overwrite system files. The sbrk function
is processed by adding pages to the address space for the simulated processor. The time and times functions
use the simulated cycle time to set the appropriate return values and structure fields. Although all of these
functions have the same behavior as UNIX functions on success (except as noted in Section 5.2) and return
the same values on failure, these functions do not set the errno variable on failure. The additional functions
provided by RSIM are handled through calls to simulator internal functions, setting the %00 register value
to the result of the trap.

RSIM also uses exceptions to implement certain instructions that either modify system-wide status reg-
isters (e.g. LDFSR, STFSR), are outdated instructions with data-paths too complex for a processor with the
aggressive features simulated in RSIM (e.g. MULScc), or deal with traps and must have their effects observed
in a serial, non-speculative manner (e.g. SAVED and RESTORED, which are invoked just before the end of a
window trap to indicate that the processor can modify its CANRESTORE and CANSAVE fields; and DONE and
RETRY, which are used to return from a trap back to regular processing [23]). All of these instructions types
are marked with SERIALIZE traps, and are handled in ProcessSerializedInstructions. In the case of
STFSR and STXFSR, control will be transfered to instructions in the trap-table, while DONE and RETRY transfer
control back to the trappc and trapnpc fields saved aside before entering the trap-table. Other serialized

10.9. PRINCIPAL DATA STRUCTURES 55

instructions continue with normal execution starting from the instruction after the serialized one.

Window traps dispatch control to the trap table through the TrapTableHandle function. This function
puts the processor into privileged state and saves aside the PC and NPC of the faulting instruction as
trappc and trapnpc. The processor PC and NPC are then set to the appropriate instruction sequences for
the window traps, and the processor restarts execution from within those trap-handlers.

For the remaining non-recoverable exceptions (division by zero, floating point error, illegal instruction,
priviliged instruction, illegal program counter value), the function FatalException is called.

10.9 Principal data structures

Source files: src/Processor/active.cc, src/Processor/freelist.cc, src/Processor/tagcvt.cc,
src/Processor/stallq.cc, src/Processor/branchgelt. cc, src/Processor/branchresolve.cc,
src/Processor/instheap.c

Header files: incl/Processor/active.h, incl/Processor/freelist.h, incl/Processor/tagcvt.h,
incl/Processor/stallq.h, incl/Processor/circq.h, incl/Processor/branchq.h,
incl/Processor/heap.h, incl/Processor/instheap.h, incl/Processor/hash.h,
incl/Processor/memq.h, incl/Processor/FastNews.h

The majority of the data structures used in the out-of-order execution engine are associated with the
processor’s state structure.

The first type of data structures are concerned with instruction fetching, decoding, and graduation.
These structures include the register freelist class, the activelist class, the tag converted (tag_cvt),
the register mapping tables (fpmapper, intmapper, and activemaptable), the busy-bit arrays (fpregbusy
and intregbusy), and the processor stall queue (stallq).

The second class of data structures include those associated with branch prediction. These include the
branchq structure, which holds the shadow mappers; the BranchDepQ, which holds branches waiting for
shadow mappers (in our system, only one branch can be in this queue at a time); and the actual branch
prediction tables (BranchPred and PrevPred) and the return address stack fields (ReturnAddressStack and
rasptr).

The third class of data structures deal with instruction issue, execution, and completion. Several time-
based heaps are included in this class: FreeingUnits, Running, DoneHeap, and MemDoneHeap. Several
MiniStallQ structures are also used in this class. These include the UnitQ structures, which include instruc-
tions waiting for functional units; and the dist_stallq (distributed register stall queue) structures, which
include instructions stalling for register dependences.

The final important class of data structures used in the out-of-order execution engine deals with simulator
memory allocation and are provided to speed up memory allocation for common data structures which have
an upper bound on their number of instantiations. These Allocator data structures include instances
for instance structures, bges for elements of the branch queue, mappers for shadow mappers, stallgs
for elements of the processor stall queue, ministallqs for elements of the functional unit and register
stall queues, actives for active list elements, and tagcvts for elements of the tag converter. Structures
are dynamically allocated from and returned to these structures through the inline functions provided in
incl/Processor/FastNews.h.

Chapter 11

Processor Memory Unit

The processor memory unit includes nearly as much complexity as the rest of the processor, which was
discussed in Chapter 10. The functions provided include adding new memory instructions to the memory
unit, generating addresses, issuing memory instructions to the memory hierarchy, and completing memory
instructions in the memory hierarchy'. Throughout this entire process, the memory unit must consider the
ordering constraints described in Section 3.2.3: constraints for precise exceptions, constraints for uniprocessor
data dependences, and constraints for multprocessor memory consistency models.

The remainder of this section discusses the various tasks of the memory unit in the context of the above
requirements. Note that the code for implementing sequential consistency (SC) or processor consistency
(PC) is chosen by defining the preprocessor macro STORE_ORDERING, whereas the code for release consistency
(RC) is selected by leaving that macro undefined.

11.1 Adding new instructions to the memory unit

Source files: src/Processor/memunit.cc

Header files: incl/Processor/memory.h

The function AddToMemorySystem is called to add new instructions to the memory unit. This function
first initializes some fields of the instance. If this instruction is a store, it 1s added to the list of stores
which have not yet had their addresses generated (called ambig st_tags). For SC and PC, this instruction
is added to the unified memory unit queue, MemQueue. For RC, this instruction is inserted into either the
LoadQueue or StoreQueue as appropriate. The LoadQueue and StoreQueue are currently used only as a
simulator abstraction — the memory unit is thought of as a unified whole, rather than two split parts.

If this instance does not have any outstanding address dependences (i.e. addrdep is clear, as discussed
in Section 10), it is sent on to the address generation unit by calling CalculateAddress.

11.2 Address generation

Source files: src/Processor/memunit.cc, src/Processor/pipestages.cc, src/Processor/exec.cc
Header files: incl/Processor/memory.h
The CalculateAddress function is the first function called when an instruction in the memory unit no

longer has address dependences. In this function, the addr and finish_addr fields of the instance are filled
in using the GetAddr function. Additionally, the instance will be marked with a bus error (misalignment

I'Note that in this chapter, the terms issue and complete usually refer to issuing to the memory hierarchy and completion at
the memory hierarchy. These are different from the issue and completion stages of the processor pipeline.

11.3. ISSUING INSTRUCTIONS TO THE MEMORY HIERARCHY 57

exception) if it is not aligned to an address boundary corresponding with its length?. GetAddr also marks
serialization exceptions for stores of the floating-point status register (STFSR, STXFSR).

Next, the GenerateAddress function is called. If an address generation unit is free, the issue function
sends this instruction to an address generation unit. Otherwise, the instruction is added to a queue of
instructions stalling on an address generation unit. The instruction will be revived when a unit frees up,
just as described in Section 10.

After the instruction has passed through the address generation unit, the Disambiguate function is called.
In this function, the addr_ready field of the instance is set, indicating to the memory issue stage that this
instruction may be ready to issue. No additional processing occurs for loads. However, address generation
for a store may allow the processor to detect violations of the uniprocessor constraints discussed above. In
particular, the processor can determine if a load that occurred later in program order than the given store
was allowed to issue to the memory system and thereby obtain an incorrect value. This situation can arise
based on the policy chosen with the “L” command-line option (described in Chapter 4). Loads that have
obtained values in this fashion are marked with the limbo field. If this store has an address that conflicts
with any of the later 1imbo loads, the load is either forced to reissue (if “-L1” was used) or is marked with
an exception (if “-L2” or the default policy was specified). On the other hand, if this store is the last prior
store with an ambiguous address and does not conflict with a given load, that load is allowed to have its
limbo field cleared and possibly leave the memory unit as a result. The memory unit must also check all
loads that have issued to the memory hierarchy but not yet completed; if any of these loads has an address
that conflicts with the newly disambiguated store, it must be forced to reissue.

11.3 Issuing instructions to the memory hierarchy

Source files: src/Processor/memunit.cc, src/Processor/memprocess.cc, src/MemSys/cpu.c

Header files: incl/Processor/memory.h, incl/Processor/hash.h, incl/Processor/memprocess.h,
incl/MemSys/cpu.h

Every cycle, the simulator calls the IssueMem function. In the case of RC, this function first checks if any
outstanding memory fences (MEMBAR instructions) can be broken down — this occurs when every instruction in
the class of operations that the fence has been waiting upon has completed. If the processor has support for
a consistency implementation with speculative load execution (chosen with “-K”), all completed speculative
loads beyond the voided fence that are no longer blocked for consistency or disambiguation constraints are
allowed to leave the memory unit through the PerformMemOp function.

The IssueMem function then seeks to allow the issue of actual loads and stores in the memory system. If
the system implements SC or PC, the IssueMems function is called. With RC, IssueStores is called first,
followed by IssueLoads. We issue instructions in this order with RC not to favor stores, but rather to favor
older instructions (As discussed in Section 10, no store can be marked ready to issue until it is one of the
oldest instructions in the active list and all previous instructions have completed).

The functions IssueStores and Issueloads, or IssueMems for SC and PC systems, scan the appropriate
part of the memory unit for instructions that can be issued this cycle. At a bare minimum, the instruction
must have passed through address generation and there must be a cache port available for the instruction.
The following description focuses on the additional requirements for issuing each type of instruction under
each memory consistency model. Steps la-le below refer to the various types of instructions that may be
considered available for issue. Step 2 is required for each instruction that actually issues. Step 3 is used
only with consistency implementations that include hardware-controlled non-binding prefetching from the
instruction window.

Step la: Stores in sequential consistency or processor consistency

?For some operations, the minimum alignment requirement specified in the ISA is smaller than the actual length of data
transferred. However, we simulate a processor that traps and emulates instructions that are not aligned on a boundary equal to
their length, as these seem more appropriate for high-performance implementation. That is, the possibility of having multiple
cache line accesses and multiple page faults for a single instruction seems to be an undesirably difficult problem.

58 CHAPTER 11. PROCESSOR MEMORY UNIT

If the instruction under consideration is a store in SC or PC, it must be the oldest instruction in the
memory unit and must have been marked ready in the graduate stage (as described in Section 10.7) before
it can issue to the cache. If the processor supports hardware prefetching from the instruction window, then
the system can mark a store for a possible hardware prefetch even if it is not ready to issue as a demand
access to the caches.

Step 1b: Stores in release consistency

Stores in RC issue after being marked ready, if there are no current ordering constraints imposed by
memory fences. If any such constraints are present and if the system has hardware prefetching, the system
can mark the store for a possible hardware prefetch. A store can be removed from the memory unit as soon
as it issues to the cache, rather than waiting for its completion in the memory hierarchy (as in sequential
consistency and processor consistency). When a store is issued to the caches, the processor’s StoresToMem
field is incremented. However, as we do not currently simulate data in the caches, stores remain in what we
call a virtual store buffer. The virtual store buffer is part of the StoreQueue data structure and has a size
equivalent to the processor’s StoresToMem field. These elements are not counted in the memory unit size,
but may be used for obtaining values for later loads.

Step 1c: Loads in sequential consistency

A load instruction in sequential consistency can only issue non-speculatively if it is at the head of the
memory unit. If hardware prefetching is enabled, later marked for possible prefetching. If speculative load
execution is present, later loads can be issued to the caches. Before issuing such a load, however, the memory
unit is checked for any previous stores with an overlapping address. If a store exactly matches the addresses
needed by the load, the load value can be forwarded directly from the store. However, if a store address only
partially overlaps with the load address, the load will be stalled in order to guarantee that it reads a correct
value when it issues to the caches.

Step 1d: Loads in processor consistency

Loads issue in PC under circumstances similar to those of SC. However, a load can issue non-speculatively
whenever it is preceded only by store operations. A load that is preceded by store operations must check
previous stores for possible forwarding or stalling before it is allowed to issue.

