RICE UNIVERSITY

The Impact of Instruction-Level Parallelism on
Multiprocessor Performance and Simulation
Methodology

by
Vijay S. Pai

A THESIS SUBMITTED
IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE

Master of Science

APPROVED, THESIS COMMITTEE:

Sarita V. Adve, Chair
Assistant Professor in Electrical and
Computer Engineering

J. Robert Jump
Professor of Electrical and Computer
Engineering

Alan L. Cox

Associate Professor of Computer Science

Houston, Texas

April, 1997

The Impact of Instruction-Level Parallelism on

Multiprocessor Performance and Simulation
Methodology

Vijay S. Pai

Abstract

Current microprocessors exploit high levels of instruction-level parallelism (ILP). This
thesis presents the first detailed analysis of the impact of such processors on shared-
memory multiprocessors.

We find that ILP techniques substantially reduce CPU time in multiprocessors,
but are less effective in reducing memory stall time for our applications. Consequently,
despite the latency-tolerating techniques incorporated in ILP processors, memory
stall time becomes a larger component of execution time and parallel efficiencies are
generally poorer in our ILP-based multiprocessor than in an otherwise equivalent
previous-generation multiprocessor. We identify clustering independent read misses
together in the processor instruction window as a key optimization to exploit the ILP
features of current processors.

We also use the above analysis to examine the validity of direct-execution sim-
ulators with previous-generation processor models to approximate ILP-based mul-
tiprocessors. We find that, with appropriate approximations, such simulators can
reasonably characterize the behavior of applications with poor overlap of read misses.
However, they can be highly inaccurate for applications with high overlap of read

misses.

Acknowledgments

I would like to thank my advisor, Sarita Adve, for research direction and challenges
over the past three years. 1 also thank my officemate and perennial co-author,
Parthasarathy Ranganathan, for a terrific exchange of ideas ever since we started
working together. It has been a great pleasure to work with these two people for the
past three years, and I look forward to more. I also thank my thesis committee, Alan
Cox and Bob Jump, for valuable feedback.

I cannot thank my family enough for all kinds of guidance over the years. 1
particularly thank my parents, Sadananda and Sharda Pai, for all the challenges over
the years, including convincing me to go to graduate school. I also owe a great deal
to my grandmother, Janabai Kamath, for support and for lots of nutritious meals
along the way.

My graduate career has been supported by a Fannie and John Hertz Foundation

Fellowship.

Contents

Abstract
Acknowledgments

List of Illustrations

Introduction
1.1 Motivation
1.2 Contributions

1.3 Organization e

Experimental Methodology

2.1 Measuring the Impact of ILP
2.2 Simulated Architectureso o0
2.3 Simulation Environmento

2.4 Applications

Impact of ILP on Multiprocessor Performance

3.1 Impact of ILP on an Eight-processor System
3.1.1 Overall Results 000
3.1.2 Data Memory ILP Speedup
3.1.3 Synchronization ILP Speedup

3.2 Impact of ILP on Parallel Efficiency
3.2.1 Parallel Efficiency on an Eight-Processor Configuration
3.2.2 Parallel Efficiency in Larger Configurations

3.3 Alleviating Limitations to ILP Speedup
3.3.1 Effect of Larger Instruction Window
3.3.2 Effect of a High-Bandwidth System
3.3.3 Effect of Larger Caches
3.3.4 Summary ... e

3.4 Summary and Additional Issues

1

1l

W N = e

IAGENTAN

4 Impact of ILP on Simulation Methodology

4.1 Models and Metrics

4.2 Execution Time and its Components

4.3 Error in Component Weights . . .
4.4 FError in Multiprocessor Speedup .
4.5 Summary and Alternative Models

5 Related Work
6 Conclusions

Bibliography

39
39
41
42
43
45

47

50

52

Illustrations

2.1 Cache coherence protocol diagram
2.2 Multiprocessor system modeled
2.3 System parameters Lo

2.4 Application characteristics

3.1 ILP speedup and components in an 8-processor system
3.2 Execution time components in an 8-processor system
3.3 Effect of ILP on average miss latency in an 8-processor system
3.4 MSHR occupancy in an 8-processor ILP system
3.5 Parallel Efficiency with Simple and ILP systems
3.6 ILP speedup and components in a uniprocessor system
3.7 Execution time components in a uniprocessor system
3.8 Effect of ILP on average miss latency in a uniprocessor system
3.9 MSHR occupancy in a uniprocessor ILP system
3.10 Parallel Efficiency in Larger Configurations
3.11 Scalability of ILP speedup
3.12 Effectiveness of ILP with larger instruction window
3.13 Effectiveness of ILP in very high bandwidth system
3.14 Effects of larger cache configuration,

4.1 Predicting execution time and its components using simple
simulation models oo

4.2 Relative importance of memory component

4.3 Speedups for Simple, ILP, Simple.4xP.1cl.Ll models

Large portions of this thesis are based on an earlier work [PRA97b] which is copy-
righted by the Institute of Electrical and Electronic Engineers (IEEE), 1997. This
material is included here with permission of the IEEE. Such permission of the IEEE
does not in any way imply IEEE endorsement of any of Rice University’s products or

services.

Chapter 1

Introduction

1.1 Motivation

Shared-memory multiprocessors built from commodity microprocessors (e.g., Convex
Exemplar, Sequent STiNG, SGI Origin series) are expected to provide high perfor-
mance for a variety of scientific and commercial applications. Current commodity mi-
croprocessors improve performance with aggressive techniques to exploit high levels of
instruction-level parallelism (/L P). For example, the HP PA-8000, Intel Pentium Pro,
and MIPS R10000 processors use multiple instruction issue, dynamic (out-of-order)
scheduling, multiple non-blocking reads, and speculative execution. However, most
recent architecture studies of shared-memory systems assume a processor model with
single issue, static (in-order) scheduling, and blocking reads. This assumption allows
the use of direct-execution simulation, which is significantly faster than the detailed
simulation currently required to model an ILP processor pipeline.

Although researchers have shown the benefits of aggressive ILP techniques for
uniprocessors, there has not yet been a detailed or realistic analysis of the impact of
such ILP techniques on the performance of shared-memory multiprocessors. Such an
analysis is required to fully exploit advances in uniprocessor technology for multipro-
cessors. Such an analysis is also required to assess the validity of the continued use
of direct-execution simulation with simple processor models to study next-generation

shared-memory architectures.

1.2 Contributions

This thesis makes two contributions.

(1) This is the first detailed study of the effectiveness of state-of-the-art ILP pro-
cessors in a shared-memory multiprocessor, using a detailed simulator driven

by real applications.

(2) This is the first study on the validity of using current direct-execution simulation

techniques to model shared-memory multiprocessors built from ILP processors.

Our experiments for assessing the impact of ILP on shared-memory multiproces-
sor performance show that all our applications see performance improvements from
the use of current ILP techniques in multiprocessors. However, the improvements
achieved vary widely. In particular, ILP techniques successfully and consistently re-
duce the CPU component of execution time, but their impact on the memory (read)
stall component is lower than their impact on CPU time and is also more application-
dependent. This deficiency in the impact of ILP techniques on memory stall time
arises primarily because of insufficient potential in our applications to overlap multi-
ple read misses, as well as system contention from more frequent memory accesses.

The discrepancy in the impact of ILP techniques on the CPU and read stall com-
ponents leads to two key effects for our applications. First, read stall time becomes
a larger component of simulated execution time than in previous-generation multi-
processors. Second, parallel efficiencies for ILP multiprocessors are lower than with
previous-generation multiprocessors for all but one application. Thus, despite the
inherent latency-tolerating mechanisms in ILP processors, multiprocessors built from
ILP processors actually exhibit a greater potential need for additional latency re-
ducing or hiding techniques than previous-generation multiprocessors. We identify
clustering of read misses as a key optimization for exploiting the ILP features of

current Processors.

Our results on the validity of using simulators based on simple processor models to
approximate the behavior of ILP processors in multiprocessor systems are as follows.
For applications where our ILP multiprocessor fails to significantly overlap read miss
latency, a simulation using a simple previous-generation processor model with a higher
clock speed for the processor and the L1 cache provides a reasonable approximation
to the results achieved with a more detailed simulation system. However, when ILP
techniques effectively overlap read miss latency, all of our simple-processor-based
simulation models can show significant errors for important metrics. Overall, for
total simulated execution time, the most commonly used simulation technique gave
26% to 192% error, while the most accurate technique gave -8% to 73% error. These
errors depend on both the application and the ILP characteristics of the system:;
thus, models that do not properly capture these effects may not be able to effectively

characterize an ILP-based multiprocessor system.

1.3 Organization

The rest of this thesis is organized as follows. Chapter 2 describes our experimental
methodology. Chapters 3 and 4 describe and analyze our results. Chapter 5 dis-
cusses related work. Chapter 6 provides concluding remarks and discusses future

work motivated by this thesis.

Chapter 2

Experimental Methodology

The following sections describe the metrics used in our evaluation, the architectures

simulated, the simulation environment, and the applications.

2.1 Measuring the Impact of ILP

To determine the impact of ILP techniques in multiprocessors, we compare two mul-
tiprocessor systems — ILP and Simple — equivalent in every respect except the pro-
cessor used. The ILP system uses state-of-the-art high-performance microprocessors
with multiple issue, dynamic scheduling, and non-blocking reads. We refer to such
processors as ILP processors. The Simple system uses previous-generation micropro-
cessors with single issue, static scheduling, and blocking reads, matching the processor
model used in many current direct-execution simulators. We refer to such processors
as Simple processors. We compare the ILP and Simple systems to determine how
multiprocessors benefit from ILP techniques, rather than to propose any architectural
tradeoff between the ILP and Simple architectures. Therefore, both systems have the
same clock rate and feature an identical state-of-the-art aggressive memory system
and interconnect. Section 2.2 provides more detail on these systems.

The key metric we use to evaluate the impact of ILP is the speedup in execution
time achieved by the ILP system over the Simple system, which we call the ILP
speedup. 1LP speedup is defined in Equation 2.1,

t imple
ILP speedup = —222° (2.1)

tILP

where {gimp1o Tepresents the execution time of the application on the Simple system
and f1p represents the execution time on the ILP system.