Step le: Loads in release consistency

In RC, loads can issue non-speculatively whenever they are not prevented by previous memory barriers?.
Asin SC and PC, a load that is preceded by store operations must check previous stores for possible forwards
or stalls. However, in RC, such checks must also take place against the virtual store buffer. As the virtual
store buffer is primarily a simulator abstraction, forwards from this buffer are used only to learn the final
value of the load; the load itself must issue to the cache as before. However, loads must currently stall in
cases of partial overlaps with instructions in the virtual store buffer. This constraint is not expected to
hinder performance in applications where most data is either reused (thus keeping data in cache and giving
partial overlaps short latencies) or where most pointers are strongly typed (making partial overlaps unlikely).
However, if applications do not meet these constraints, 1t may be more desirable to simulate the actual data in
the caches. As in the other models, loads hindered by memory consistency model constraints can be marked
for prefetching or speculatively issued if the consistency implementation supports such accesses. Although
speculative loads and prefetching are allowed around ordinary MEMBAR instructions, such optimizations are
not allowed in the case of fences with the MemIssue field set.

Step 2: Issuing an instruction to the memory hierarchy

For both stores and loads, the Issue0Op function actually initiates an access. First, the memprogress field
is set to -1 to indicate that this instance is being issued. (In the case of forwards, the memprogress field

3Because of the single-precision floating point problems discussed in Chapter 10, single-precision loads do not issue until
their output dependences are resolved. With static scheduling, subsequent loads will also be prevented from issuing.

11.4. COMPLETING MEMORY INSTRUCTIONS IN THE MEMORY HIERARCHY 59

would have been set to a negative value). This function then consumes a cache port for the access (cache
ports are denoted as functional units of type uMEM). The memory rep function is then called. This function
prepares the cache port to free again in the next cycle if this access is not going to be sent to the cache
(i.e. if the access is private or if the processor has issued a MEMSYS_OFF directive). Otherwise, the cache is
responsible for freeing the cache port explicitly.

Next, the memory latency function is called. This function starts by calling GetMap, which checks
either the processor PageTable or the shared-memory SharedPageTable to determine if this access is a
segmentation fault (alignment errors would have already been detected by GetAddr). If the access has a
segmentation fault or bus error, its cache port is freed up and the access is considered completed, as the
access will not be sent to cache.

If the access does not have any of the previous exceptions, it will now be issued. PREFETCH instructions
are considered complete and removed from the memory unit as soon as they are issued. If the access is
an ordinary load or store and is not simulated (i.e. either a private access or the processor has turned
MEMSYS_OFF), it is set to complete in a single cycle. If the access is simulated, it is sent to the memory
hierarchy by calling StartUpMemRef.

StartUpMemRef and the other functions in src/Processor/memprocess. cc are responsible for interfacing
between the processor memory unit and the memory hierarchy itself. StartUpMemRef translates the format
specified in the instance data structure to a format understood by the cache and memory simulator. This
function then calls the function addrinsert to begin the simulation of an access.

addrinsert starts by initializing a memory system request data structure for this memory access. (This
data structure type is described in Section 12.2.) Next, the request is inserted into its cache port. If this
request fills up the cache ports, then the L1Q_FULL field is set to inform the processor not to issue further
requests (this is later cleared by the cache when it processes a request from its ports). After this point, the
memory system simulator is responsible for processing this access.

Step 3: Issuing any possible prefetches

After the functions that issue instructions have completed, the memory unit checks to see if any of
the possible hardware prefetch opportunities marked in this cycle can be utilized. If there are cache ports
available, prefetches are issued for those instructions using IssuePrefetch. These prefetches are sent to the
appropriate level of the cache hierarchy, according to the command-line option used.

11.4 Completing memory instructions in the memory hierarchy

Source files: src/Processor/memprocess.cc, src/Processor/memunit.cc, src/Processor/funcs.cc

Header files: incl/Processor/memory.h, incl/Processor/memprocess.h

Completion of memory references takes place in two parts. First, the GlobalPerform function is called at
the level of the memory hierarchy which responds to the reference. This function calls the function associated
with this instruction (as specified in src/Processor/funcs. cc) to actually read a value from or write a value
into the UNIX address space of the simulator environment. In the case of virtual store-buffer forwards, the
value taken by the load i1s the value forwarded from the buffer rather than that in the address space. In the
case of accesses which are not simulated, this behavior takes place as part of the CompleteMemOp function
(described below).

Then, when a reference is ready to return from the caches, the MemDoneHeapInsert function is called
to mark the instruction for completion. In the case of non-simulated accesses, the access is put into the
MemDoneHeap by the memory latency function invoked at the time of issue.

The function CompleteMemQueue processes instructions from the MemDoneHeap of the processor by calling
CompleteMemOp for each instruction to complete in a given cycle. The corresponding instruction emulation
function 1is called for accesses that were not simulated at the caches. For loads, this function first checks
whether or not a soft exception has been marked on the load for either address disambiguation or consistency
constraints while it was outstanding. If this has occurred, this load must be forced to re-issue, but does not
actually need to take an exception. Otherwise, this function checks to see whether the limbo field for the

60 CHAPTER 11. PROCESSOR MEMORY UNIT

load must be set (that is, if any previous stores still have not generated their addresses), or whether the load
must be redone (if a previous store disambiguated to an address that overlaps with the load). If the load
does not need to be redone and either does not have a 1imbo set or has a processor in which values can be
passed down from limbo loads (as discussed above), the function PerformMemOp is called to note that the
value produced by this instruction is ready for use. The function PerformMemOp is called for all stores to
reach CompleteMemOp.

PerformMemOp has two functions: removing instructions from the memory unit and passing values down
from limbo loads. In the case of RC, PerformMemOp always removes the operation from either the memory
unit or virtual store buffer (as appropriate) except in the case of loads that are either marked with a 1imbo
field or past a MEMBAR that blocks loads. In SC, memory operations must leave the memory unit strictly in
order. The constraints for PC are identical to those for SC, except that loads may leave the memory unit
past outstanding stores. In no memory model may limbo loads leave the memory unit before all previous
stores have disambiguated. If the memory unit policy allows values to be passed down from limbo loads,
PerformMemOp fulfills some of the duties otherwise associated with the update_cycle function (filling in
physical register values and clearing the busy bit and distributed stall queues for the destination register).
Note that PerformMemOp will be called again for the same instruction when the 1imbo flag is cleared or, in
the case of RC, when prior memory fences have been cleared.

If the system supports speculative load execution to improve the performance of its consistency model
(with the “K” option), the constraints enforced by PerformMemOp will be sufficient to guarantee that no
speculative load leaves the memory unit. Each coherence message received at the L1 cache because of an
external invalidation or a replacement from the lowest level of local cache (L2 in our case) must be sent to
the memory unit through the SpecLoadBufCohe function. If such a message invalidates or updates a cache
line accessed by any outstanding or completed speculative load access, that access 1s marked with a soft
exception. If the access is still oustanding, the soft exception will be ignored and the load will be forced to
reissue; if the access has completed, the exception must be taken in order to guarantee that the load or any
later operations do not commit incorrect values into the architectural state of the processor [5, 28].

Chapter 12

Memory Hierarchy and
Interconnection System Fundamentals

This chapter describes fundamental aspects of the memory hierarchy, bus, and multiprocessor interconnection
network implementation. We will refer to the implementation of these subsystems collectively as the memory
system simulator. Subsequent chapters provide detailed investigations of each part of the memory system
simulator.

Section 12.1 describes the various memory system simulator modules and their interconnection. Sec-
tion 12.2 describes the essentials of the message data structure used to convey information within the memory
system simulator (much as the instance data structure is used in the processor simulator). Section 12.3 de-
scribes the steps to construct the multiprocessor portion of the simulated architecture. Section 12.4 explains
the steps taken throughout the memory system simulator to avoid deadlock.

12.1 Fundamentals of memory system modules

Source files: src/MemSys/architecture.c, src/MemSys/module.c, src/MemSys/route.c

Header files: incl/MemSys/module.h, incl/MemSys/net.h

The SMMODULE data structure contains a basic module framework that is used by many of the modules
in the memory system simulator. This framework includes fields common to all the module types, and 1is
initialized using the ModuleInit function. This function sets the node number for the module, along with
fields related to the module’s input and output ports. These ports, which are of the type SMPORT, are used to
connect between the various modules in the memory system simulator. SMPORT data structures act as queues
between the various modules and have memory system simulator messages as their entries. (These messages
are described in Section 12.2.) Each queue has a fixed maximum size, initialized by the call to ModuleInit
(but possibly modified using QueueSizeCorrect later). Note that only output ports are actually created;
the input ports of one module are set to the same data structures as the output ports of another module
using the ModuleConnect function described in Section 12.3.

Each module also has a routing function, which generates the output port number for each type of
message that leaves the module. The various modules and default port connections used in RSIM are shown
in Figure 12.1. Input ports are shown on this figure as iX, where X is the port number; similarly, output
ports are shown as oX. The terms Request, Reply, Cohe, and Cohe reply correspond to the types of memory
system messages, as explained in Section 12.2. If no write-buffer is included, port o1 of the L1 cache connects
directly to port 10 of the L2 cache, while port 00 of the L2 cache connects to port i1 of the L1 cache.

RSIM uses a single module for each bank of the directory and memory. The input and output ports
connecting the directory and memory to the bus are listed in the form 06,8,... to indicate that each
interleaved bank has a separate port in place of the single port shown on the diagram.

61

62 CHAPTER 12. MEMORY HIERARCHY AND INTERCONNECTION SYSTEM FUNDAMENTALS

Processor
00 i0
Reply
Request
Cohe
[o0
— |o2 L1 Cache i2
ol i1
Reply
Request

0 Write Buffer 00
ol i1

Reply
Request

;5 0 L2Cache 0 .

ol 02 i2 i1
Cohe reply
Cohe Reply
Request Cohe
reply
i0 1 ol 00
Bus Module
06,8,..07,9,.. i7,9,..i6,8,.. 02 03 i4 i5
Cohe Reply Cohe Reply
Request Cohe Request Cohe
reply reply
00 ol

Receive

i0 i1 ol o0
ﬂ Directory/Memory

Network

Figure 12.1: Modules and port connections in RSIM

The network interface is shown on the diagram as being split into two parts, Send and Receive. Send
moves new messages from the node to the multiprocessor interconnection network, while Receive brings
messages from the interconnection network into the node. Note that the network system and its connections
to the network interface do not use the standard SMMODULE and SMPORT data structures used by the rest
of the memory system simulator. The data structures for the network and its connections to the network
interface are explained in Section 15.3.

The queue sizes for the various ports are configurable at run-time, as discussed in Chapter 4. The size
of the queue specifies the number of transactions of any type (request or response) that can be held in the
connection between the modules at any given time. If the size of the queue configured at runtime differs
from that originally initialized with ModuleInit, the QueueSizeCorrect function is called to set the sizes of
these ports to the desired values. Note that the port queue size also limits the number of requests that can
be processed by the module each time the module is activated. For example, if a cache is intended to start
processing four requests each cycle, the request port queue should contain at least four entries.

The port queue can also contain more than the minimum number of entries; in these cases, the queue
acts as a buffer to decouple a faster module from a slower module. For this reason, the default port sizes
from the L2 cache to the bus are larger than most of the other cache ports; these port sizes are chosen so
that the potentially slow processing rate of the bus will not cause the L2 cache itself to stall.

The implementation of port queues is such that each port queue holds one of its entries as an “overflow
entry.” Thus, most of the modules subtract 1 from the port queue sizes specified before calling ModuleInit

12.2. MEMORY SYSTEM MESSAGE DATA STRUCTURE 63

or QueueSizeCorrect, as this accounts for the separate overflow entry provided. The network interface
module does not use the overflow request; these units stop adding to their output ports before allowing the
queues to fill up the overflow request.

12.2 Memory system message data structure

Header files: incl/MemSys/req.h

The fundamental unit of information exchange among the RSIM memory system simulator modules is
referred to in this manual as a memory system message'. This data structure conveys essential information
about the access being simulated, just as the instance structure acts as the basic unit of information
exchange among the processor pipeline stages.

The memory system message specifies an action that must be performed on a certain portion of the
memory hierarchy, as described below. The five most important fields of the message data structure are the
tag field, the s.type field, the req_type field, the s.reply field, and the s.nack st field. The tag field
specifies the cache line to which the action in question applies. This field is used with the same meaning in
all varieties of messages. The following sections describe how each of the other fields is used to distinguish
the types of messages in the memory system simulator.

12.2.1 The s.type field

Memory system messages come in four basic varieties, as conveyed by the s.type field:

REQUEST Sent by a processor or cache to request some action related to the data requirements of the
processor; may demand a data transfer.

REPLY Sent by a cache or directory in response to the demands of a REQUEST; may include a data transfer.

COHE Sent by a directory to other caches with a demand to invalidate or change the state of a line; may
demand a data transfer.

COHE_REPLY Sent by a cache in response to the demands of a COHE, or a replacement message; may
include a data transfer.

Each of these four basic categories is further divided according to the req_type field and, in some cases,
the s.reply and s.nack_st fields. These fields are described in the following sections.

12.2.2 The req_type field

The req_type field can take on several values, some of which are currently reserved for future expansion.
The types that are actually supported in RSIM are split into the following categories:

1. Those seen only at the processors and caches
2. System transaction requests

3. Replies

4. Coherence actions

5. Replacement messages

'In the code, the data structure allocated for such a message is called the REQ data structure. This data structure is used for
requests and reply messages, for both data and coherence transactions. We avoid using the term REQ in this manual to avoid
any possible confusion with the REQUEST message type.

64 CHAPTER 12. MEMORY HIERARCHY AND INTERCONNECTION SYSTEM FUNDAMENTALS

The names and functions of some of these field values resemble those used in the UltraSPARC-II [25].

req_type values used only at the processors and caches:

The names of the req_type values used only at the processors and caches are largely self-explanatory:
READ, WRITE, RMW, LAWRITE PREFETCH, L1READ PREFETCH, L2WRITE PREFETCH, and L2READ PREFETCH. (The
prefetch requests represent the type of prefetch to issue and the level of cache to which to bring the line).

req_type values that specify system transaction requests:

System transaction requests are REQUESTs seen beyond the caches (i.e. at the busses and directory).
These request have the following req_type values and demand the stated actions:

READ_SH Reads a cache line without demanding ownership. Tssued for read misses and shared (read)
prefetches.

READ_OWN Reads a cache line and demands ownership. Issued for write misses, read-modify-write
misses, and exclusive (write) prefetches.

UPGRADE Demands ownership for a cache line (without reading the line). Tssued for writes, read-modify-
writes, or exclusive prefetches that are to lines that hit in the cache, but are held in shared state.

req-type values that indicate replies:

Each of the request types discussed above receives a REPLY from the module at which it is serviced. The
following values of req_type indicate such replies.

REPLY _SH Brings a line to cache in shared state. Valid response to READ_SH.
REPLY_EXCL Brings a line to cache in exclusive state. Valid response to READ_SH?, READ_OWN, or UPGRADE?
REPLY UPGRADE Acknowledges ownership of a cache line. Valid response to UPGRADE.

REPLY_EXCLDY Brings a line to cache in modified (exclusive dirty) state. Valid response to READ_OWN,
or UPGRADE*

req_type values that specify coherence actions:

In response to one of the system transaction requests described above and based on the current sharing
status of the line, the directory may send coherence messages with any of the following req_type values to
bring the line to an acceptable state: (These messages may have an s.type of either COHE or COHE REPLY.)

COPYBACK Transitions a line from exclusive or modified state to shared state. Invoked for READ_SH
if held elsewhere with ownership. Involves a cache-to-cache transfer to the requester and either an
acknowledgment (if exclusive state) or a copyback (if modified) to the directory.

COPYBACK_INVL Transitions a line from exclusive or modified state to invalid state. Invoked for
READ _OWN if held elsewhere with ownership. Involves a cache-to-cache transfer to the requester and an
acknowledgment to the directory.

INVL Transitions a line from shared to invalid state. Invoked for READ_OWN or UPGRADE if held elsewhere in
shared state. Involves only acknowledgment to directory.

2If no other processors sharing
31n certain race conditions, UPGRADE is converted to READ_OWN, as described in Section 14.
4In certain race conditions, UPGRADE is converted to READ_OWH, as described in Section 14.

12.3. MEMORY SYSTEM SIMULATOR INITIALIZATION 65

req_type values for replacement messages:

Replacement messages are sent when a line in exclusive or modified state is evicted from the cache due
to an incoming reply. These messages are sent with an s.type of COHE REPLY and with one of the following
req_type values:

WRB Indicates a replacement from the modified state, and sends the updated line to the directory and
memory module

REPL Indicates a replacement from the exclusive state, and informs the directory of the replacement

The RSIM caches do not inform the directory of replacements from shared state.

12.2.3 The s.reply field

REPLYs and COHE REPLYs also use a field called s.reply to indicate the response type. This field can have
the following values:

REPLY Successful completion of the desired action.

RAR Request a retry: action could not be completed immediately due to transient condition, and demand
should be retried. These are sent by a directory when its pending request buffer fills up or when certain
negative-acknowledgment responses cannot be immediately resolved (as explained in Chapter 14).

NACK Action could not be completed as specified (COHE REPLYs only). These are sent on invalidation
messages when the line is not present in the cache, or on write-back subset-enforcement messages when
the L1 cache does not have the line in modified state.

NACK_PEND Action could not be completed as specified due to a transient condition (COHE_REPLYs only).
The cache sends these responses during certain races described in Chapter 13. The directory handles
these replies by either retrying the corresponding COHE or reprocessing the original REQUEST.

12.2.4 The s.nack_st field

COHEs additionally have a field called s.nack_st, which indicates whether or not a NACK is an acceptable
response to the coherence action. Specifically, a NACK is not acceptable if the coherence message demands a
data transfer, as this indicates that the directory currently considers the cache to be the exclusive owner of
the line. Thus, a value of NACK_NOK is specified for COPYBACK and COPYBACK_INVL messages, while NACK_OK
distinguishes INVL messages.

12.3 Memory system simulator initialization

Source files: src/MemSys/architecture.c, src/MemSys/mesh.c, src/MemSys/net.c,
src/MemSys/module. ¢, src/MemSys/setup_cohe.c

Header files: incl/MemSys/arch.h, incl/MemSys/net.h

As mentioned in Chapter 9, RSIM uses the SystemInit function to set the desired characteristics of
the multiprocessor architecture being simulated. After setting some global fields according to the modules
present in the system, the SystemInit function calls dir net_init.

First, dir net_init constructs the multiprocessor interconnection network. This is a 2-dimensional
mesh network with a square number of nodes (if a non-square system is desired, the user should either
round up to the nearest square or some other appropriate square configuration size). dir net_init calls
CreateMESH to construct the request and reply networks. This function initializes all the buffers and ports of
the network (described in Section 15.3), calling the functions MeshCreate, Create1DMesh, ConnectMeshes,
ConnectComponents, and NetworkConnect to set up the system. After creating these meshes, dir net_init

66 CHAPTER 12. MEMORY HIERARCHY AND INTERCONNECTION SYSTEM FUNDAMENTALS

next sets the mesh parameters of flit delay and arbitration delay: if pipelined switches are being modeled,
these parameters are modified from the input parameters in order to simulate the desired degree of pipelining.
The network used in RSIM is taken from the NETSIM interconnection network simulator [7]. More details
on the network interconnection and parameters are available in Section 15.3 and in the NETSIM reference
manual (available from http://www-ece.rice.edu/~rsim/rppt.html).

Next, dir net_init creates the Delays data structures for many of the individual modules. Each module
has parameters for access time, initial transfer time, and flit transfer time. Additionally, the directory
module has parameters for the first packet creation time associated with a request and each subsequent
packet creation time, which are used to effect delays when sending coherence messages from a directory.
The access time and packet creation times of the DirDelays structures are configurable at run-time. These
Delays are not currently used for the CPU, L1 cache, L2 cache, and write-buffer, but are provided for
possible expansion. The actual latencies for the .1 and L2 caches are stored in the variables L1TAG DELAY,
L2TAG DELAY, and L2DATA DELAY.

Next, dir net_init allocates all the needed modules for the individual nodes (e.g. caches, write buffers,
network interfaces, busses, and directory banks). The system then initializes each of these modules, using
NewProcessor, NewCache, NewWBuffer, NewSmnetSend (creates new network send interface), NewSmnetRcv
(creates new network receive interface), NewBus, and NewDir to set the parameters for each module type. As
caches are created, the setup_tables function is called to configure the coherence behavior of the system.
Within the memory system simulator, the MESI states are referred to as PR.DY, PR_CL, SH_CL, and INVALID,
respectively.

The ModuleConnect functions are then used to connect the various modules through their appropriate
SMPORT data structures. The invocation ModuleConnect(src,dest,a,b,width) creates a bidirectional con-
nection between the modules: output port a of module src i1s connected to input port b of module dest,
and input port a of module src is connected to output port b of module dest. The output ports must have
already been constructed by the ModuleInit function described in Section 12.1; ModuleConnect simply sets
the input ports of one module to point to the same data structures as the output ports of the other module.
The interconnection between these modules has a width of width bytes. (Currently, the width parameter
for all module connections is a compile-time parameter, INTERCONNECTION WIDTH BYTES.)

As described in Section 12.1, the ModuleInit function initializes all output ports of a given module with
queues of the same size. However, the user may override these through the runtime parameters specified in
Section 4.2.7. These changes in queue lengths are incorporated using the QueueSizeCorrect function.

12.4 Deadlock avoidance

RSIM uses limited buffers in order to accurately simulate contention for resources at the various modules,
raising the possibility of deadlock in the system. To avoid deadlock, requests and replies are kept physically
separate. Conceptually, requests are messages that allocate resources (such as MSHRs, pending coherence
bits, or directory buffer entries). Replies conceptually release resources, and must be guaranteed to be
accepted in a finite amount of time, even if they lead to new messages. This is achieved by allocating a
resource for the reply at the time the request is sent out. Thus, the reply is guaranteed to have an associated
resource waiting for it when it arrives. The incoming reply can be accepted by the module immediately and
held in that resource until the completion of any additional processing it may require.

In our system, for deadlock avoidance purposes, requests include REQUEST and COHE messages, while
replies include REPLY and COHE REPLY (including write-back and replacement) messages. Although write-
backs and replacement messages are unsolicited and do not already have resources reserved for them in
the directory and memory module, they can be considered replies because they do not require additional
resources or send out additional messages. (In our system, write-backs do not receive acknowledgments from
the memory controller. If such acknowledgments are required, write-backs should be sent as requests with a
resource held at the cache until the acknowledgment arrives.)

Each subsystem in the RSIM memory system simulator takes specific precautions to prevent the creation
of new deadlocks. These steps are described separately with each subsystem.

Chapter 13

Cache Hierarchy

RSIM simulates two levels of data cache. The first-level of cache can be either write-through with no-
write-allocate or write-back with write-allocate. The second-level cache is write-back with write-allocate
and maintains inclusion of the first-level cache. Each cache supports multiple outstanding misses and is
pipelined. The first-level cache may also be multiported. If the configuration uses a write-through L1 cache,
a write-buffer is also included between the two levels of cache. The L1 cache tag and data access is modeled
as a single access to a unified SRAM array, while an L2 cache access is modeled as an SRAM tag array
access followed by an SRAM data array access. These arrays themselves are modeled as pipelines, processed
by the functions in src/MemSys/pipeline.c

Like the processor, the cache hierarchy is activated by RSIM_EVENT function, which is scheduled to
occur every cycle. RSIM_EVENT calls the functions LiCacheInSim, L2CacheInSim, LiCacheOutSim, and
L2CacheOutSim for each cache, as mentioned in Section 10.1. Each of these functions, as well as the functions
called by those functions, are described in this chapter.