To study the factors affecting ILP speedup, we study the components of exe-
cution time — busy, functional unit stall, synchronization stall, and data memory
stall. However, these components are difficult to distinguish with ILP processors,
as each instruction can potentially overlap its execution with both previous and fol-
lowing instructions. We hence adopt the following convention, also used in other
studies [PRAH96, RBHT95]. If, in a given cycle, the processor retires the maximum
allowable number of instructions, we count that cycle as part of busy time. Otherwise,
we charge that cycle to the stall time component corresponding to the first instruc-
tion that could not be retired. All instructions retire from the instruction window
in program order in order to guarantee precise interrupts. Thus, the stall time for
a class of instructions represents the number of cycles that instructions of that class
spend at the head of the instruction window (also known as the reorder buffer or
active list) before retiring,.

We analyze the effect of each component of execution time by examining the ILP
speedup of that component, which is the ratio of the times spent on the component
with the Simple and ILP systems, as well as the weight of that component, which is
the fraction of total execution time spent in that component. For example, the data
memory ILP speedup is defined as

tﬂQeﬂQ imple
Data memory I LP speedup = —2<Sinele (2.2)

tﬂqeﬂn,ILP

where 4,em simpre and {pen p represent the data memory component of execution
time on the Simple and ILP systems, respectively. Similarly, the weight of the data
memory component on the Simple system is defined as

. tﬂqeﬂq imple
Data memory weight = —~=m5mele (2.3)

tSimple

with #,,c simp1e representing the time spent on data memory stalls and {gimp1o repre-

senting total execution time on the Simple system.

2.2 Simulated Architectures

This study models cache-coherent non-uniform memory access (CC-NUMA) shared-
memory multiprocessor systems with the system nodes connected by a two-
dimensional mesh. The multiprocessors in this study use a 3-state invalidation-based
directory coherence protocol and are release-consistent [GLL*90]. The cache coher-
ence protocol used is illustrated in Figure 2.1.

Figure 2.2 shows the primary blocks in the multiprocessor configuration modeled
in this study. Figure 2.3 summarizes our default multiprocessor system parameters.
Most of the analysis in this paper focuses on 8-processor systems; however, this study
also considers uniprocessor, 16-processor, and 32-processor systems. Although more
richly connected network topologies than the mesh, such as the crossbar, can be used
in some of these medium-scale multiprocessor configurations, we evaluate systems
with the mesh network in order to capture the behavior of CC-NUMA multiprocessors,
and with an aim to present insights that can be extended to larger systems as well.

The following details the processors and memory hierarchy incorporated in the
simulated systems.

Processor Models. Our ILP processor resembles the MIPS R10000 proces-
sor [MIP96], with 4-way issue, dynamic scheduling, non-blocking reads, register re-
naming, and speculative execution. Unlike the MIPS R10000, however, our proces-
sor implements release consistency, as our previous work has shown this consistency
model to achieve higher performance on ILP multiprocessor systems [PRAH96]. The
ILP processor has a memory unit which holds up to 32 entries. Reads remain in the
memory unit until they have completed; writes leave the memory unit as soon as
they issue to the cache, as they do not impose any constraint on subsequent data

accesses in the release consistency memory model. Further, the processor is assumed

Internal

- === External

/’_—_——— _-_--~‘\
”~ SN
/ \\
Read Replacement
Replacement Write

\
|
|
|
I

I

Figure 2.1 Cache coherence protocol diagram

L1 Cache

i| L1cache

Memory Memory

L2 Cache Directory L2 Cache Directory
Network Interface Network Interface
Network

Figure 2.2 Multiprocessor system modeled

ILP Processor

Processor speed
Maximum fetch /retire rate
(instructions per cycle)
Instruction issue window
Functional units

Branch speculation depth
Memory unit size

(maximum number of outstanding
loads and unissued stores)

300MHz
4

64 entries

2 integer arithmetic
2 floating point

2 address generation

8

32 entries

Network parameters

Network speed
Network width
Flit delay (per hop)

150MHz
64 bits

2 network cycles

Cache parameters

Cache line size

L1 cache (on-chip)

L1 request ports

L1 hit time

Number of L1 MSHRs
.2 cache (off-chip)

L2 request ports

L2 hit time

Number of L2 MSHRs
Write buffer entries

64 bytes

Direct mapped, 16 K

2

1 cycle

8

4-way associative, 64 K
1

8 cycles, pipelined

8

& cache lines

Memory parameters

Memory access time
Memory transfer bandwidth
Memory Interleaving

18 cycles (60 ns)
16 bytes/cycle
4-way

Figure 2.3 System parameters

to have sufficient physical registers available so as never to stall for a shortage of
renaming registers. The Simple processor uses single-issue, static scheduling, and
blocking reads, and has the same clock speed as the ILP processor.

Most recent direct-execution simulation studies assume single-cycle latencies for
all processor functional units. We choose to continue with this approximation for our
Simple model to represent currently used simulation models. To minimize sources
of difference between the Simple and ILP models, we also use single-cycle functional
unit latencies for ILP processors. Nevertheless, to investigate the impact of this
approximation, we simulated all our applications on an 8-processor ILP system with
functional unit latencies similar to the UltraSPARC processor. We found that the
approximation has negligible effect on all but one of our applications (Water); even in
that application, our overall results continue to hold. This approximation has little
impact because, in multiprocessors, memory time dominates, and ILP processors can
easily overlap functional unit latency.

For the experiments related to the validity of simulators based on a simple pro-
cessor model, we also investigate variants of the Simple model that reflect approxi-
mations for ILP-based multiprocessors made in recent literature. These are further
described in Chapter 4.

Memory Hierarchy. The ILP and Simple systems have an identical memory
hierarchy with identical parameters. Each system node includes a processor with two
levels of caching, a merging write buffer [ERBT95] between the caches, and a portion
of the distributed memory and directory. A split-transaction system bus connects the
memory, the network interface, and the rest of the system node.

The L1 cache has 2 request ports, allowing it to serve up to 2 data requests
per cycle, and is write-through with a no-write-allocate policy. The L2 cache has 1
request port and is a fully-pipelined write-back cache with a write-allocate policy.

Each cache also has an additional port for incoming coherence messages and replies.

Both the L1 and L2 caches have 8 miss status holding registers (MSHRs) [Kro81],

10

which reserve space for outstanding cache misses (the L1 cache allocates MSHRs only
for read misses as it is no-write-allocate). The MSHRs support coalescing so that
multiple misses to the same line do not initiate multiple requests to lower levels of
the memory hierarchy. We do not include such coalesced requests when calculating
miss counts for our analysis.

We choose cache sizes commensurate with the input sizes of our applications,
based on the methodology of Woo et al. [WOT*+95]. Primary working sets of all our
applications fit in the L1 cache, and secondary working sets of most applications do

not fit in the L2 cache.

2.3 Simulation Environment

We use the Rice Simulator for ILP Multiprocessors (RSIM) to simulate the ILP and
Simple architectures described in Section 2.2 [PRA97a]. RSIM models the processors,
memory system, and network in detail, including contention at all resources. It is
driven by application executables rather than traces, allowing interactions between
the processors to affect the course of the simulation. The code for the processor and
cache subsystem performs cycle-by-cycle simulation and interfaces with an event-
driven simulator for the network and memory system. The latter is derived from the
Rice Parallel Processing Testbed (RPPT) [CDJ*91, Raj95].

Since we simulate the processor in detail, our simulation times are five to ten times
higher than those for an otherwise equivalent direct-execution simulator. To speed
up simulation, we assume that all instructions hit in the instruction cache (with a
1 cycle hit time) and that all accesses to private data hit in the L1 data cache.
These assumptions have also been made by many previous multiprocessor studies
using direct-execution, and are not likely to significantly affect our results, since our
applications do not have much private data. We do, however, model contention for

processor resources and L1 cache ports due to private data accesses.

11

The applications are compiled with a version of the SPARC V9 gce compiler mod-
ified to eliminate branch delay slots and restricted to 32 bit code, with the options

-02 -funrollloop.

2.4 Applications

We use six applications for this study — LU, FFT, and Radix from the SPLASH-2
suite [WOT*95], Mp3d and Water from the SPLASH suite [SWG92], and Erlebacher
from the Rice parallel compiler group [AWMCT95]. We modified LU slightly to use
flags instead of barriers for better load balance. Figure 2.4 gives input sizes for the
applications and their execution times on a Simple uniprocessor.

We also study versions of LU and FFT that include ILP-specific optimizations
that can be implemented in a compiler. Specifically, we use function inlining and
loop interchange to schedule read misses closer to each other so that they can be
overlapped in the ILP processor. We refer to these optimized applications as LU _opt
and FFT opt.

Application Input Size Cycles

LU 256 by 256 matrix, block 8 1.03 x 10%
FFT 65536 points 3.67 x 107
Radix 1K radix, 512K keys, max: 512K | 3.15 x 107
Mp3d 50000 particles 8.82 x 10°
Water 512 molecules 2.68 x 108
Erlebacher 64 by 64 by 64 cube, block 8 7.62 x 107

Figure 2.4 Application characteristics

13

Chapter 3

Impact of ILP on Multiprocessor Performance

This chapter evaluates the impact of instruction-level parallelism on multiprocessor
performance. Section 3.1 focuses on eight-processor systems, comparing the perfor-
mance of Simple and ILP systems as described in Section 2.2. Section 3.2 shows the
impact of ILP on parallel efficiency, which indicates system scalability. Section 3.3
identifies several limitations in the performance improvements given by ILP and
evaluates the extent to which these limitations are artifacts of current technologi-
cal constraints. Finally, Section 3.4 summarizes the key findings of these studies and
describes additional issues in the impact of ILP on shared-memory multiprocessor

performance.

3.1 Impact of ILP on an Eight-processor System

This section describes the impact of ILP on multiprocessors by comparing the 8-

processor Simple and ILP systems described in Section 2.2.

3.1.1 Overall Results

Figures 3.1 and 3.2 illustrate our key overall results. For each application, Figure 3.1
shows the total ILP speedup as well as the ILP speedup of the different components
of execution time. The execution time components include CPU time, data mem-
ory stalls, and synchronization stalls. We combine both busy time and functional
unit (FU) stalls together into CPU time when computing ILP speedups, because the
Simple processor does not see any FU stalls. Figure 3.2 indicates the relative impor-

tance of the ILP speedups of the different components by showing the time spent on

ILP Speedup

ILP Speedup

Normalized execution time

Normalized execution time

100

100

80

1.78
1.56

LU

2.04

1.25
2

FFT

Figure 3.1

3.62 o as 3.70 Overall ILP Speedup [l
B CPU ILP Speedup
2.92 Data Mem ILP Speedup-
2.61 Synch ILP Speedup
2.19
1.99
1.51

L35 124
o.s8

LU_opt Erlebacher Mp3d

348 3.45 3.40 oOverall ILP Speedup Il

° CPU ILP Speedup
551 Data Mem ILP Speedup-

= S
>.21 ynch ILP Speedup
2.01
1.77
164 59
1.26
1.02
o.7a

Radix

FFT_opt WwWater

ILP speedup and components in an 8-processor system

100.0

| 100.0 100.0 100.0 Sync
Write
Read hit
[— 73.0 Read miss ||
FU stall
| Busy
a43.0 as5.7
i . [~ .
Simple L Simple 1L Simple ILP Simple LD
LU LU_opt Erlebacher Mp3d
| 100.0 100.0 100.0 100.0 Sync
Write
Read hit
[— . 79.2 Read miss -
FU stall
. Busy
49.0 a7z.7
| 39.9
Simple L Simple 1L Simple L Simple L
FFT FFT_opt wWater Radix

Figure 3.2 Execution time components in an 8-processor system

14

15

each component (normalized to the total time on the Simple system). The busy and
stall times are calculated as explained in Section 2.1.

All of our applications exhibit speedup with ILP processors, but the specific
speedup seen varies greatly, from 1.26 in Radix to 2.92 in LU_opt. All the appli-
cations achieve similar and significant CPU ILP speedup (3.15 to 3.70). In contrast,
the data memory ILP speedup is lower and varies greatly across the applications,
from 0.74 (a slowdown!) in Radix to 2.61 in LU _opt.

The key effect of the high CPU ILP speedups and low data memory ILP speedups
is that data memory time becomes more dominant in ILP multiprocessors than in
Simple multiprocessors. Further, since CPU ILP speedups are fairly consistent across
all applications, and data memory time is the only other dominant component of exe-
cution time, the data memory ILP speedup primarily shapes the overall ILP speedups
of our applications. We therefore analyze the factors that influence data memory ILP
speedup in greater detail in Section 3.1.2.

Synchronization ILP speedup is also low and varies widely across applications.
However, since synchronization does not account for a large portion of the execution
time, it does not greatly influence the overall ILP speedup. Section 3.1.3 discusses

the factors affecting synchronization ILP speedup in our applications.

3.1.2 Data Memory ILP Speedup

We first discuss various factors that can contribute to data memory ILP speedup,
and then show how these factors interact in our applications.

Contributing Factors

Figure 3.2 shows that memory time is dominated by read miss time in all of our
applications. We therefore focus on factors influencing read miss ILP speedup.
The read miss ILP speedup is the ratio of the total stall time due to read misses

in the Simple and ILP systems. The total stall time due to read misses in a given

16

system is simply the product of the average number of .1 misses and the average

exposed, or unoverlapped, .1 cache miss latency, as expressed in Equation 3.1.

MSimple X lSimple

Read Miss ILP Speedup = (3.1)

MILP X lILP,unoverlapped

In Equation 3.1, Mgimp1e and Mipp represent the number of L1 misses seen in the
Simple and ILP systems respectively. [gimp1e represents the average L1 miss latency
in the Simple system, while l11p ynoveriapped 15 the average unoverlapped L1 cache miss
latency in the ILP system.

Equation 3.1 can be rewritten as follows:

MSimple lSimple

Read Muiss I LP Speedup =

(3.2)

Mip l11punoverlapped
Thus, Equation 3.2 isolates two contributing factors to overall read miss ILP
speedup — the ratio of misses in the Simple and ILP systems, and the ratio of the
average miss latency in the Simple system to the average unoverlapped miss latency
in the ILP system.
The first factor is called the miss factor, and is defined as

. MSim le
Miss Factor = —=2=2 3.3
Miip (33)

The miss counts seen in the Simple and ILP systems can differ since reordering and
speculation in the ILP processor can alter the cache miss behavior. A miss factor
greater than 1 thus contributes positively to read miss ILP speedup, as the ILP
system sees fewer misses than the Simple system.

The second factor in Equation 3.2 is the reciprocal of the unoverlapped factor.
Unoverlapped factor is defined as the ratio of the exposed, or unoverlapped, miss

latency in the ILP and Simple systems, and is expressed as:

l UNOVETrLA (5]
Unoverlapped Factor = LPunoverlapped (3.4)

lSimple

A lower unoverlapped factor leads to a higher read miss ILP speedup.

17

In the Simple system, the entire 1.1 miss latency is unoverlapped. To understand
the factors contributing to unoverlapped latency in the ILP system, Equation 3.5
expresses the average unoverlapped ILP miss latency as the difference between the
average total ILP miss latency (denoted /11p) and the average overlapped miss latency

(denOted lILP,overlapped) .

lILP - lILP,overlapped

Unoverlapped Factor = (3.5)

[simp1e
The total ILP miss latency can be expanded, as in Equation 3.6, as the sum of the
miss latency incurred by the Simple system and an extra latency component added by
the ILP system (for example, due to increased contention). In Equation 3.6, lip extra

represents the average extra latency component seen in the ILP system.

lSimple + lILP,eztra - lILP,overlapped

Unoverlapped Factor = (3.6)

lSimple
Equation 3.7 then performs an algebraic simplification to express the overlapped and
extra latencies seen by the ILP system relative to the miss latency in the Simple

system.

l OVETLA e l EXIra
Unoverlapped Factor =1 — ([LPoverlopped ILPert) (3.7)

lSimple lSimple

Equation 3.7 can be used to isolate two factors that shape the unoverlapped
factor — the overlapped factor and the extra factor — which are, respectively, the ILP
overlapped and extra latencies expressed as a fraction of the Simple miss latency.

These factors are defined below:

l overia €
Overlapped Factor = ALPoverlapped (3.8)
lSimple
l erira
Extra Factor = =222 (3.9)
Simple

Read miss ILP speedup is higher with a higher overlapped factor and a lower extra
factor.
The overlapped factor increases with increased overlap of misses with other useful

work. The number of instructions behind which a read miss can overlap is limited

18

by the instruction window size. Further, read misses have longer latencies than other
operations that occupy the instruction window. Therefore, read miss latency can
normally be completely hidden only behind other read misses. Thus, for a high
overlapped factor (and high read miss ILP speedup), applications should exhibit read
misses that appear clustered together within the instruction window.

On the other hand, the extra factor must be low for a high read miss ILP speedup.
Extra miss latencies can arise from contention for system resources, as the ILP tech-
niques allow ILP processors to issue memory references more frequently than Simple
processors. Extra miss latency can also arise from a change in miss behavior if the
miss pattern in ILP processors forces more misses to be resolved at remote levels of
the memory hierarchy.

In summary, the unoverlapped factor contributes positively to read miss ILP
speedup if the ILP unoverlapped miss latency is less than the Simple miss latency.
This factor depends on how much potential for read miss overlap is exploited (overlap
factor) and on how much is lost due to contention (extra factor). A positive contribu-
tion results if the latency overlapped by ILP exceeds any extra latency added by ILP.
On the other hand, the read miss component of execution time can incur a slowdown
relative to the Simple processor if the extra factor of ILP exceeds the overlapped

factor.

Analysis of Applications

Read miss ILP speedup (not shown separately) is low (less than 1.6) in all our appli-
cations except LU, LU_opt, and FFT opt; Radix actually exhibits a slowdown. We
now show how the factors described above contribute to read miss ILP speedup for
our applications.

Miss factor. Most of our applications have miss factors close to 1, implying a
negligible contribution from this factor to read miss ILP speedup. LU and LU _opt,
however, have high miss factors (2.21 and 1.75 respectively), which contribute signif-

19

& S00 S overlapped
$S 250 247.3 unoverlapped Il
< 200
3 149.1
= 150
= 100
~
©
g m m e m e e
o Miss
= factor: - 0.99 1.05
LU LU_opt Erlebacher Mp3d
184.0 184.8
&> 180 overlapped
% unoverlagged ||
=
[22]
L
=
=
D
~
©
£
(=}
=

FFT FFT_opt Water Radix

Figure 3.3 Effect of ILP on average miss latency in an 8-processor system

icantly to the read miss ILP speedup. These high miss factors arise because the ILP
system reorders certain accesses that induce repeated conflict misses in the Simple
system. In the ILP system, the first two conflicting requests overlap, while subsequent
requests to the conflicting lines coalesce with earlier pending misses, thus reducing
the number of misses seen by the system.

Unoverlapped factor. Figure 3.3 graphically represents the unoverlapped, over-
lapped, and extra latencies and factors. The two bars for each application show the
average L.l read miss latency in Simple and ILP systems, normalized to the Simple
system latency. The light part of the ILP bar shows the average overlapped latency
while the dark part shows the unoverlapped latency. Because of the normalization,
the dark and the light parts of the ILP bar also represent the unoverlapped and over-
lapped factors as percentages, respectively. The difference between the full ILP and
Simple bars represents the extra factor. Below each ILP bar, we also show the miss
factor for reference — the read miss ILP speedup is the miss factor divided by the
unoverlapped factor.

We measure the latency of a read miss from the time the address for the miss

is generated to the time the value arrives at the processor; therefore, the extra and

20

overlapped factors in Figure 3.3 incorporate time spent by a read miss in the processor
memory unit and any overlap seen during that time.

Figure 3.4 provides additional data to indicate overlapped and extra latency after
a read miss is issued to the memory system. This figure illustrates MSHR occupancy
distributions at the L1 and L2 caches. Each plot gives the fraction of total time (on
the vertical axis) for which at least N MSHRs are occupied by misses, where N is the
number on the horizontal axis. Recall that only read misses reserve L1 MSHRs, as
the L1 cache is no-write-allocate. Thus, the L1 MSHR occupancy graph indicates L1
read miss overlap in the system. Since the L2 MSHR occupancy graph includes both
read and write misses, an 1.2 MSHR occupancy greater than the corresponding L1
MSHR occupancy indicates resource contention seen by reads due to interference from
writes. We next use the above data to understand the reasons for the unoverlapped
factor seen in each application.