13.1 Bringing in messages

Source files: src/MemSys/licache.c, src/MemSys/12cache.c, src/MemSys/pipeline.c

Header files: incl/MemSys/cache.h, incl/MemSys/pipeline.h

Two functions are used to bring new messages into each level of cache. These functions are LiCacheInSim
and L2CacheInSim. Each of these functions checks incoming messages from the ports of the module. The
function then attempts to insert each incoming message into the appropriate tag-array pipeline, according
to its s.type field. If the message can be added to its pipeline, it is removed from its input port; otherwise,
it remains on the input port for processing in a future cycle.

At the L2 cache, if the incoming message is a REPLY, then some bookkeeping is done for managing the
write-back buffer. Specifically, before a REQUEST can be sent out from the L2 cache, it must have allocated
a write-back buffer entry for a potential replacement caused by its REPLY. When the REPLY returns to the
cache, the wrb_buf _used field of the cache is incremented to indicate that the new REPLY may need to send
out a replacement.

13.2 Processing the cache pipelines

Source files: src/MemSys/licache.c, src/MemSys/12cache.c, src/MemSys/pipeline.c,
src/MemSys/cachehelp.c

Header files: incl/MemSys/cache.h, incl/MemSys/pipeline.h

67

68 CHAPTER 13. CACHE HIERARCHY

For each cycle in which there are accesses in the cache pipelines, the functions LiCacheOutSim and
L2CacheOutSim are called.

These functions start out by checking what the system calls its smart MSHR list. The smart MSHR
list 1s an abstraction used for simulator efficiency. In a real system, this list would correspond to state held
at the cache resources (MSHRs or write-back buffer entries). Entries in the smart MSHR list correspond
to messages being held in one of the above resources, waiting to be sent on one of the cache output ports.
Messages can be held in their previously-allocated cache resources in order to prevent deadlock, as the
cache must always accept replies in a finite amount of time. If there are any such messages held in their
resources, the cache attempts to send one to its output port. If the cache successfully sends the message,
the corresponding resource may be freed in some cases.

After attempting to process the smart MSHR list, the cache considers the current state of its pipelines.
If a message has reached the head of its pipeline (in other words, has experienced all its expected latency),
the cache calls one of the functions to process messages: namely, L1ProcessTagReq, L2ProcessTagReq, or
L2ProcessDataReq. If the corresponding function returns successfully, the element is removed from the
pipe. After elements have been processed from the head of their pipelines, the cache advances the elements
by calling CyclePipe. The following sections describe functions LiProcessTagReq, L2ProcessTagReq, and
L2ProcessDataReq in detail.

13.3 Processing L1 cache actions

Source files: src/MemSys/licache.c, src/MemSys/mshr.c, src/MemSys/cachehelp.c,
src/MemSys/setup_cohe.c

Header files: incl/MemSys/cache.h, incl/MemSys/mshr.h

The function L1ProcessTagReq processes messages that have reached the head of the L1 cache pipeline.
Tts behavior depends on the type of message (i.e. s.type). The following sections describe the manner in
which each type of message is processed.

13.3.1 Handling REQUEST type

For REQUESTSs, LiProcessTagReq first checks the tag in the tag array and in the outstanding MSHRs by
calling notpres _mshr.

Step 1: Calling notpres mshr

For a REQUEST, notpres. mshr first checks to see if the request has a tag that matches any of the out-
standing MSHRs. Additionally, the notpres function is called to determine if the desired line is available
in the cache. If the line is not present in any MSHR, the coherence routine for the cache (cohe pr for L1,
cohe_sl for .2) is called to determine the appropriate actions for this line, based on whether or not the line
is present, the current MESI state of the line in cache, and the type of cache.

Step la: Behavior of notpres mshr when REQUEST does not match MSHR.

If the REQUEST being processed does not match an outstanding MSHR, the operation of notpres mshr
depends on whether or not the line hits in the cache and the state of the line.

If the line being accessed hits in the cache in an acceptable state, this request will not require a request
to a lower module. As a result, the cache will return NOMSHR, indicating that no MSHR was involved or
needed in this request!.

If the request goes to the next level of cache without taking an MSHR at this cache level (either by being
a write in a write-through cache or an L2 prefetch), the value NOMSHR FWD is returned to indicate that no
MSHR was required, but that the request must be sent forward.

'In the L2 cache, this will return NOMSHR_STALL COHE if there is currently a COHE request pending on the line. This indicates
that no MSHR has been consumed, but this REQUEST must wait for the pending COHE first.

13.3. PROCESSING L1 CACHE ACTIONS 69

If the request needs a new MSHR, but none are available, the value NOMSHR_STALL is returned. In
the case of the L2 cache, a request that is not able to reserve a space in the write-back buffer leads to a
NOMSHR _STALL WRBBUF FULL return value.

Otherwise, the cache books an MSHR and returns a response based on whether this access was a complete
miss (MSHR_NEW) or an upgrade request (MSHR_FWD). In the case of upgrades, the line is locked into cache by
setting mshr _out; this guarantees that the line is not victimized on a later REPLY before the upgrade reply
returns. In all cases where the line is present in cache, the hit_update function is called to update the ages
of the lines in the set (for LRU replacement).

Step 1b: Behavior of notpres mshr when REQUEST matches MSHR

On the other hand, if the REQUEST matches a current MSHR,, the operation of notpres mshr depends on
the type of the REQUEST and the previous accesses to the matching MSHR.

If the access is a shared prefetch or an exclusive prefetch to an MSHR returning in exclusive state,
the prefetch is not necessary because a fetch is already in progress. In this case, this function returns
MSHR _USELESS FETCH_IN_PROGRESS to indicate that the REQUEST should be dropped.

If the access is an L2 prefetch or an exclusive prefetch in the case of a write-through L1 cache, the REQUEST
should be forwarded around the cache. In this case, the function returns NOMSHR FWD. If the request was an
exclusive prefetch, it is converted to an L2 exclusive prefetch before being forwarded around the cache.

In certain cases, the REQUEST may need to be stalled. Possible scenarios that can result in stalls and the
values they return are as follows. If the MSHR, is being temporarily held for a write-back, notpres mshr
returns MSHR_STALL WRB. If the MSHR is marked with an unacceptable pending coherence message, the
function returns MSHR_STALL_COHE. If the MSHR already has the maximum number of coalesced REQUESTSs for
an MSHR, the return value is MSHR_STALL _COAL. The maximum number of coalesced accesses is a configurable
parameter. Finally, when a write (or exclusive prefetch) REQUEST comes to the same line as an MSHR held for
a read (or shared prefetch) REQUEST, the value MSHR_STALL WAR is returned. This last case can significantly
affect the performance of hardware store-prefetching, and is called a WAR stall?. The impact of WAR stalls
can be reduced through software prefetching, as an exclusive prefetch can be sent before either the read or
write accesses [15, 16].

If the access was not dropped, forwarded, or stalled, it is a valid access that can be processed by merging
with the current MSHR. In this circumstance, the cache merges the request with the current MSHR and
returns MSHR_COAL.

Step 2: Processing based on the results of notpres mshr

LiProcessTagReq continues processing the REQUEST based on the return value of notpres mshr.

For a hit (NOMSHR), the request is marked as a hit and returned to the processor through the
GlobalPerformAndHeapInsertAllCoalesced function.

For new misses (MSHR.NEW), upgrades (MSHR_FWD), or write-throughs (NOMSHR_FWD), the cache attempts
to send the request down, returning a successful value if the request is sent successfully.

For MSHR_COAL, the element is considered to have been processed successfully.

On MSHR_USELESS_FETCH_IN_PROGRESS, the request is dropped.

For each of the stall cases, the processing is generally considered incomplete, and the function re-
turns 0 to indicate this. However, if the stalled request is a prefetch and DISCRIMINATE PREFETCH has
been set with the “-T” option, the request is dropped and processing is considered successful. Note that
DISCRIMINATE PREFETCH cannot be used to drop prefetches at the L2 cache, as these prefetches may already
hold MSHRs with other coalesced requests at the L1 cache.

13.3.2 Handling REPLY type

Step 1: Checking status of MSHR. entry

2WAR stalls are not usually seen with straightforward implementations of consistency models, as stores following loads
to the same line generally depend on the values of those loads. Consequently, such stores cannot issue in straightforward
implementations until the loads complete.

70 CHAPTER 13. CACHE HIERARCHY

For a REPLY, the function LiProcessTagReq uses the FindInMshrEntries function to find the MSHR
number corresponding to the REPLY.

If there is no MSHR entry for the REPLY, then it must be a response to a non-allocated write or to an
L2 prefetch REQUEST. For such a REPLY, GlobalPerformAndHeapInsertAllCoalesced should be immedi-
ately called. This function calls the GlobalPerform function for the corresponding REQUEST and any other
REQUESTs that may have coalesced with this REQUEST at the write-buffer or L2 cache, while also inserting
the REPLYs into the MemDoneHeap described in Section 11.

Step 2: Processing REPLYs that match an MSHR

If the REPLY matches an MSHR, the function GetCoheReq is used to determine if any coherence message
coalesced into the MSHR while it was outstanding. If so, any possible effects of this coherence message will
be processed along with the REPLY.

Step 2a: Processing upgrade REPLYs

For upgrades, the REPLY handler calls the cache’s coherence routine to determine the final state of the
cache line. If any writes are present in the MSHR for the cache line and the state of the line is exclusive,
the state changes to modified. If a COHE was merged into the MSHR, its effect on the cache line state is
now carried out. (Note: no coherence message that requires a copyback or cache-to-cache transfer will ever
merge into an MSHR, as discussed in Section 13.3.3.)

Step 2b: Processing cache miss REPLYs

For cache misses (REPLYs other than upgrades), the REPLY handler calls either premiss_ageupdate or
miss_ageupdate based on whether or not the line is a “present miss” (a line whose tag remains in cache
after a COHE, but is in an INVALID state).

If the line is not a “present miss”, the miss_ageupdate function tries to find a possible replacement
candidate. If any set entry is INVALID, this line is used so as to avoid replacement. If a line must be
replaced, then the least-recently used SH_CL line is used; if none is available, the least-recently used PR_CL
or, finally, PRDY line is used?.

If no victim is available because all lines in the set have upgrades pending, the REPLY is not taken and
a message needs to be sent back to the sender. This is done in the NackUpgradeConflictReply function.
This function uses the MSHR allocated reserved by the REQUEST corresponding to this rejected REPLY as a
resource from which to issue the new message. This resource is added to the smart MSHR list simulator
abstraction (discussed in Section 13.2).

For REPLYs that do find a space in which to insert the new line, the cache’s coherence routine is called
to determine the state for the new line being brought in. If any writes are present in the MSHR for the
cache line and the state of the line is exclusive, the state changes to modified. If a COHE was merged into the
MSHR, its effect on the cache line state will also be carried out.

If this line replaces a current line, the cache’s coherence routine is called to determine any possible
requests that must be sent as a result. If the variable blw_req_type is set, a writeback must be sent as a
result of this replacement (occurs if the victim had been in modified state). In this case, the GetReplReq
function must be called to create a write-back message. This function sets up all the fields for a new message
that writes back the line being replaced. This new write-back message is sent out in Step 3.

Step 3: Returning replies to processor

Regardless of REPLY type processed, the system now prepares to remove the corresponding entry from
the MSHRs.

If some non-MSHR accesses (L2 prefetches, writes with a write-through cache) are also
coalesced with the reply, the function GlobalPerformAndHeapInsertAllCoalescedWritesOnly or
GlobalPerformAndHeapInsertAllCoalescedL2PrefsOnly is called to provide replies all of them to the
processor.

3Recall that the simulator code refers to the MESI states as PR_DY, PR_CL, SH.CL, and INVALID, respectively.

13.3. PROCESSING L1 CACHE ACTIONS 71

Then, MSHRIterateUncoalesce is called, passing through all the responses coalesced into the REPLY and
the MSHR itself and informing the processor of these.