LU_opt, FFT opt, Erlebacher, and Mp3d have moderate to high overlapped factors
due to their moderate to high .1 MSHR occupancies. The optimizations we use
in LU_opt and FFT opt to cluster read misses together in the instruction window
are responsible for their higher overlap relative to LU and FFT respectively. The
increased frequency of reads due to the high read overlap in these four applications
leads to an extra latency due to contention effects, primarily in the main memory
system. Write traffic additionally increases this extra factor, though not significantly.
However, as shown in Figure 3.3, on all these applications, the positive effects of
the overlapped factor outweigh the negative effects of the extra factor, subsequently
leading to a low unoverlapped factor and, hence, higher read miss ILP speedups.

Radix, on the other hand, illustrates the opposite extreme. Figure 3.3 shows that
in Radix, the negative effects of extra latency due to increased contention significantly
outweigh the positive effects due to overlap, leading to a high unoverlapped factor
of 1.36. The high extra factor is primarily due to write traffic. Figure 3.4 shows
that in Radix, L2 MSHRs are saturated for over 70% of the execution. Further

21

S _ Erlebacher S FFT
E icz) : m?fgpt E \I;\yater
) 08| —— FFT_opt) Radix
0.6 {
0.4 {
0.2 {
0.0 1 1 1 1
01 2 3 45 6 7 8 5 6 7 8
L1 MSHR L1 MSHR
(a) L1 MSHR occupancy
s _ Erlebacher s _ FFT
= 12+ —— Mp3d = 12+ — w
= 1.0 —— LU _opt =2 1.0/ —— Water
S o8] _ o S o8] —
0.6 { 0.6 {
0.4 1 0.4 1
0.2 1 0.2
0.0 | | | | 2 0.0 | | 4 1
01 2 3 45 6 7 8 01 2 3 45 6 7 8
L2 MSHR L2 MSHR

(b) L2 MSHR occupancy
Figure 3.4 MSHR occupancy in an 8-processor ILP system

misses now stall at the L.2 cache, preventing other accesses from issuing to that cache;
eventually, this backup reaches the primary cache ports and the processor’s memory
units, causing misses to experience a high extra latency. This backup also causes
Radix to see a large read hit component. Further, the low L1 MSHR occupancy, seen
in Figure 3.4, shows that Radix has little potential to overlap multiple read misses.

FFT is the only application to see neither overlap effects nor contention effects, as
indicated by the low L1 and .2 MSHR occupancies. This leads to an unoverlapped
factor close to 1 and consequently a read miss ILP speedup close to 1.

Finally, we discuss two applications — LU and Water — which show relatively high
overlapped and extra factors, despite low MSHR occupancies. In LU (and LU _opt, to

a lesser extent), the ILP processor coalesces accesses that cause L1 cache misses in the

22

Simple case. Our detailed statistics show that these misses are primarily 1.2 cache
hits in the Simple case. Thus, the Simple miss latency includes these 1.2 cache hits
and remote misses while the ILP miss latency includes only the remaining remote
misses. This change in miss pattern leads to a higher average miss latency in the
ILP system than in the Simple system, leading to a high extra factor. The extra
factor further increases from a greater frequency of memory accesses, which leads to
increased network and memory contention in the ILP system. LU can overlap only
a portion of this extra latency, leading to an unoverlapped factor greater than 1.
However, LU still achieves a read miss ILP speedup because of its miss factor.

Water stands apart from the other applications because of its synchronization
characteristics. Its extra latency arises because reads must often wait on a pending
acquire operation to complete before issuing. The latency contribution caused by
this waiting, however, is overlapped by the lock acquire itself. As a result, Water has
a large apparent overlap. Nevertheless, Water’s poor MSHR occupancy prevents it
from getting a low unoverlapped factor, and its read miss ILP speedup is close to 1.

In summary, the key reasons for the low read miss ILP speedup in most of our
applications are a lack of opportunity in the applications for overlapping read misses
and/or increased contention in the system.

As discussed above, our analysis primarily focuses on the effectiveness of ILP on
the data memory component of execution time since this is the component which
determines the overall effectiveness of ILP in our systems. Any deficiency in overlap
among data read misses is particularly damaging since these operations are the only
particularly high-latency instructions in the models we study and in current micro-
processors. If future microprocessors include high-latency computational instructions,
then those instructions must also be effectively overlapped in order to achieve signif-

icant benefits from ILP.

23

3.1.3 Synchronization ILP Speedup

In general, ILP processors can affect synchronization time in the following ways. First,
ILP reduces synchronization waiting times through reduced computation time and
overlapped data read misses. Second, acquire latency can be overlapped with previous
operations of its processor, as allowed by release consistency [GLLT90]. The third
factor is a negative effect: increased contention in the memory system due to higher
frequency of accesses can increase overall synchronization latency.

The above factors combine to produce a variety of synchronization speedups for
our applications, ranging from 0.88 in Mp3d to 2.01 in Radix. However, synchro-
nization accounts for only a small fraction of total execution time in all our appli-
cations; therefore, synchronization ILP speedup does not contribute much to overall

ILP speedup for our applications and system.

3.2 Impact of ILP on Parallel Efficiency

This section details the impact of ILP on parallel efficiency. The parallel efficiency
(PE) of a multiprocessor application running on a system with N processors is defined

as:

Fzecution time on uniprocessor 1
PEy = P X — (3.10)

Ezxecution time on multiprocessor N

Section 3.2.1 analyzes the parallel efficiency of 8-processor ILP configurations,
comparing ILP effectiveness on uniprocessors and multiprocessors. Section 3.2.2
builds upon this analysis to show the impact of ILP on the parallel efficiency of

larger configurations.

3.2.1 Parallel Efficiency on an Eight-Processor Configuration

Figure 3.5 shows the parallel efficiency achieved by our 8-processor ILP and Simple

systems for all our applications, expressed as a percentage. FExcept for FFT opt,

[
o
o

60

% Parallel efficiency

40

20

o

Simple

B 74.3 75.6
68.9
58.4 553
I I I |

86.7 87.588.2 e

leple ILP Simple ILP Simple ILP Simple ILP Simple ILP Simple ILP Simple ILP Simple ILP
LU_opt Erlebacher Mp3d FFT FFT_opt Water Radix

Figure 3.5 Parallel Efficiency with Simple and ILP systems

24

parallel efficiency for ILP configurations is considerably less than that for Simple

configurations.

The parallel efficiency of an ILP system can be related to the ILP speedup of the

ILP system by extending Equation 3.10 as follows:

PE Ezxecution time on ILP uniprocessor 1
N,JLP = ; ; ; X ==
Ezxecution time on ILP multiprocessor N
FEzecution time on Simple uniprocessor
. Uniprocessor ILP speedup % i
- FEzecution time on ILP multiprocessor N
Multiprocessor ILP speedup
Multiprocessor ILP speedup
Uniprocessor ILP speedup
Ezeculion lime on Simple uniprocessor 1
. ; . . X ==
FExecution time on Simple multiprocessor N

Multiprocessor ILP speedup
= - X PEN,Simple
Uniprocessor ILP speedup

(3.11)

(3.12)

(3.13)

(3.14)

Thus, the parallel efficiency seen by the ILP system is greater than that seen by

the Simple system if the multiprocessor ILP speedup is greater than the uniproces-

sor ILP speedup; if the multiprocessor ILP speedup is lower, the ILP system has less

parallel efficiency than the Simple system. Thus, to understand the difference seen in

the parallel efficiencies between the Simple and ILP multiprocessors, Figures 3.6-3.9

presents data to illustrate the impact of ILP in uniprocessors, analogous to the data

in Figures 3.1-3.4 for multiprocessors. As in multiprocessors, uniprocessor CPU ILP

ILP Speedup

ILP Speedup

Normalized execution time

Normalized execution time

100

100

80

[— 3.75
3.19

2.11

LU
3.21
2.38
1.00

FFT

Figure 3.6

LU_opt

FFT_opt

Erlebacher

3.46

2.87

WwWater

Overall ILP Speedup-
CPU ILP Speedup

Data Mem ILP Speedup-

i1.40

Mp3d

3.36

Overall ILP Speedup-
CPU ILP Speedup

Data Mem ILP Speedup-

1.97

0.85

Radix

ILP speedup and components in a uniprocessor system

100.0 100.0 100.0 100.0 Sync
Write
Read hit
[— Read miss -
FU stall
. Busy
a47.5
| 41.2
31.4
|| -
— [
Simple L Simple 1L Simple L Simple L
LU LU_opt Erlebacher Mp3d
| 100.0 100.0 100.0 100.0 Sync
Write
Read hit
[— Read miss -
FU stall
. Busy
50.8
420 40.2
— 35.0
_—
Simple L Simple L Simple L Simple L
FFT FFT_opt wWater Radix

Figure 3.7 Execution time components in a uniprocessor system

25

26

267.5
overlapped

250 unoverlapped HE

200
150
100

211.4

ol11.0

Normalized miss latency

- m m m e m e
Miss 0.99 1.02
factor:

LU LU_opt Erlebacher Mp3d

140.9
140 120.0 TEnSveriaseed I
100
80
60
40
20

Normalized miss latency

Miss>'
factor:

FFT FFT_opt wWater Radix

Figure 3.8 Effect of ILP on average miss latency in a uniprocessor system

speedups are high while memory ILP speedups are generally low. However, compar-
ing Figure 3.6 with Figure 3.1 shows that for all applications other than FFT _opt, the
overall ILP speedup is less in the multiprocessor than in the uniprocessor. This degra-
dation directly implies lower parallel efficiency for the ILP multiprocessor than the
Simple multiprocessor. We next describe several reasons for the lower ILP speedup
in the multiprocessor and then describe why FFT _opt does not follow this trend.

First, comparing Figure 3.7 with Figure 3.2 shows that, for most applications, the
read miss component of execution time is more significant in the multiprocessor be-
cause these applications see a large number of remote misses. Consequently, read miss
ILP speedup plays a larger role in determining overall ILP speedup in the multipro-
cessor than in the uniprocessor. Since read miss ILP speedup is lower than CPU ILP
speedup, and since read miss ILP speedup is not higher in the multiprocessor than
in the uniprocessor, the larger role of read misses results in an overall ILP speedup
degradation on the multiprocessor for these applications.