If this reply does not cause a write-back, its MSHR is freed. Otherwise, the MSHR is temporarily used as
storage space for the write-back, and will be thus held until the write-back is able to issue from the MSHR
to the next level of cache. As with other resources held to issue messages to the ports, the MSHR is added
to the smart MSHR list.

LiProcessTagReq does not currently account for cache fill time.

13.3.3 Handling COHE type

The types of incoming COHE transactions understood by the L1 cache are COPYBACK, COPYBACK _INVL, INVL,
and WRB (as indicated by the req type field of the message). The first three are described as coherence
transactions in Section 12.2. The latter is used to enforce inclusion on the L2 replacement of an exclusive
line. (Note that the L1 cache cannot receive a COHE_REPLY from any module.)

Step 1: Determining if COHE hits in cache or matches an MSHR

If the message being handled is an incoming COHE transaction, L1ProcessTagReqstarts by calling notpres
and notpres mshr to determine the status of the line in the cache. For COHE messages, notpres mshr starts
out by checking to see if the line is being held in any of the outstanding MSHRs.

Step la: Behavior of notpres mshr when COHE does not match MSHR

If the incoming coherence message does not match any MSHR, the function immediately returns NOMSHR
to indicate that no MSHR was involved in the transaction.

Step 1b: Behavior of notpres mshr when COHE matches MSHR.

If a COHE matches an MSHR, the response of notpres mshr depends upon the type of MSHR and the
type of coherence transaction.

Step 1b/i: Matching MSHR is for a read miss

If the MSHR is for a read miss, the reply may come back in either shared or exclusive state. Thus, the
type of COHE determines whether or not this message can be processed.

If the coherence message demands a copyback (COPYBACK or COPYBACK_INVL), the directory still considered
this cache to be the owner of the line at the time of the message. Thus, the cache either had previously
been the owner or is going to be the owner because of an exclusive REPLY. Because of the latter possibility,
this response must be a NACK_PEND so that the sender can either retry the coherence message, reprocess the
original REQUEST that caused the coherence message, or simply drop the COHE (in the case of WRB subset
enforcement messages where the L2 cache request is already stalling at an MSHR). notpres mshr returns a
response of MSHR_COAL.

If the coherence message does not require a copyback (INVL or WRB), the invalidation message can be
merged with the MSHR for later processing. In the case of an INVL, the message can receive a positive
acknowledgment of REPLY (indicating that the COHE will be acted upon). If the incoming COHE is a WRB, the
response is sent as a negative acknowledgment to the L2 cache (indicating to the L2 cache that no data is
being provided by the L1). In the INVL case, notpres mshr returns MSHR_COAL, while the WRB case sees a
return value of NOMSHR.

Step 1b/ii: Matching MSHR is for a write miss or upgrade

If the MSHR is for a write miss or upgrade, however, the message must be handled differently.

If the request demands a data copyback from a write-back cache, the request must be sent back with a
NACK_PEND. If the request is a type that seeks a data copyback, but the cache is write-through, the request is
handled by acknowledging the message and handling it later. In either case, this function returns MSHR_COAL.

On the other hand, if the request does not demand a data copyback, it must have originated before the
private request was serviced. Thus, the coherence action can be done immediately and returned with a NACK.

72 CHAPTER 13. CACHE HIERARCHY

If the line was being upgraded, it can still be unlocked and invalidated here: the directory must convert the
processor’s UPGRADE request to a READ_OWN when it realizes that the processor doesn’t actually have the line
it wants. notpres mshr returns MSHR_FWD.

Step 2: Processing based on the results of notpres mshr

If notpres_mshr returns NOMSHR, the response depends on whether or not the line is in cache. If the
line 1s a cache miss, the COHE is NACKed. If the line is a cache hit and the COHE message is of type WRB, the
message 1s NACKed if the line is held in a state other than PRDY and positively acknowledged if the line is in
PR.DY. Either way, the line is invalidated. If the access is a cache hit and not a WRB, the cache line state is
changed according to the results of the coherence function and the message is positively acknowledged. In
each of the NOMSHR cases, SpecLoadBufCohe is called if the coherence type indicates an invalidation, even if
the line is not present in the L1 cache (as such a message may indicate an L2 invalidation or replacement).

If notpresmshr returns MSHR_COAL, LiProcessTagReq first sends the coherence message to
SpecLoadBufCohe if the system implements speculative load execution and the message conveys an invalida-
tion. If the cache is write-through or the COHE does not demand a copyback, it is positively acknowledged.
Otherwise, the COHE will receive a NACK_PEND response.

If notpres mshr returns MSHR_FWD, the COHE receives a response of either NACK_PEND (for WRB requests) or
NACK (for other message types). If the request indicates an invalidation and the system implements speculative
load execution, L1ProcessTagReqsends the coherence message to SpecLoadBufCohe. Additionally, if the line
is present in the cache, this case removes the mshr_out field from the line and invalidates it, thus removing
the line from the cache even in a case formerly considered an upgrade.

In all of the above cases for COHE messages, L1ProcessTagReq returns success if the COHE REPLY can be
sent down immediately. If not, the cache will try to resend the COHE_REPLY until it is accepted by its port.

13.4 Processing L2 tag array accesses

Source files: src/MemSys/12cache.c, src/MemSys/mshr.c, src/MemSys/cachehelp.c,
src/MemSys/setup_cohe.c

Header files: incl/MemSys/cache.h, incl/MemSys/mshr.h

The function L2ProcessTagReq is called for accesses that have reached the head of an L2 tag array
pipeline. L2ProcessTagReq is largely similar to L1ProcessTagReq but has some key differences, described
below.

Difference 1: Presence of a data array

The first difference between L1ProcessTagReq and L2ProcessTagReq deals with the data array. REQUESTSs
that hit, the data response for REPLYs, as well as the copyback portions of COHE messages and write-backs
(whether replacements at the L2 or unsolicited fills from the L1) all require data array accesses.

Difference 2: Servicing COHE messages

For COHE messages, the L2 cache marks the line in question with a “pending-coherence” bit and then
forwards possible actions to the L1 cache first.

The actual actions for the message are processed at the time of the COHE_REPLY; however, NACK_PEND
responses from the L1 cache are forwarded to the directory immediately for non-WRB messages. The pending-
coherence bit is also cleared upon receiving the COHE REPLY.

Additionally, the L2 cache is responsible for resolving cache-to-cache transfer requests. On a successful
cache-to-cache transfer, the L2 cache not only sends a COHE REPLY acknowledgment or copyback to the
directory, but also sends a REPLY to the requesting processor with the desired data. The cache-to-cache
transfer policy follows that depicted in Figure 3.3.

Difference 3: Additional conditions for stalling REQUEST messages

13.4. PROCESSING L2 TAG ARRAY ACCESSES 73

The notpres mshr function adds two further conditions for stalling REQUEST messages in the case of the
L2 cache.

REQUESTSs that hit a line with its pending-coherence bit set receive a return value of NOMSHR _STALL_COHE
from notpres mshr. This indicates that no MSHR has been consumed, but that this REQUEST must wait
for the pending COHE first. This case does not appear in the L1 cache because that cache does not have
pending-coherence bits for lines.

If the REQUEST is not able to reserve a space in the write-back buffer for its expected REPLY, the
notpres.mshr function returns NOMSHR _STALL WRBBUF FULL. This indicates to the function L2ProcessTagReq
that no MSHR will be allocated for this REQUEST until space in the write-back buffer becomes available.

Difference 4: Handling retries

The 1.2 cache accepts REPLYs from the directory with the s.reply field set to RAR (request a retry). This
indicates that the directory could not process the REQUEST and is returning it to avoid deadlock. In this case,
the cache must reissue the original REQUEST. The cache uses the MSHR originally allocated by the REQUEST
as a resource from which to reissue the REQUEST, thus allowing the retry message to be accepted even if the
outbound REQUEST port is blocked.

Difference 5: Handling replacements caused by replies

The most significant differences between L1ProcessTagReq and L2ProcessTagReq deal with the handling
of replacements. The L2 cache has a write-back buffer for victimization messages to the directory. Before
a REQUEST can be sent out, the notpres mshr function must ensure that there will be a write-back buffer
space available for the reply.

When the REPLY returns to the cache, a write-back buffer is tentatively booked.

Difference 5a: Replies that replace no line or a shared line

If the REPLY causes no replacement, the write-back buffer space is freed. If the REPLY replaces a shared
line, the cache sends a subset enforcement invalidation to the L1 cache, possibly using the write-back buffer
entry as a resource from which to send the invalidation. This resource is added to the smart MSHR list
simulator abstraction.

Difference 5b: Replies that replace an exclusive line

However, if the REPLY causes a replacement of an exclusive line, the write-back buffer space may actually
be used for data as well.

If the L1 cache above is write-through, an invalidation message is sent up to the L1 cache. If it cannot be
sent immediately, the cache uses the write-back buffer entry as a resource from which to send the message.
After the invalidation message is sent up, the write-back or replacement message tries to issue from the
write-back buffer entry to the port below it. Again, if this message cannot be sent immediately, the write-
back buffer entry will be used as a resource to hold the message until it can be sent. In both cases, the
write-back buffer entry is added to the smart MSHR, list simulator abstraction.

If the L1 cache is write-back, the WRB first passes through the L2 data array if the line in L2 is held in
dirty state, then to the L1 cache as a subset-enforcement COHE message. The next WRB coherence reply from
the L1 is used to either replace the data currently held for the line in the write-back buffer (on a positive
acknowledgment) or to inform the cache that the L1 cache did not have the desired data (on a NACK). A
variety of races are handled in these cases, as the L1 may send an unsolicited write-back at nearly the
same time as the L2 sends a request for a write-back. The details of these races are explained in the inline
documentation with the code.

If neither the L2 nor the L1 had the line in dirty state, a REPL message, rather than a WRB is sent to
the directory. The directory-bound write-back or replacement message uses its write-back buffer entry as
a resource from which to send the message to insure that an inability to send out a WRB does not stall the
REPLY that caused the replacement or the COHE_REPLY from the subset-enforcement WRB. Once the write-back
or replacement message issues to the port below it, its space in the write-back buffer is cleared.

74 CHAPTER 13. CACHE HIERARCHY

13.5 Processing L2 data array accesses

Source files: src/MemSys/12cache.c, src/MemSys/cachehelp.c
Header files: incl/MemSys/cache.h

L2ProcessDataReq is a short function that handles the data-array access of each request type. The
additional processing for each request type here is minimal. Some message types use write-back buffer
entries as resources from which to issue messages from this stage. This use of the write-back buffer entries
prevents write-backs from blocking any resources, thus preventing one possible deadlock condition. As with
other resources held to send out messages, the cache uses the smart MSHR list as a simulator abstraction
in these cases.

13.6 Cache initialization and statistics

Source files: src/MemSys/cache.c, src/MemSys/cache2.c, src/Processor/capconf . cc,
src/MemSys/mshr. c

Header files: incl/MemSys/cache.h, incl/MemSys/stats.h, incl/Processor/capconf.h

The functions NewCache and init_cache initialize the data structures used by the cache, including the
the cache-line state structures, the MSHR array, the write-back buffer, the cache pipelines, and the statistics
structures.

Each data access to the cache calls StatSet to specify whether the access hit or missed, and the type of
miss in the case of misses. Each cache module classifies misses into cold, conflict, capacity, and coherence
misses. Capacity and conflict misses are distinguished using a structure called the CapConfDetector. The
detector consists of a hash table combined with a fixed-size circular queue, both of which start empty.

Conceptually, new lines brought into the cache are put into the circular queue, which has a size equal to
the number of cache lines. When the circular queue has filled up, new insertions replace the oldest element
in the queue. However, before inserting a new line into the detector, the detector must first be checked to
make sure that the line is not already in the queue. If it is, then a line has been brought back into the cache
after being replaced in less time than its taken to refill the entire cache; consequently, it is a conflict miss.
We consider a miss a capacity miss if it is not already in the queue when it is brought into the cache, as this
indicates that at least as many lines as are in the cache have been brought into the cache since the last time
this line was present. The hash table is used to provide a fast check of the entries available; the entries in
the hash table are always the same as those in the circular queue.