Second, for some applications, our CC-NUMA ILP multiprocessor may see less
read miss overlap because of the dichotomy between local and remote misses in mul-

tiprocessor configurations; multiprocessors not only need a clustering of misses for

27

S —— Erlebacher S FFT

s 12+ ——— Mp3d = LU

2 10 —— LU_opt N Water

3 —— FFT_opt 3 Radix
1 e 1 1
5 6 7 8

L1 MSHR
(a) L1 MSHR occupancy

E — Erlebacher E — FFT

= 121 —— Mp3d = —

2 10 —— Luom 2 ——

= LN 0 = RN .

> 08} —oP =

L2 MSHR

(b) L2 MSHR occupancy
Figure 3.9 MSHR occupancy in a uniprocessor ILP system

effective overlap, but also require remote misses to be clustered with other remote
misses in order to fully hide their latencies*. All applications other than FFT opt
that achieve significant overlap in the uniprocessor see less overlap (and, consequently,
less read miss ILP speedup) in the multiprocessor because their data layouts do not
provide similar latencies for each of the misses overlapped in the instruction window.
As a result, read misses in the multiprocessor configuration are not overlapped to
the same extent as in the uniprocessor case, leading to a reduction in read miss ILP

speedup in the multiprocessor case.

*This effect would not apply to a uniform-memory-access (UMA) machine. However, the other
effects in this section are applicable to both NUMA and UMA multiprocessors.

28

Third, the read miss ILP speedups of most applications degrade from increased
contention in the multiprocessor. Radix is an extreme example where L2 MSHR
saturation occurs in the multiprocessor case but not in the uniprocessor. This MSHR
saturation arises because extensive false-sharing in the multiprocessor causes writes
to take longer to complete; therefore, writes occupy the MSHRs for longer, increasing
the MSHR contention seen by reads.

Finally, synchronization presents additional overhead for multiprocessor systems,
and in most cases sees less ILP speedup than the overall application.

FFT_opt stands apart from the other applications for two key reasons. First,
FFT_opt avoids a reduction in read miss overlap in the multiprocessor since reads
that cluster together in the instruction window in the blocked transpose phase of the
algorithm are usually from the same block, with the same home node and sharing
pattern. Therefore, these reads do not suffer from the effects of the dichotomy between
local and remote misses described above. Second, the introduction of remote misses
causes the blocked transpose phase of the algorithm to contribute more to the total
memory stall time, as this is the section with the most communication. As this is
also the only phase that sees significant read miss ILP speedup, total read miss ILP

speedup increases, preventing degradation in overall ILP speedup.

3.2.2 Parallel Efficiency in Larger Configurations

Figure 3.10 shows the parallel efficiencies seen in our applications with 16 and 32
processor Simple and ILP systems. Following the trends of Section 3.2.1, Figure 3.10
shows that ILP systems tend to scale less effectively than Simple systems. To analyze
the sources of this trend, Figure 3.11 shows ILP speedup components for our appli-
cations in 1, 8, 16, and 32 processor configurations. For all the applications (except
Radix), ILP effectiveness decreases in 16 and 32 processor configurations; however,
that decrease is generally not as substantial as the initial decrease from uniprocessor

to 8-processor systems. The reasons for the decrease in the applications other than

29

[

o

o
1

(>)~ Simple
& 85.0 86.4 ILP
o 81.3 : 83.5
= 8ot
o 71.1 70.8 71.0
2 64.4 65.5
<
S s}
s 53.1
< 46.1 46.8 s0.0
40 + :
28.2
201 16.9
9.3
OSimple ILP Simple ILP Simple ILP Simple ILP Simple ILP Simple ILP Simple ILP Simple ILP
LU LU_opt Erlebacher Mp3d FFT FFT_opt Water Radix
(a) 16 Processor System
100 -
(>)~ Simple
=
@ ILP
k=1 81.3
= 8ot
()
<
g 60 -
o
S

N
o
I

83.3 79.7
64.4 64.4
60.0
50.3 51.2
45.4
40.2
30.8 28.9
| 18.8
20 13.7
7.1 38
|

OSimple ILP Simple ILP Simple ILP Simple ILP Simple ILP Simple ILP Simple ILP Simple ILP
LU LU_opt Erlebacher Mp3d FFT FFT_opt Water Radix

(b) 32 Processor System
Figure 3.10 Parallel Efficiency in Larger Configurations

FFT _opt and Radix, however, are analogous to the reasons for the decrease from 1
to 8 processors described in Section 3.2.1.

In FFT _opt, a reduction in memory ILP speedup with 16 and 32-processor con-
figurations leads to a subsequent reduction in overall ILP speedup. This reduction
in memory ILP speedup stems from two sources. First, the read misses that clus-
ter together in the instruction window experience memory bank conflicts in larger
configurations. This effect arises because the padding added to the matrix used in
this application must amount to at least one page (4096 bytes) per processor. As
a result, 4 cache lines must be added to each row in a 16-processor configuration,
and 8 cache lines must be added to each row in 32-processor configurations. As our

system has 4-way interleaving, accesses in the same column of different rows will con-

ILP Speedup

ILP Speedup

ILP Speedup

ILP Speedup

30

1 proc g‘ 51 4.72 1 proc
3.19 8 proc 8 8 proc
16 proc 8 4 kos 16 proc
32 proc %) 32 proc
2.332.28 211 o
195 °§ 2.01 = 3 2925 g9
1.78 1.80 2-612 40
1'561.48 2.23 1 992.271 o8
1.28 2 171 B :
1
ync ync
é proc _§' é proc
b 43 proc proc
210 16 proc % .11 16 proc
2P2.12 32 proc UD')- 2 32 proc
o
—
1.63 183, . 159 = 1.35 1A401 i
1.34 5
1231 47 116111 1.071 0 1.081-14
1.00 1
em ync ync
Erlebacher Mp3d
B é proc _§' 31T é proc
2.51 proc 2.51 proc
P2l 415 38 16 proc 3 P2l s 415 38 16 proc
32 proc o 32 proc
wn
a 2
1.73 1.73
1641501 56 1.59 = 1641501 56 1.59
1.23 1.23
1.00 1 1.00
ync 0 em ync
FFT FFT_opt
1 proc =3 1 proc
> 87 8 proc B 31 2.88 8 proc
16 proc b 16 proc
32 proc UD')- 534 32proc
E 2 fLo7 2.01
1.771.829 73 -
1.43
1.261‘39
1.011.02
0.950.88 1 0.85 4,0.70%92
ync ync

Figure 3.11 Scalability of ILP speedup

31

tend for the same memory module. As the accesses clustered together in FFT _opt
are of this variety, contention increases and read miss ILP speedup consequently de-
grades. Additionally, some degradation in read miss ILP speedup arises because the
16-processor and 32-processor configurations allow more of each processor’s working
set to fit into the L2 cache. As a result, some of the overlapping accesses are 1.2 hits,
while others must go to local or remote memory. The dichotomy between the laten-
cies seen in these overlapping accesses can thus reduce the benefits of overlap in the
same fashion as the dichotomy between local and remote memory accesses described
in Section 3.2.1.

In Radix, ILP speedup actually starts increasing with increasing number of pro-
cessors for two reasons. The primary reason is that synchronization takes up a pro-
gressively larger time as more processors are added. With Radix, the ILP processor
provides better load balance in a relatively unbalanced prefix sum phase, by making
the computation go faster. Thus, synchronization speedup is high, and an increased
contribution of this component increases the overall speedup. Second, the memory

miss [LP slowdown improves slightly because of a higher miss factor.

3.3 Alleviating Limitations to ILP Speedup

Section 3.1 showed that multiprocessor ILP speedup for our applications and archi-
tecture has considerable scope for improvement. Section 3.2 further showed that the
multiprocessor lags behind the uniprocessor in ILP speedup for all but one of our

applications. We see that both deficiencies come from three primary limitations:

1. insufficient overlap
2. increased resource contention

3. large memory component of execution time, even in Simple

This section examines the extent to which these limitations are artifacts of cur-

rent technological constraints. The three subsequent sections respectively examine a

32

system with a much larger ILP instruction window to address limitation (1), a system
with much greater network and memory system bandwidth to address limitation (2),
and a system with larger cache sizes to address limitation (3). Each section focuses
on four representative applications, (LU_opt, FFT_opt, Erlebacher, and Radix) on
both uniprocessor and 8-processor configurations. These applications are chosen to

represent high, moderate, and low ILP speedups.

3.3.1 Effect of Larger Instruction Window

This section evaluates an ILP system with a 256-entry instruction window. The
register file needed by such a large instruction window may lead to a negative impact
on clock cycle time given current technological constraints [FJC96]; however, it is
necessary to choose such a size since our goal is to determine the extent to which
current instruction window sizes limit ILP performance. Additionally, the memory
unit is scaled to 128 entries.

Figure 3.12 shows the effects of the larger window size on uniprocessor and 8-
processor systems for our representative applications. As expected, the larger in-
struction window improves the performance of both multiprocessor and uniprocessor
configurations by increasing memory miss ILP speedup.

The improvements with the large instruction window decrease the gap between
uniprocessor and multiprocessor ILP speedup significantly for LU _opt and Erlebacher.
In LU _opt, there is a large difference in the memory speedups in the uniprocessor and
multiprocessor configurations; however, enough overlap is exposed in both configu-
rations that memory speedup reaches a point of diminishing significance and CPU
ILP speedup starts to dominate the calculation of overall ILP speedup. Since CPU
speedups are similar, overall ILP speedups in the uniprocessor and multiprocessor
versions do not differ as greatly as with a smaller instruction window. In Erlebacher,
the larger instruction window increases data memory ILP speedup greatly in both the

uniprocessor case and multiprocessor case; in fact, multiprocessor memory speedup

33

= 6 1—
= 5.52
8 Overall ILP Speedup-
=4 S 1 CPU ILP Speedup
o a.11 Data Mem ILP sSpeedup
o5 < 3.74 3.58.68.50 Synch ILP Speedup
= .26 3.23
3 2.91 2.08 2.89
2.37 >
> > .04
1
o
LU_opt,P1 LU_opt,P8 FFT_opt,P1 FFT_opt,P8
=4
= 4.20 Overall ILP Speedup-
=8 4 EXERg = CPU ILP Speedup
o a7 30933 55 316 DataMem ILP speedup A
; 3 3.09 ° Synch ILP Speedup
2.50 2.43
2
1.31 1S 1.36
1 o.81
o

Erlebacher,P1 Erlebacher,P8 Radix,P1 Radix,P8

Figure 3.12 Effectiveness of ILP with larger instruction window

actually exceeds uniprocessor memory speedup because the multiprocessor avoids
some of the memory bank conflicts seen in the uniprocessor case. As a result, the
difference between uniprocessor and multiprocessor ILP speedups shrinks in this ap-
plication.