The caches also keep track of the MSHR occupancy, determining the percentage of time any given
number of MSHRs is in use. This statistic is calculated through an interval statistics record, described in

Chapter 16.1.

13.7 Discussion of cache coherence protocol implementation

Source files: src/MemSys/setup_cohe.c

RSIM supports two coherence protocols — MSI and MESI. Both of these protocol implementations are
depicted in Figure 3.3. In the MSI system, an explicit upgrade message is required for a read followed by a
write, even if there are no other sharers. The MESI system overcomes this disadvantage. However, our MESI
implementation requires a message to be sent to the directory on elimination of an exclusive line from the
L2 cache. Some available MESI implementations avoid this replacement message; however, in such systems,
the write-back of a modified line requires an acknowledgment from the memory controller and holds an entry
in the write-back buffer until the reply arrives [12]. In our system, on the other hand, a write-back does not
cause a reply, and the write-back buffer entry is freed as soon as the write-back issues to the ports below the
cache. The bandwidth tradeoff between these two choices i1s application-dependent.

13.8. COALESCING WRITE BUFFER 75
13.8 Coalescing write buffer

Source files: src/MemSys/wb.c, src/MemSys/wbuffer.c

Header files: incl/MemSys/cache.h

The coalescing write buffer is used in systems with a write-through L1 cache. Although the write buffer
is conceptually in parallel with the L1 cache (Figure 3.2), the simulated module sits between the two caches.
To provide the semblance of parallel access, the write buffer has zero delay.

The WBSim function implements the write buffer and is called from L2CacheOutSim (for REPLYs) and from
LiCacheOutSim (for REQUESTs). This simulation module first checks for a message on any of its input queues.
If one is available, the function jumps to the appropriate case to handle 1t.

If the incoming message is a REQUEST, it is handled according to the req_type field of the message. If
the request is a read type that does not match any write in the buffer, it is immediately sent on to the L2
cache. If the request is a read that does match a write in the buffer, the read is stalled until the matching
write issues from the write buffer. This scheme follows the policy used in the Alpha 21164, referred to as
“Flush-Partial” in other studies [21]*.

If the incoming REQUEST is a write, the write-buffer attempts to add it to the queue of outstanding write-
buffer entries by calling the function notpres wb. If the request matches the line of another outstanding
write, it is coalesced with the previous write access. Each line conceptually includes a bit-vector to account
for such coalescing. If there is no space for the write in the buffer, it is stalled until space becomes available.
Writes are sent out of the write buffer and to the L2 cache as soon as space is available in the L2 input ports.
This processing takes place in case 9 of the function WBSim. As soon as a write is added to an L2 port, its
entry is freed from the write-buffer.

REPLYs are immediately forwarded to the L1 cache with no additional processing. The write buffer does
not receive COHE or COHE REPLY messages.

13.9 Deadlock avoidance

The caches guarantee that all incoming replies (REPLYs and COHE_REPLYs) are accepted even if they re-
quire further messages to be sent out. If a REPLY leads to a retry (either because of an RAR or a
NackUpgradeConflictReply), the MSHR originally allocated by the REQUEST will be used as a resource
from which to send the message to the cache ports. If a REPLY leads to a writeback or replacement message,
its write-back buffer entry or MSHR can be used as a resource from which to send the message. In all cases,
the resources needed to send any possible messages on REPLY are reserved at the time of the REQUEST.
Additionally, the tag arrays of the caches have a special port reserved for COHE messages to insure that
these messages do not interact with REQUESTs or REPLYs to cause a deadlock. Such a port would likely be
considered excessive in a real system; an alternative is to have the caches break deadlocks caused by COHEs
by sending these messages back to the directory marked with s.reply fields set to RAR (request a retry).

4Note that our architecture does permit “forwarding” of values in the processor memory unit.

Chapter 14

Directory and Memory Simulation

Source files: src/MemSys/directory.c

Header files: incl/MemSys/directory.h

The processor and cache modules are simulated on a cycle-by-cycle basis, as these units are likely to have
activity nearly every cycle. However, the remaining building blocks of RSIM are activated only according to
whether or not they are ready to process a transaction.

The directory controller modeled in RSIM implements a 4-state MESI coherence protocol or a 3-state MSI
protocol. The directory is merged with the system DRAM, as accesses generally need to process information
from both the DRAM and the directory at the same time (an exception is noted below). The directory and
memory banks are interleaved on a cache-line basis, using as many modules as specified with the “-I” option.
The directory is responsible for maintaining the current state of a cache line, serializing accesses to each line,
generating and collecting coherence messages, sending replies, and handling race conditions. In addition, the
directory coherence protocol used in RSIM relies on cache-to-cache transfers and uses replacement messages,
as depicted in Figure 3.3. Coherence replies are collected at the directory, and in the case of transfers that
require coherence actions (other than cache-to-cache transfers), the data is sent to the requestor only after
all coherence replies have been collected.

The DirSim function simulates the actions of the directory and includes many stages based on the current
type of access being processed and the progress of that access. The following sections describe each of the
stages in the directory.

14.1 Obtaining a new or incomplete transaction to process

The first stage is DIRSTART. In this stage, the directory first sees if it can send out a message that was
previously added to its list of outbound transactions (DutboundReqs). If a message can be sent, the directory
jumps to state DIROUTBOUND; otherwise, the message at the head of the OutboundReqs list is pushed to the
end.

Next, the directory starts to check its input ports (REQUEST and COHE REPLY) in a round-robin fashion.
However, the directory cannot bring in a new REQUEST if it still has a partially completed REQUEST transaction
(described in Sections 14.2 and 14.3). This transaction must be completed before the any new REQUESTSs are
brought in. In this case, the directory transitions to state DIRSENDCOHE to attempt to complete the previous
REQUEST transaction rather than bringing in a new one. Further, the directory cannot bring in a new REQUEST
if a formerly pending request (described in Section 14.2) has become ready for processing. In this case, the
formerly pending REQUEST is chosen rather than a new REQUEST. Before looking at the input port for new
REQUESTS, the directory will check to see if it has a partially completed transaction in flight (noted in the
req.partial field). This transaction must be completed before any new REQUESTs are brought in. In this
case, the directory transitions to state DIRSENDCOHE. If there are no partially completed transactions, the
directory then looks at its list of previously pending REQUESTs to process an old REQUEST before bringing

76

14.2. PROCESSING INCOMING REQUESTS 77

in a new one. Only if there is no partially completed transactions or formerly pending REQUEST available
will the directory bring in a new REQUEST. However, there is no restriction on the directory bringing in a
new COHE REPLY: such an access will be brought in and processed regardless of previous pending REQUESTs
or partially-completed REQUEST transactions.

For new REQUESTSs, formerly pending REQUESTs, or COHE REPLYs, the directory must now stall for its
access latency. This is calculated based on the width of the directory port and the flit transfer time,
discussed in Section 12.3. Additionally, for all accesses except COHE REPLYs that do not access memory
(simple acknowledgments without copy-back), the directory must delay by the memory latency specified
with “-M”. For COHE REPLYs that do not access memory, the directory only stalls for the amount of time
specified with the configuration parameter dircycle, which represents the minimum directory delay.

After these stalling, the directory jumps to state DIRSERV, where REQUESTs are dispatched to DIRREQ,
write-backs or other replacement messages are sent to case DIRWRB, and other COHE_REPLYs are sent to state
DIRCOHEREP. Each of these states is discussed in the following sections.

14.2 Processing incoming REQUESTs

The first part of DIRREQ handles “preprocessed” REQUESTs, which have already come to the directory before
but were bounced back at the cache by NackUpgradeConflictReply (Section 13). These are simply bounced
back to the cache. For other REQUESTSs, the directory coherence routine (Dir_Cohe) must be called in order
to determine the course of handling this access.

Dir_Cohe determines the state transition for the line at the directory, as well as the possible COHE messages
that this access will need to send out. As Dir_Cohe may consume a directory buffer, the directory must first
check to make sure that a buffer is available; if none is available, the directory sends the REQUEST back as
an RAR.

If Dir_Cohe responds with a DIR_REPLY or VISIT MEM, no COHE actions must be sent as a result of this
transaction. Consequently, the directory attempts to send a REPLY back to the caches. If a REPLY cannot
be sent, the REQUEST is held in its input port or pending buffer until it can be processed later; the directory
returns to case DIRSTARTOVER in such cases. If a REPLY can be sent, the directory moves to DIRSENDREQ.

If the REQUEST comes from a cache that the directory believes to have the line in exclusive state, then
the REQUEST must have bypassed an in-flight write-back or replacement message from the same node. In this
case, Dir_Cohe returns WAITFORWRB to force this REQUEST to wait for a write-back or replacement message
before being processed. Such a REQUEST is moved to the pending queue to allow other REQUESTs to be
processed in the meanwhile. Similarly, if the REQUEST is to a line that is currently in a transient directory
state, caused by outstanding COHE messages or an outstanding WAITFORWRB, Dir _Cohe returns WAIT_PEND
and the REQUEST is also added to the pending buffer.

If the REQUEST requires new COHE messages to be sent out and the line is currently held in shared
state by other nodes, the Dir_Cohe function returns WAIT _CNT. In this case, the directory must create new
invalidation COHE packets. These messages are sent as INVL coherence messages, with NACK_OK set to indicate
that a negative-acknowledgment is acceptable.

If the line is currently held in exclusive state by another node, Dir_Cohe returns FORWARD REQUEST. This
reponse indicates that the outbound coherence message should request the owner of the cache line to send
a cache-to-cache transfer to the requester. If the REQUEST being sent is a shared-mode access (read), the
cache-to-cache transfer COHE request is sent as a COPYBACK, indicating that the memory should also be sent a
copy of any dirty data. This is needed because the cache-coherence protocol does not support a shared-dirty
state; any line shared by multiple caches must be held with the same value at the memory. If the REQUEST is
an exclusive-mode access, the cache-to-cache transfer COHE request is sent as COPYBACK_INVL, indicating that
it 1s sufficient to send only an acknowledgment to the directory after sending the cache-to-cache transfer. In
either case, negative acknowledgments are not acceptable, so the cache-to-cache transfer request is sent with
NACK_NOK.

In either the WAIT_CNT or FORWARD REQUEST cases, the directory has to delay the processing of out-
bound coherence messages according to the packet creation time described in Section 4. Namely, the
first COHE message will wait for a delay of pkt_create_time, while each subsequent message will wait
for addtl pkt_crt_time. Each time the directory delays for a packet creation, the REQUEST is put into

78 CHAPTER 14. DIRECTORY AND MEMORY SIMULATION

the directory’s partially-completed transaction structure (req_partial), and the directory transitions to
DIRSENDCOHE.

14.3 Sending out COHE messages

State DIRSENDCOHE attempts to send out COHE messages needed by a new or partially-completed REQUEST
being processed. If there is no space available on the output port for COHEs, the REQUEST is placed in the
req_partial field to indicate that it is a partially-completed transaction. The directory is then sent back to
state DIRSTARTOVER so that it may be able to process incoming COHE REPLYs in the meanwhile.

If there is space available on the output COHE port, a COHE for this transaction is sent out. If the
transaction requires more coherence messages to be sent out, the request is placed in the req partial
field and the directory must delay for the additional packet creation time (a configurable parameter). After
delaying, the directory will remain in state DIRSENDCOHE, which will then attempt to send the next coherence
message out. These steps repeat until all COHEs for this transaction have been sent out.

14.4 Processing incoming write-back and replacement messages

On write-back or replacement messages, the directory transitions to state DIRWRB. These accesses call
Dir _Cohe in order to make changes to the state of the line. If any pending REQUESTs are waiting on this
write-back or replacement message, those are marked as being ready for processing.

14.5 Processing other incoming COHE REPLYs

For other coherence replies, the directory uses state DIRCOHEREP. The operation of the directory in these cases
depends on whether the response is a positive acknowledgment or a negative acknowledgment (as indicated
by the s.reply field of the message).

14.5.1 Handling positive acknowledgments

In the case of positive acknowledgments (or negative acknowledgments to coherence messages sent with
NACK_OK), the directory sees if this response enables it to send out a REPLY (if the access is not a cache-to-
cache transfer and all coherence replies have now been collected). If so, the directory attempts to send out
a reply, adding the reply to its OutboundReqs structure if no space is currently available in its port.

If the positive acknowledgment is an acknowledgment from a cache-to-cache transfer (whether it includes
data or not), the buffer entry for the access is freed, as these accesses do not require any further messages
to be sent.

14.5.2 Handling negative acknowledgments

If s.reply is set to NACK, the COHE REPLY indicates that the line missed in the remote cache. This response
type 1s acceptable and handled like a positive acknowledgment unless the COHE message from the directory
was sent with NACK_NOK. NACK NOK indicates that the coherence message specifically expected that data would
be transfered. In this case, the cache must have issued a write-back or replacement message just prior to
receiving the coherence message in question. If this write-back or replacement has not yet been received, the
original REQUEST that started the coherence transaction sequence is sent back to its cache with an RAR to be
retried. (If the RAR cannot be sent immediately, the directory puts it in OutboundReqs to be tried later). If
the write-back has been received at the directory, though, the original REQUEST can be reprocessed through
the standard directory request-handling case.

On NACK_PEND coherence replies, the directory is expected to reevaluate its status and resend the COHE
request if needed. A response of NACK_PEND is sent from the cache in certain cases of a COHE received for a
line with an outstanding MSHR. Such a race can occur either if the cache sent a write-back or replacement
message before the directory sent out the COHE or if the COHE was received by the cache before the REPLY,

14.6. DEADLOCK AVOIDANCE 79

which had been sent to the cache earlier. If the directory has received a write-back for the line in question
from the node that responded with a NACK_PEND, the original REQUEST is reprocessed by the normal request
handler. Otherwise, the coherence message is retried again, as it may have been NACK_PENDed only because
it bypassed an earlier REPLY.

14.6 Deadlock avoidance

Certain sequences of transactions at the directory require the directory to reprocess or reissue previous
messages. Just as the caches reissue retries from previously allocated MSHRs or write-back buffer entries,
the directories reprocess REQUESTSs or reissue COHE messages from the buffers already allocated at the time
of the original REQUEST.

The directory is also reponsible for breaking request-request cycles in the system. If such a condition
arises, the directory buffers of some directory must have filled up, since all REQUESTs have a directory as
an ultimate destination and all COHEs issue from the directory. If the request buffers of a directory fill up,
the directory sends back later requests as RAR replies. These will not lead to deadlock, since the caches can
always accept retries in a finite amount of time.

In certain pathological cases, the RSIM directory may starve a specific processor by always choosing its
requests for retry. This can be changed by adding additional constraints on the requests that a directory
can process once it resorts to retries.

Chapter 15

System Interconnects

RSIM simulates a bus connecting modules within a node and a multiprocessor interconnection network
connecting the nodes within a system. Section 15.1 explains the internals of the bus. Section 15.2 describes
the function of the network interface on each node. Section 15.3 explains the operation of the multiprocessor
interconnection network.

15.1 Node bus

Source files: src/MemSys/bus.c

Header files: incl/MemSys/bus.h

The RSIM bus module simulates an aggressive split-transaction bus that imposes no limits on outstanding
requests. This bus connects the L2 cache, the network interfaces, and the directory /memory modules within
a node. Arbitration is round-robin among the bus agents. As in a real system, a bus agent is not allowed
to acquire the bus unless its destination is ready. The bus speed, bus width, and arbitration delays can be
configured as described in Chapter 4.

The function node_bus represents the main operation of the bus simulator. This function is split up into
several stages according to the progress of a request on the bus. In the BUSSTART stage, the bus has not
started processing a transaction. In this case, the bus peeks at the ports round-robin (starting with the port
after the one last accessed) for a new message. If a transaction is available, the bus moves to the SERVICE
stage.

In the SERVICE stage, the routing function is called to determine the output port for this message. If
that port is not available, the bus is delayed for a bus cycle before returning to BUSSTART, where it will try to
find a different transaction or keep trying this transaction until the output becomes available. If the port is
available, however, the bus transitions to the BUSDELIVER stage after stalling for the latency of the transfer
(based on the message size, the bus width, and the bus cycle).

In the BUSDELIVER stage, the bus moves the transaction into the desired output port, after which it will
stall for an arbitration delay before allowing BUSSTART to continue processing new requests.

15.2 Network interface modules

Source files: src/MemSys/smnet.c

Header files: incl/MemSys/net.h

The SMNET (Shared Memory-NETwork) interfaces in RSIM are the modules that connect each node’s
local bus to the interconnection network. The primary functions of the SMNET are as follows:

80

15.3. MULTIPROCESSOR INTERCONNECTION NETWORK 81

e Receive messages destined for the network from the bus. (These may originate from the cache or
directory controller.)

o Create the message packets.

Inject the messages into the appropriate network ports and initiate communication.

e Handle incoming messages from the network by removing them from the network port and delivering
them to the bus.

The main procedure for sending packets to the network is SmnetSend. This event handles communication
between the bus and the network interface. Upon receiving a new message, SmnetSend schedules an appro-
priate event to insert the new message into the request or reply network as appropriate. The events that
provide this interface have the body functions ReqSendSemaWait and ReplySendSemaWait for the request
network and reply network, respectively. These events ensure that there is sufficient space in the network
interface buffers before creating the packets and initiating communication.

In addition to sending messages, the Smmnet module handles receiving messages through the
ReqRcvSemaWait and ReplyRcvSemaWait events. These events wait on semaphores associated with the
network output ports to receive messages. (Semaphores are discussed in Section 8.2.) As soon as a message
is received, 1t is forwarded to the appropriate bus port, according to whether 1t is a request or a reply. The
bus will actually deliver the message to the caches or the directory.

15.3 Multiprocessor interconnection network

Source files: src/MemSys/net.c, src/MemSys/mesh.c

Header files: incl/MemSys/simsys.h, incl/MemSys/net.h

The base network provided in the RSIM distribution is a 2-dimensional bi-directional mesh (without
wraparound connections), and is taken from the NETSIM simulation system [7]. The interconnection network
includes separate request and reply networks for deadlock-avoidance. Unlike the other subsystems discussed
in this chapter, the network is not built using the standard module framework.

The network flit delay, arbitration delay, width, and buffer sizes can be configured as described in Chap-
ter 4. Additionally, the system can be directed to simulate pipelined switches, by which the flit delay of
multiple flits can be incurred in a pipelined manner. To model this behavior, a system with pipelined switches
uses a flit delay equal to the granularity of pipelining and adds the remainder of the originally specified flit
delay to the arbitration delay of the multiplexers. With these adjustments, the latency of the head flit of a
packet remains the same, but subsequent flit delays are based on the degree of pipelining.

The processor connection to the network of each node is depicted in Figure 15.1. Similar components
connect the node to the interconnection network and neighboring processors along the X and Y axes. Mes-
sages are injected into the network using the SmnetSend event and are received from the interconnection
network using the ReqRcvSemaWait and ReplyRcvSemaWait events, corresponding to the request and reply
networks, respectively.

The network routes packets using dimension-ordered routing, and each switch provides wormhole routing.
At each buffer, port, multiplexor or demultiplexor, the packet’s head flit determines i1ts next destination in
the network. When moving from one buffer to the next, the head flit encounters a delay of f1itdelay cycles,
which corresponds to the flit latency, possibly adjusted for pipelining as described above. In addition, the
head flit consumes arbitration delays (possibly adjusted for pipelining) at each multiplexor. (NETSIM allows
the head flit to experience routing delays at demultiplexors, but RSIM does not currently use this feature;
these delays are set to 0.) A packet’s remaining flits are moved when the tail flit is allowed to move. A tail
flit is allowed to move in the network as long as it does not share a buffer with the head flit since the tail
is never allowed to overtake the head of a packet. Once the tail is allowed to move, the simulator moves all
intermediate flits in a pipelined fashion every flitdelay cycles until the tail flit itself moves. The various
flits in the packet may thus span several network buffers at any time. This tail movement process continues
until the packet has reached the destination output port or until the tail has caught up with its head flit.

82 CHAPTER 15. SYSTEM INTERCONNECTS

from x+ Network
from x= - Interface
e
from y+ | Mux S
from y— oport
Node
Bus

to x+ Network
{0 x— - Interface
-
toy+ Demux Buf

- Iport

A

to y-

Figure 15.1: Processor side 2D-mesh switch connection.

The NETSIM reference manual is recommended reading for anyone intending to add other interconnection
network types or policies [7]. RSIM supports all of the primary functions in NETSIM.

15.4 Deadlock avoidance

The node bus avoids deadlock by accessing subsequent bus agents in a round-robin order. If the desired target
of a transaction is not available, the bus does not allow a new transaction to progress beyond arbitration.
Thus, no access is allowed to stall the bus.

The interconnection network avoids deadlock through three design decisions. First, replies and requests
are sent on separate networks. Since replies are guaranteed to be processed by the other modules in a finite
amount of time, there is no possibility of the reply network deadlocking. Requests can depend on other
requests or replies. If a request depends only on other replies, there is no chance of deadlock since no circular
dependence exists (as replies cannot in turn depend on requests). However, if a request depends on other
requests, deadlock may arise. This type of deadlock is resolved at the directory, as described in Section 14.6.

Chapter 16

Statistics and Debugging Support

This chapter discusses the statistics provided for the various subsystems as well as the debugging information
available.

16.1 Statistics

Source files: src/MemSys/stat.c

Header files: incl/MemSys/simsys.h

The detailed set of statistics is printed on simulation output at the end of each phase and at the end of
the simulation; a concise summary of the most important statistics is provided on the simulation standard
error. The types of statistics and the utilities for processing these statistics are described in Chapter 6.

Some of the statistics are kept track of by simple counters, but most of these statistics are computed
using the STATREC functions of YACSIM [8]. The key functions used are:

e STATREC *NewStatrec(char #name, int type, int means, int hist, int numbins, double
lowbin, double hibin)

Returns a new statistics record with the specified name and type (POINT or INTERVAL). A POINT
statistics record uses the weight passed in through StatrecUpdate for the weight of each sample,
whereas an INTERVAL statistics record uses the difference between the weight parameter for the current
sample and the weight parameter for the previous sample as the actual weight of the current sample.
The most common way to use an INTERVAL statistics record is to pass in the current simulation time
as the weight parameter. In this way, the weight of the sample being passed in is the length of time
since the last call to StatrecUpdate for this record.

means (can be set to MEANS or NOMEANS) indicates whether or not this statistics record should calculate
mean and standard deviation. hist (can be set to HIST or NOHIST) indicates whether or not a histogram
should be generated and reported for this record. (RSIM has also added the value HISTSPECIAL, which
indicates that a histogram should be generated, but only those bins with a non-zero number of entries
should be displayed when reporting statistics.) If a histogram is used, it will have numbins primary bins,
equally distributed with values from lowbin to highbin. There will also be overflow bins provided.

e void StatrecReset(STATREC *s)

Clears out the statistics recorded in s

e void StatrecUpdate(STATREC *s, double val, double wt)

Adds the value val into the statistics record with a weight parameter of wt

83

84 CHAPTER 16. STATISTICS AND DEBUGGING SUPPORT

e void StatrecReport(STATREC *s)

Prints a report of the mean, standard deviation, high, low, sample count, and histogram of the STATREC
on the simulation output (mean, standard deviation, and histogram provided only if thus configured
when calling NewStatrec).

e int StatrecSamples(STATREC *s)

Returns number of samples recorded

e double StatrecMean(STATREC *s)

Returns the mean of the samples

e double StatrecSum(STATREC *s)

Returns the sum of the samples

e double StatrecSAv(STATREC *s)

Returns the standard deviation of the samples

16.2 Debugging Support

RSIM provides a variety of debugging information for the developer looking to make changes to the system.
Currently, the caches, bus, network interfaces, and directory have corresponding #defines which, when set
at compile time, cause these modules to trace each of their important actions on the simulation output, along
with information related to the specific access being considered. Any or all of these debugging options can
be used at any time to trace the behavior of these modules. Additionally, the processor provides a variety of
tracing information for each pipeline stage and each instruction execution if the COREFILE option is defined
at compile-time. Each processor produces a trace file called corefile. 1, where ¢ is the unique identifier
for the processor. The Makefile provided in the obj/dbg directory has all the common debugging options
set so as to produce the maximum possible tracing output. Generally speaking, this is the desired level of
tracing for most significant simulator changes.