In contrast, the ILP speedup improvements from the larger instruction window in-
crease the gap between uniprocessor and multiprocessor ILP speedups in FFT _opt and
Radix. In these applications, the increased gap occurs because of resource contention:
specifically, high write traffic in the multiprocessor Radix saturates the write-buffer
and secondary cache MSHRs, and high read miss traffic in the multiprocessor FFT
saturates the primary cache MSHRs. This saturation leads to blockage and backup,
eventually preventing the processor from issuing memory accesses until the satura-
tion clears up. In both applications, shorter latencies prevent the uniprocessor from
experiencing saturation effects. Thus, these applications have become limited by the
resource needs imposed by longer latencies rather than overlap alone; thus, increasing
the size of the instruction window cannot solve the multiprocessor degradation in ILP

speedup for these applications.

34

3.3.2 Effect of a High-Bandwidth System

This section evaluates the performance of the representative applications with a sys-
tem aimed to greatly reduce resource contention. The systems for this section use 64
L1 and 1.2 MSHRs, 16 L1 cache ports, 512 write buffer entries, 256-way interleaved
memory, and a 128 byte wide interconnection network (wider than the largest single
packet in our system). The high-bandwidth system aims to reduce the effects of con-
tention and extra miss latency, so it may be able to more thoroughly exploit available
potential for overlap.

As seen in Figure 3.13, the high bandwidth system improves memory ILP speedup
and overall speedup for each of our applications. The reduction in contention latency
provided by this system leads to lower unoverlapped latency factors and, consequently,
to better memory ILP speedups. This improvement helps reduce the gap between
uniprocessor and multiprocessor ILP speedup in Radix, since the multiprocessor case
can more thoroughly utilize the additional resources (particularly L2 MSHRs) pro-
vided by this configuration. However, a gap between uniprocessor ILP speedup and
multiprocessor ILP speedup still remains for LU _opt and Erlebacher. This is because
the reasons for the ILP speedup degradation in the multiprocessor configuration for
the original system still hold: (i) longer, more variable (e.g., local vs. remote) la-
tencies in the multiprocessor make overlap more difficult and increase the weight

of the memory component, and (ii) degradation from synchronization persists for

Erlebacher.

3.3.3 Effect of Larger Caches

In this section we determine ILP effectiveness for systems with a 32 KB two-
way associative primary cache and a 2 MB eight-way associative secondary cache.
This second-level cache holds all important data sets for our representative applica-

tions [WOT*95].

35

9.88

=
g 10
D o - Overall ILP Speedup-
P s CPU ILP Speedup
o Data Mem ILP Speedup
% 7 1 Synch ILP Speedup
= e -

5 x40 a.4a0

a 3.71 3.6x3.60

3 2. 61 28318 2.8 14

> 173 2.0a .98

a1

o

LU_opt,P1 LU_opt,P8 FFT_opt,P1 FFT_opt,P8

=4 “1T
g ER=l 3.34 3.20 3.33 Overall ILP Speedup-
= 3 J=.06 CPU ILP Speedup
o Data Mem ILP Speedup
o, 2.53 2.a5 Synch ILP Speedup
= 2.27 215

2 1.88 1.87

1.30
122 1.08
i
o

Erlebacher.P1 Erlebacher.P8 Radix,P1 Radix,P8

Figure 3.13 Effectiveness of ILP in very high bandwidth system

Larger caches have three primary effects on our systems. First, by decreasing ef-
fective memory latencies, they reduce the relative execution time contribution of the
memory component. This effect makes CPU ILP speedup more important in deter-
mining overall ILP speedup. Second, by reducing the number of misses, larger caches
reduce network and MSHR contention and so give better speedup for contention-
bound applications. Finally, larger caches reduce the potential for miss overlap since
they provide fewer misses to overlap. This effect reduces memory ILP speedup in ap-
plications which had high overlap because of conflict or capacity misses in the smaller
cache configurations.

Figure 3.14 shows the effectiveness of ILP systems for our representative appli-
cations, in uniprocessor and multiprocessor configurations. The cache size increase
improves overall multiprocessor ILP speedup for all the representative applications.
However, in LU_opt and Radix, this is a smaller improvement than that brought
about by providing higher bandwidth, and in LU _opt, FFT opt, and Erlebacher, this
is a smaller improvement than that provided by a bigger instruction window. Larger

caches reduce memory ILP speedup in the case of LU _opt by turning many previously

36

=
p—1
= a + overall ILP Speedup Il
=4 3.58.62 3.62 CPU ILP Speedup
o 3.21 3.11 3.11 Data Mem ILP Speedup R
; 3 2.82 2.84a 2.85 Synch ILP Speedup
>.10 2.23
2 1.83 1.90
125
1
o
LU_opt,P1 LU_opt,P8 FFT_opt,P1 FFT_opt,P8
= L
= 3.52
= . 3.40 3.4a1 3.45 Overall ILP Speedup [l
=3 N P CPU ILP Speedup
oo 2.71 Data Mem ILP Speedup
i 2.a8 Synch ILP Speedup
1.94
2 1.74a 183
1.46
1.25
1 1.00 0.96
o

Erlebacher,P1 Erlebacher,P8 Radix,P1 Radix,P8

Figure 3.14 Effects of larger cache configuration

overlapped misses into primary cache hits; additionally, larger caches do not address
coherence misses in our applications.

Although memory ILP speedup remains lower than CPU ILP speedup, the weight
of memory time decreases, making CPU speedup more important in determining
overall ILP speedup. As a result, the ILP speedups of the various applications fall
into a smaller range than with the default configuration.

Comparing uniprocessor and multiprocessor systems, we find that larger cache
sizes have narrowed the gap for LU _opt, Erlebacher, and Radix, while having little
effect on the already narrow gap for FFT opt. In each of these cases, we see that
the large caches prevent multiprocessors from exacerbating the negative effects of
ILP, since these large caches reduce much of the latency and resource occupancy that

plague our default system.

3.3.4 Summary

We find that each of the architectural enhancements we examined effectively han-
dles the issue it addresses. However, each technique also has a negative point that

prevents it from reaching our goal of high ILP speedup on multiprocessor systems,

37

at least equal to that achieved in uniprocessor systems. Larger instruction windows
increase overlap, but contention-bound applications still experience degradation in
multiprocessor systems. Higher bandwidth systems reduce contention, but fail to ad-
dress the underlying low potential for overlap or to eliminate the dichotomy of local
and remote accesses found in multiprocessors. Thus, while ILP speedups improve, a
gap between uniprocessor and multiprocessor ILP remains. Finally, large caches can
reduce both latency and contention, but also remove potential for overlap. However,
a larger cache solves this latter negative aspect (of low overlap) by itself, since it
decreases the weight of the memory execution component, and thus reduces the sig-
nificance of memory ILP speedup. In this way large caches bring uniprocessor and
multiprocessor speedups close together for all of our applications, while improving
ILP speedup for three of them. Nevertheless, large caches generally provided less
improvements in ILP speedup, since they also substantially improve the performance

of Simple.

3.4 Summary and Additional Issues

This study finds that for our applications, in current systems, ILP techniques ef-
fectively address the CPU component of execution time, but are less effective in
reducing the data memory component of execution time, which is dominated by read
misses. This disparity arises in our applications because of insufficient clustering of
read misses in our application and/or system contention from more frequent misses
in the ILP system, and leads to two key consequences. First, read miss latency actu-
ally appears as a greater relative performance bottleneck in ILP multiprocessors than
in previous-generation multiprocessors, despite the latency-tolerating techniques in-
corporated in ILP processors. Second, ILP processors generally achieve less parallel
efficiency and scalability than previous-generation systems.

Our experiments also consider three hardware modifications that aim to increase

ILP multiprocessor performance. These experiments show that each of these tech-

38

niques may solve one of the problems in obtaining high ILP speedup, but each
technique also experiences certain limitations. Further, the levels of hardware sup-
port needed for some of these techniques are not yet technologically or econom-
ically feasible. Thus, it seems appropriate to consider other modifications that
can more easily target the remaining read miss latency in ILP multiprocessor sys-
tems. Such support may include novel latency-tolerating techniques such as com-
piler optimizations to more aggressively cluster read misses, while also accounting
for the disparity in latencies between local and remote misses. Previously investi-
gated latency-tolerating techniques such as software-controlled non-binding prefetch-
ing may also help to reduce the memory latency bottleneck in ILP multiproces-
sors [RPASA97]. Additionally, techniques to reduce latency (rather than tolerating
latency) or to decrease bandwidth requirements, such as producer-initiated commu-
nication (e.g. [ASHAA97, HLRW92, Pou94]), may address any remaining deficiencies

in the potential of ILP multiprocessors to hide miss latency.

39

Chapter 4

Impact of ILP on Simulation Methodology

The previous chapter uses a detailed cycle-by-cycle simulator to understand the
impact of ILP on a multiprocessor. We next explore the validity of modeling ILP
systems with simulators based on the Simple processor model and its variants, which
are commonly used in multiprocessor architectural studies. Such simulator models
enable the use of current direct-execution simulation techniques and thus can complete
multiprocessor simulations much faster than a more detailed ILP-based simulation

model.