In addition to this tracing provided by RSIM, RSIM can be run through any standard debugger. However,
applications being simulated under RSIM cannot be debugged using a standard debugger from within the
RSIM environment, as RSIM does not expose information about the application being simulated to the

debugger.

Chapter 17

Implementation of predecode and
unelf

This chapter provides implementation details for the predecode and unelf utilities used to process appli-
cations to be simulated with RSIM.

17.1 The predecode utility

Source files: src/predecode/predecode. cc, src/predecode/predecode_instr.cc,
src/predecode/predecode_table.cc,

Header files: incl/Processor/instruction.h, incl/Processor/table.h, incl/Processor/decoding.h,
incl/Processor/archregnums.h

This utility converts application executable files from the SPARC format to a format understood by RSIM.
The main() function starts by looping through the ELF sections of the executable looking for instruction
sections. Once a text section is found, the start_decode function is called on every SPARC instruction in
the region.

The start_decode function begins by calling either branch_instr, call_instr, arith_instr, or
mem_instr, based on the first two-bits of the instruction type. call_instr directly interprets the CALL
instruction specified and returns. The other functions mentioned begin by dispatching the instruction to
another function, based on up to 6 opcode bits. This dispatch is done through a table set in the function
TableSetup, which corresponds to the instruction mapping specified in the SPARC V9 architecture [23]. In
some cases, multiple dispatch functions may need to be invoked. Finally, however, the functions given in
predecode_instr.cc convert from the SPARC instruction with tightly-encoded fields to the more loosely-
encoded RSIM instruction format (specified in the instr data structure). The opcode and the way in which
it defines its fields determines the final encoding used.

More information about the opcodes supported and their fields can be found in the SPARC V9 Archi-
tecture Reference Manual [23].

17.2 The unelf utility

Source files: src/predecode/unelf.cc

unelf uses the functions in the ELF library to expand an ELF executable into a format that can be
processed by a machine without support for the ELF library. unelf loops through the ELF sections for the
file. If any section contains data (which can either be instructions, initialized static data, or uninitialized
data), space for that section should be allocated into the overall data array being constructed. If the ELF

85

86 CHAPTER 17. IMPLEMENTATION OF PREDECODE AND UNELF

section actually provides data values (instructions or initialized static data), those should be copied from the
section into the data array being constructed. If the section is for uninitialized static data, the corresponding
region of the data array being constructed should be cleared.

After constructing a data array, the utility writes an UnElfedHeader data structure to the output file.
The UnElfedHEader specifies the size of the data array, the entry point, and the virtual address for the start
of the data array. Next, unelf writes the entire data array to the output file.

More information about ELF can be found from the Unix manual pages.

Bibliography

[1]

James E. Bennett and Michael J. Flynn. Performance Factors for Superscalar Processors. Technical

Report CSL-TR-95-661, Stanford University, February 1995.

Randy Brown. Calendar Queues: A Fast O(1) Priority Queue Implementation for the Simulation Event
Set Problem. Communications of the ACM, 31(10):1220-1227, October 1988.

R. G. Covington, S. Dwarkadas, J. R. Jump, S. Madala, and J. B. Sinclair. The Efficient Simulation of
Parallel Computer Systems. International Journal of Computer Simulation, 1:31-58, January 1991.

Kourosh Gharachorloo, Anoop Gupta, and John Hennessy. Performance Evaluation of Memory Consis-
tency Models for Shared-Memory Multiprocessors. In Proceedings of Fourth International Conference
on Architectural Support for Programming Languages and Operating Systems, pages 245-257, 1991.

Kourosh Gharachorloo, Anoop Gupta, and John Hennessy. Two Techniques to Enhance the Performance
of Memory Consistency Models. In Proceedings of the International Conference on Parallel Processing,

pages 1355-1364, 1991.

Kourosh Gharachorloo, Daniel Lenoski, James Laudon, Phillip Gibbons, Anoop Gupta, and John Hen-
nessy. Memory Consistency and Event Ordering in Scalable Shared-Memory Multiprocessors. In Pro-
ceedings of the 17th International Symposium on Computer Architecture, pages 15-26, May 1990.

J. Robert Jump. NETSIM Reference Manual. Rice University Electrical and Computer Engineering
Department, March 1993. Available at http://www-ece.rice.edu/~rsim/rppt.html.

J. Robert Jump. YACSIM Reference Manual. Rice University Electrical and Computer Engineering
Department, March 1993. Available at http://www-ece.rice.edu/~rsim/rppt.html.

David R. Kaeli and Philip G. Emma. Branch History Table Prediction of Moving Target Branches
Due to Subroutine Returns. In Proceedings of the 18th Annual International Symposium on Computer
Architecture, pages 34-42, May 1991.

David Kroft. Lockup-Free Instruction Fetch/Prefetch Cache Organization. In Proceedings of the 8th
International Symposium on Computer Architecture, pages 81-87, May 1981.

Leslie Lamport. How to Make a Multiprocessor Computer That Correctly Executes Multiprocess Pro-
grams. IEEFE Transactions on Computers, C-28(9):690-691, September 1979.

James Laudon and Daniel Lenoski. The SGI Origin 2000: A ccNUMA Highly Scalable Server. In
Proceedings of the 24th International Symposium on Computer Architecture, June 1997.

MIPS Technologies, Inc. R10000 Microprocessor User’s Manual, Version 2.0, December 1996.

Vijay S. Pai, Parthasarathy Ranganathan, and Sarita V. Adve. The Impact of Instruction Level Paral-
lelism on Multiprocessor Performance and Simulation Methodology. In Proceedings of the 3rd Interna-
tional Symposium on High Performance Computer Architecture, pages 72-83, February 1997.

87

88

[15]

[19]

[20]

[21]

[22]

BIBLIOGRAPHY

Vijay S. Pai, Parthasarathy Ranganathan, Sarita V. Adve, and Tracy Harton. An Evaluation of Mem-
ory Consistency Models for Shared-Memory Systems with ILP Processors. In Proceedings of the 7th
International Conference on Architectural Support for Programming Languages and Operating Systems,

pages 12-23, October 1996.

Parthasarathy Ranganathan, Vijay S. Pai, Hazim Abdel-Shafi, and Sarita V. Adve. The Interaction
of Software Prefetching with ILP Processors in Shared-Memory Systems. In Proceedings of the 2jth
Annual International Symposium on Computer Architecture, June 1997.

Parthasarathy Ranganathan, Vijay S. Pai, and Sarita V. Adve. Using Speculative Retirement and
Larger Instruction Windows to Narrow the Performance Gap between Memory Consistency Models. In
Proceedings of the Ninth Annual ACM Symposium on Parallel Algorithms and Architectures, June 1997.

Mendel Rosenblum, Edouard Bugnion, Stephen Alan Herrod, Emmet Witchel, and Anoop Gupta. The
Impact of Architectural Trends on Operating System Performance. In Proceedings of the 15th ACM
Symposium on Operating Systems Principles, pages 285298, December 1995.

Christoph Scheurich and Michel Dubois. Correct Memory Operation of Cache-Based Multiprocessors.
In Proceedings 14th Annual International Symposium on Computer Architecture, pages 234-243, Pitts-
burgh, PA, June 1987.

Jaswinder Pal Singh, Wolf-Dietrich Weber, and Anoop Gupta. SPLASH: Stanford Parallel Applications
for Shared-Memory. Computer Architecture News, 20(1):5-44, March 1992.

Kevein Skadron and Douglas W. Clark. Design Issues and Tradeoffs for Write Buffers. In Proceedings of
the 3rd International Symposium on High Performance Computer Architecture, pages 144-155, February
1997.

J. E. Smith. A study of branch prediction strategies. In Proceedings of the 8th Annual Symposium on
Computer Architecture, pages 135-148, May 1981.

Sparc International. The SPARC Architecture Manual, 1993. Version 9.

Eric Sprangle, Robert S. Chappell, Mitch Alsup, and Yale N. Patt. The Agree Predictor: A Mechanism
for Reducing Negative Branch History Interference. In Proceedings of the 24th Annual International
Symposium on Computer Architecture, June 1997.

Sun Microelectronics. UltraSPARC-II: Second Generation SPARC v9 64-Bit Microprocessor With VIS,
July 1997.

Sun Microsystems Inc. The SPARC Architecture Manual, January 1991. No. 800-199-12, Version 8.

Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie, Jaswinder Pal Singh, and Anoop Gupta. The
SPLLASH-2 Programs: Characterization and Methodological Considerations. In Proceedings of the 22nd
International Symposium on Computer Architecture, pages 24-36, June 1995.

Kenneth C. Yeager. The MIPS R10000 Superscalar Microprocessor. IEEE Micro, 16(2):28-40, April
1996.

Appendix A

RSIM Version 1.0 License Terms and
Conditions

Copyright Notice
1997 Rice University

1. The “Software”, below, refers to RSIM (Rice Simulator for ILP Multiprocessors) version 1.0 and
includes the RSIM Simulator, the RSIM Applications Library, Example Applications ported to RSIM, and
RSIM Utilities. Each licensee is addressed as “you” or “Licensee.”

2. Rice University is copyright holder for the RSIM Simulator and RSIM Utilities. The copyright holders
reserve all rights except those expressly granted to the Licensee herein.

3. Permission to use, copy, and modify the RSIM Simulator and RSIM Utilities for any non-commercial
purpose and without fee is hereby granted provided that the above copyright notice appears in all copies
(verbatim or modified) and that both that copyright notice and this permission notice appear in
supporting documentation. All other uses, including redistribution in whole or in part, are forbidden
without prior written permission.

4. The RSIM Applications Library is free software; you can redistribute it and/or modify it under the
terms of the GNU Library General Public License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.

The Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
the GNU Library General Public License for more details.

You should have received a copy of the GNU Library General Public License along with the Library; if not,
write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

5. LICENSEE AGREES THAT THE EXPORT OF GOODS AND/OR TECHNICAL DATA FROM THE
UNITED STATES MAY REQUIRE SOME FORM OF EXPORT CONTROL LICENSE FROM THE U.S.
GOVERNMENT AND THAT FAILURE TO OBTAIN SUCH EXPORT CONTROL LICENSE MAY
RESULT IN CRIMINAL LIABILITY UNDER U.S. LAWS.

6. RICE UNIVERSITY NOR ANY OF THEIR EMPLOYEES MAKE ANY WARRANTY, EXPRESS
OR IMPLIED, OR ASSUME ANY LEGAL LIABILITY OR RESPONSIBILITY FOR THE ACCURACY,
COMPLETENESS, OR USEFULNESS OF ANY INFORMATION, APPARATUS, PRODUCT, OR
PROCESS DISCLOSED AND COVERED BY A LICENSE GRANTED UNDER THIS LICENSE
AGREEMENT, OR REPRESENT THAT ITS USE WOULD NOT INFRINGE PRIVATELY OWNED
RIGHTS.

7. IN NO EVENT WILL RICE UNIVERSITY BE LIABLE FOR ANY DAMAGES, INCLUDING
DIRECT, INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES RESULTING FROM
EXERCISE OF THIS LICENSE AGREEMENT OR THE USE OF THE LICENSED SOFTWARE.

89