4.1 Models and Metrics

For the experiments in this chapter, we study three variants of the Simple model
to approximate the ILP model based on recent literature [HKO*94, HSH96]. The
first two, Simple.2xP and Simple.4xP, model the Simple processor sped up by fac-
tors of two and four, respectively. Simple.2xP seeks to set peak IPC equal to the
IPC achieved by the target ILP system (Our ILP system generally obtains an IPC
of approximately 2 for our applications). Simple.4xP seeks to achieve an instruction
issue rate equal to ILP, which is 4 in our system. For the memory hierarchy and
interconnect, both models use the same latencies (in terms of absolute time) as the
ILP system. Thus the latencies in Figure 2.3, which are given in terms of processor
cycles, need to be appropriately scaled for these models. The final approximation,
Simple.4xP.1cL1, not only speeds up the processor by a factor of 4, but further

recognizes that L1 cache hits should not stall the processor. Hence, this model ad-

Normalized execution time Normalized execution time

Normalized execution time

300

200

150

100

50

140

120

100

80

60

40

20

220
200
180
160
140
120
100
80
60
40
20

292

Sync
Write
- 253 Read hit
227 Read miss -
| FU stall
173 Busy
| 100 I
ILP Simple 2xP 4xP 4xP.1cL1
LU_opt
B 185 13 13 Sync
125 Write
B Read hit
| 100 Read miss -
FU stall
Busy
ILP Simple 2xP 4xP 4xP.1cL1
Mp3d
[210 Sync
B Write
B Read hit
| 165 Read miss -
144 FU stall
Busy
100

92

ILP

Simple 2xP 4xP 4xP.1cL1

Water

Normalized execution time Normalized execution time

Normalized execution time

220
200
180
160
140
120
100
80
60
40
20

250

200

150

100

50

120

100 1+~

80

60

40

20

219

40

Figure 4.1 Predicting execution time and its
components using simple simulation models

Sync
Write
188 f
Read hit
17! h
5 Read miss -
FU stall
Bus
126 pd
100
ILP Simple 2xP 4xP 4xP.1cL1
Erlebacher
25l Sync
Write
Read hit
196 Read miss
171 FU stall
Busy
118
| 100
ILP Simple 2xP 4xP 4xP.1cL1
FFT_opt
126 o 120 sync
109 Write
100 Read hit
Read miss -
FU stall
Busy
ILP Simple 2xP 4xP 4xP.1lcL1
Radix

41

ditionally speeds .1 cache and write buffer access time to one processor cycle of this
model. The rest of the memory hierarchy and the interconnect remain unchanged.
We use the total execution time and the relative importance of various compo-
nents of execution time as the primary metrics to describe the effectiveness of these
simulation models. We additionally investigate the accuracy of these simulation mod-
els in determining the multiprocessor speedups of representative applications. This
study does not present results for the unoptimized versions of FFT and LU, as the

optimized versions of these applications give better performance on the ILP system.

4.2 Execution Time and its Components

Figure 4.1 shows the total simulated execution time (and its components) for each
application and simulation model, normalized to the simulated execution time for the
ILP model for the specific application.

Chapter 3 already compares the Simple and ILP models. The ILP speedup of
an application indicates the factor by which the total execution time of the Simple
model deviates from the actual time with ILP. As a result, the error in predicted
total execution time increases for applications that are better at exploiting ILP. This
error occurs from mispredicting the time spent in each component of execution time
in proportion to the ILP speedup of that component. Errors in the total execution
time with the Simple model range from 26% to 192% for our applications.

Simple.2xP and Simple.4xP reduce the errors in total execution time by re-
ducing busy time compared to Simple. Busy time falls by factors of roughly 2
and 4, respectively, in these models, and actually resembles ILP busy time in the
case of Simple.4xP. However, absolute read miss time stays nearly unchanged com-
pared to Simple, and actually increases in some cases due to added contention.
Synchronization time also remains mostly unchanged. Further, these two models add
extraneous read hit stall components, since every L1 cache access now takes more

than one processor cycle; one of these cycles is considered busy, but the remaining

42

processor cycles are considered stall time because of blocking reads. Similarly, each
of these models also incurs an unwanted write component.! As a result, errors in
total execution time range from 21% to 153% for Simple.2xP and 20% to 127% for
Simple.4xP, for our applications.

Simple.4xP.1cL1 removes the extraneous read hit and write components of
Simple.4xP. This model is more accurate than the other Simple-based models in
predicting the total execution time, giving approximately 25% or less error on five
applications. However, in the presence of high read miss ILP speedup, the inaccura-
cies in predicting read miss time still persist, giving an error of 73% in predicting the
execution time for LU_opt. Simple.4xP.1cL1 also significantly overestimates read
miss time in FFT opt and Erlebacher, bloating this component by 72% and 59% re-
spectively. However, FF'T _opt and Erlebacher do not see corresponding errors in total
execution time because Simple.4xP.1cL1 does not account for the functional unit
stall component of ILP. This underestimate of CPU time offsets some of the over-
estimate in read miss time prediction, but does not solve the Simple-based models’
fundamental inability to account for the effects of high or moderate read miss ILP
speedup. Overall, as with the other Simple-based models, the errors seen with this
model are also highly application-dependent, ranging from -8% to 73%, depending on
how well the application exploits ILP.

4.3 Error in Component Weights

For certain studies, accurate prediction of the relative weights of the various com-
ponents of execution may be more important than an accurate prediction of total
execution time. We therefore next examine how well the Simple-based models pre-

dict the relative importance of the various components of execution time. We specifi-

TNeither the Simple nor the ILP processor stall for the completion of writes; however, the Simple
processor must wait for a write to access the write-buffer before retiring that write, whereas ILP
can retire a write before it is issued to the memory system, as long as a slot in the memory unit is
available.

43

LU | Erlebacher | Mp3d | FFT | Water | Radix
opt opt
ILP 44.1 | 53.3 89.0 | 41.6 | 39.5 76.1
Simple 39.4 | 36.9 81.5 27.0 | 19.1 44.4
4xP.1clLl1 | 66.3 | 67.4 92.4 1604 |44.3 73.4

Figure 4.2 Relative importance of memory component

cally focus on the Simple and Simple.4xP.1cL1 models, since the former is the most
widely used, and the latter is the most accurate in predicting total execution time
for our applications. We also focus only on the percentage of execution time spent
on the memory component with these simulation models; Figure 4.2 tabulates this
data. Similar information for the other components and models can be derived from
the graphs of Figure 4.1.

As shown in Chapter 3, the memory component is a greater portion of execution
time on ILP systems than on Simple systems. Simple thus underestimates the im-
portance of memory time in all of our applications (by more than 30% on four of
them). In contrast, Simple.4xP.1cL1 tends to overestimate the relative weight of
the memory component, as this model fails to account for read miss overlap and also
generally underestimates CPU time. These errors are highest in applications with
moderate to high memory ILP speedup, with overestimates of 50%, 45%, and 27% in
LU_opt, FFT _opt, and Erlebacher respectively.

4.4 Error in Multiprocessor Speedup

Figure 4.3 illustrates the multiprocessor speedups seen by the ILP-based system and
as predicted by the Simple and Simple.4xP.1cL1 simulation models. We only show
graphs for applications that scale reasonably with at least one of the models. If
the uniprocessor configuration has a higher ILP speedup than the multiprocessor

configuration, then Simple predicts a higher speedup, and vice versa. The former

44

g_ Ideal g_ ------ Ideal
=] 32+~ — Simple . ° 32 +~— Simple .
gg_ —— Simple.4xP.1cL1 .- ' gg_ —— Simple.4xP.1cL1 .~ '
—— ILP —— ILP
P o4l P 2at .
16 1+
8 1—
oL] |] | oL] |] |
0 8 16 24 32 0 8 16 24 32
Processors Processors
LU_opt Erlebacher
[Ideal [Ideal
> . > .
=] 32+~ — Simple . ° 32 +~— Simple .
gg_ —— Simple.4xP.1cL1 .- ' gg_ —— Simple.4xP.1cL1 .- '
—— ILP ——— ILP -
@ oatl g P ol
16 1+ 16 1+
8 1+ 8 1+
ok | | | | ol | | |
0 8 16 24 32 0 8 16 24 32
Processors Processors
FFT_opt Water

Figure 4.3 Speedups for Simple, ILP, Simple.4xP.1cL.1 models

is the case for all the applications we consider (Section 4), although the error in
prediction varies by application. Thus, FFT _opt has a very slight error while Water
shows a large error.

Simple.4xP.1cL1 is a good estimator of overall execution time for applications
that do not exhibit significant memory ILP speedup; therefore, it follows that the
model predicts multiprocessor speedups fairly well for Water. For the other applica-
tions, the model predicts higher speedup when its uniprocessor time prediction has a
higher error than its multiprocessor time prediction. This is the case when uniproces-
sor ILP speedup is higher than the multiprocessor ILP speedup, as in Erlebacher and
LU_opt. The reverse is true for FFT opt, where the model predicts a lower speedup

45

compared to the ILP model. For all but FFT opt, Simple.4xP.1cL1 gives a better

approximation than Simple.

4.5 Summary and Alternative Models

The Simple, Simple.2xP, and Simple.4xP models studied in this chapter see a
large range of errors across all our applications. In contrast, the Simple.4xP.1cL1
model provides a more reasonable approximation to ILP on many of our applications.
However, although this model predicts the behavior of the busy and L1 cache hit com-
ponents of the execution time reasonably well, it does not model the possibility of
read miss speedup. Consequently, this model reasonably approximates ILP behavior
for applications with low read miss ILP speedup, but can show high inaccuracies in
predicting the performance of ILP on applications with high read miss ILP speedup.

A key insight for Simple.4xP.1cL1 is that ILP processors hide nearly all of the
L1 cache hit latency. However, our detailed statistics (not shown here) show that
ILP also overlaps most of the L2 cache hit latency. Thus, a reasonable extension to
Simple.4xP.1cL1 would be to speed up L2 cache hit time to a single processor cycle.
However, this model would remain inadequate in predicting the performance of appli-
cations which overlap portions of their local and remote memory accesses. Extending
the above model further to account for local and remote memory accesses seems im-
practical, as overlap in these components of memory is highly application-specific
and hardware-dependent, and is not known a priori. Thus, our results indicate the
need for detailed simulators that employ an ILP processor model for multiprocessor
systems.

Unfortunately, current multiprocessor simulators that account for ILP processor
characteristics are much slower than simulators that do not model ILP processor
characteristics, as such simulators generally employ direct-execution simulation tech-
niques. For example, our experiments show the detailed execution-driven simulator

RSIM, which handles ILP multiprocessors, to be at least 7 times slower in elapsed

46

time than the direct-execution shared-memory multiprocessor simulator on which it
is based, RPPT [Raj95]. As fast simulators are needed to characterize the behavior
of larger applications and data sets, our results motivate the need for new techniques
to allow more efficient ILP processor simulation. For example, it may be possible to
add support for non-blocking reads to direct-execution simulation techniques, thus

allowing fast simulators to capture the effects of memory overlap.

47

Chapter 5

Related Work

There have been very few multiprocessor studies that model the effects of ILP.
Albonesi and Koren provide a mean-value analysis model of bus-based ILP multi-
processors that offers a high degree of parametric flexibility [AK95]. However, the
ILP parameters for their experiments (e.g., overlapped latency and percentage of
requests coalesced) are not derived from any specific workload or system. Our simu-
lation study shows that these parameters vary significantly with the application and
hardware factors, and provides insight into the impact and behavior of the param-
eters. Furthermore, their model assumes a uniform distribution of misses and does
not properly account for read clustering, which we have shown to be a key factor in
providing read miss overlap and exploiting ILP features.

Nayfeh et al. considered design choices for a single-package multiprocessor
[NHO96], with a few simulation results that used an ILP multiprocessor. Olukotun et
al. compared a complex ILP uniprocessor with a one-chip multiprocessor composed
of less complex ILP processors [ONH*96]. There have also been a few studies of
consistency models using ILP multiprocessors [GGH92, PRAH96, ZB92]. However,
none of the above work details the benefits achieved by ILP in the multiprocessor.

Our variants of the Simple processor model in Chapter 4 are based on the works
of Heinrich et al. [HKO%94] and Holt et al. [HSH96]. Both studies aim to model ILP
processor behavior with faster simple processors, but neither work validates these
approximations.

The Wisconsin Wind Tunnel-IT (used in [RPW96]) uses a more detailed analysis at

the basic-block level that accounts for pipeline latencies and functional unit resource

48

constraints to model a superscalar HyperSPARC processor. However, this model does
not account for memory overlap, which, as our results show, is an important factor
in determining the behavior of more aggressive ILP processors.

Brooks et al. describe the Cerberus Multiprocessor Simulator, a parallelized
instruction-driven simulator for single-issue statically-scheduled processors with non-
blocking reads in a cacheless “dance-hall” memory system [BIADS89]. This is the
earliest execution-driven multiprocessor simulator of which we know that modeled
some degree of ILP. It was also used in a study of relaxed consistency models [ZB92].

There exists a large body of work on the impact of ILP on uniprocessor systems.
Several of these studies also identify and/or investigate one or more of the factors we
study to determine read miss ILP speedup, such as read clustering, coalescing, and
contention. Oner and Dubois evaluate several applications on a uniprocessor system
with non-blocking caches. This work identifies a critical latency for each program,
defined as the maximum cache miss latency which can be perfectly tolerated by the
system. They find that for greater cache miss latencies, some latency tolerance is still
possible if the program can overlap multiple misses together. Our work finds that read
clustering is a key optimization that enables multiprocessors to exploit the features of
ILP processors, additionally finding that the read misses clustered must have similar
latency in order to achieve effective overlap, due to the dichotomy between local and
remote miss latencies in a multiprocessor configuration. Butler and Patt investigate
the impact of data cache misses on ILP processors[BP91]. Their study mentions the
effect of coalesced requests in a non-blocking cache, but compares performance only
among ILP configurations, rather than with a base processor. Burger and Goodman
evaluate several ILP processor configurations, finding that techniques used in such
systems to tolerate latency can lead to increased contention for system bandwidth.
Their study shows that this contention can contribute significantly to execution time
in some SPEC95 applications. Our study finds that although bandwidth is an im-

portant factor in the performance of ILP-based multiprocessors, even systems with

49

high bandwidth are limited in their ability to exploit ILP if applications do not allow
sufficient clustering of read misses.

Other studies on the impact of ILP on uniprocessor configurations include the
following. Jouppi and Wall look at ILP speedup of various processor configura-
tions [JW89]. However, their main results do not consider cache misses. When
they do consider cache misses, it is with regard to the impact of cache misses on peak
IPC, rather than its effect on ILP speedup. Sohi and Franklin look at a variety of
techniques for improving the bandwidth capacity of the first level cache [SF91]. Their
work specifically addresses the extra bandwidth needs of superscalar processors. This
paper proposes using multiported non-blocking L1 caches to increase the peak cache
bandwidth. Conte also addresses the benefits of non-blocking caches, and does so in
the context of superscalar processors [Con92]. This paper specifically uses a trace-
driven simulation with sampling, so speculation effects may be lost. This paper also
uses [PC, rather than ILP speedup, as a metric. Farkas and Jouppi evaluate var-
ious hardware tradeoffs in non-blocking cache design and provide miss CPI results
for codes compiled with different values of “load latency” [FJ94]. They briefly touch
on dual-issue machines, but they do so primarily in the context of their miss CPI
characteristics, rather than their ILP speedups. Finally, Bennett and Flynn provide
a detailed analysis of issues in the performance of ILP-based processors in [BF95],
focusing on issues related to instruction fetch bandwidth, instruction issue rate, and

finite instruction window effects.

50

Chapter 6

Conclusions

This paper first analyzes the impact of state-of-the-art ILP processors on the perfor-
mance of shared-memory multiprocessors. It then examines the validity of evaluating
such systems using commonly employed simulation techniques based on previous-
generation processors.

To determine the effectiveness of ILP techniques, we compare the execution times
for a multiprocessor built of state-of-the-art processors with those for a multiprocessor
built of previous-generation processors. We use this comparison not to suggest an
architectural tradeoff, but rather to understand where current multiprocessors have
succeeded in exploiting ILP and where they need improvement.

We find that, for our applications, ILP techniques effectively address the CPU
component of execution time, but are less successful in improving the data read stall
component of execution time in multiprocessors. The primary reasons for less read
miss time speedup than CPU time speedup with ILP techniques are an insufficient
potential in our applications to have multiple read misses outstanding simultaneously
and/or system contention from more frequent memory accesses in the ILP-based
multiprocessor.

The disparity between the impact of ILP on CPU time and on read miss time has
two implications. First, read stall time becomes a much larger component of execution
time in ILP multiprocessors than in previous-generation multiprocessors. Second,
most of our applications show lower parallel efficiency on an ILP multiprocessor than
on a previous-generation multiprocessor. The key reasons for the reduced parallel

efficiency on most of our applications are the greater impact of read stall time in the

51

multiprocessor than in the uniprocessor, increased contention in the multiprocessor,
and reduced overlap in the multiprocessor due to the dichotomy between local and
remote memory accesses. However, these do not appear to be fundamental problems;
one of our applications exploits enough overlap in the ILP multiprocessor to see an
increase in parallel efficiency.

Overall, our results indicate that despite the latency-tolerating techniques inte-
grated within ILP processors, multiprocessors built from ILP processors have a greater
need for additional memory latency reducing and hiding techniques than previous-
generation multiprocessors. These techniques include conventional hardware and soft-
ware techniques, and aggressive compiler techniques to enhance the read miss overlap
in applications, while accounting for the dichotomy between local and remote memory
accesses.

When addressing the validity of using current simple-processor-based simulation
models to approximate an ILP multiprocessor, we find that a model that increases the
speed of both the CPU and the L.1 cache is a reasonable approximation for applications
with low overlap of read misses. However, this model can show significant inaccuracy
in cases of high or moderate read miss overlap since it does not properly account for
the effects of overlapping read misses.

Unfortunately, full ILP multiprocessor simulation will invariably take more sim-
ulation time than the direct-execution simulation models allowed by using simple
processor models. Therefore, in the absence of an alternative, we expect that direct-
execution-based simulators will continue to be used, particularly for large applications
and large data sets. This study provides insights on the inaccuracies that can be gen-
erated and suggests that the results of such simulations should be interpreted with
care. For more accurate analysis of large applications, parallelization may serve as
the enabling technology for high-performance ILP simulations. Additionally, it may
be possible to add support for non-blocking reads to direct-execution simulation tech-

niques, thus allowing fast simulators to capture the effects of memory overlap.

[AK95]

[ASHAA97]

[AWMC*95]

[BF95]

[BIADSY]

52

Bibliography

David H. Albonesi and Israel Koren. An Analytical Model of High-
Performance Superscalar-Based Multiprocessors. In Proceedings of the
IFIP WG 10.3 Working Conference on Parallel Architectures and Com-

pilation Techniques, pages 194-203, June 1995.

Hazim Abdel-Shafi, Jonathan Hall, Sarita V. Adve, and Vikram S.
Adve. An Evaluation of Fine-Grain Producer-Initiated Communication
in Cache-Coherent Multiprocessors. In Proceedings of the 3rd Interna-

tional Symposium on High-Performance Computer Architecture, pages

204-215, February 1997.

Vikram S. Adve, Jhy-Chun Wang, J. Mellor-Crummey, Daniel Reed,
Mark Anderson, and K. Kennedy. An Integrated Compilation and Per-
formance Analysis Environment for Data Parallel Programs. In Pro-

ceedings of Supercomputing '95, December 1995.

James E. Bennett and Michael J. Flynn. Performance Factors for Su-
perscalar Processors. Technical Report CSL-TR-95-661, Stanford Uni-

versity, February 1995.

Eugene D. Brooks 111, Timothy S. Axelrod, and Gregory A. Darmohray.
The Cerberus Multiprocessor Simulator. In Garry Rodrigue, editor,
Parallel Processing for Scientific Computing: Proceedings of the 3rd
SIAM Conference on Parallel Processing for Scientific Computing (De-
cember 1987), chapter 58, pages 384-390. STAM, 1989.

[BPY1]

[CDJ*91]

[Con92]

[ERB*95]

[FJ94]

[FJC96]

53

Michael Butler and Yale Patt. The Effect of Real Data Cache Behav-
ior on the Performance of a Microarchitecture that Supports Dynamic
Scheduling. In Proceedings of the 24th Annual International Symposium
on Microarchitecture, pages 34-41, November 1991.

R. G. Covington, S. Dwarkadas, J. R. Jump, S. Madala, and J. B.
Sinclair. The Efficient Simulation of Parallel Computer Systems. Inter-
national Journal of Computer Simulation, 1:31-58, January 1991.

Thomas M. Conte. Tradeoffs in Processor/Memory Interfaces for Su-
perscalar Processors. In Proceedings of the 25th Annual International

Symposium on Microarchitecture, pages 202-205, December 1992.

John H. Edmondson, Paul 1. Rubinfeld, Peter J. Bannon, Bradley J.
Benschneider, Debra Bernstein, Ruben W. Castelino, Elizabeth M.
Cooper, Daniel E. Dever, Dale R. Donchin, Timothy C. Fischer,
Anil K. Jain, Shekhar Mehta, Jeanne E. Meyer, Ronald P. Preston,
Vidya Rajagopalan, Chandrasekhara Somanathan, Scott A. Taylor, and
Gilbert M. Wolrich. Internal Organization of the Alpha 21164, a 300-
MHz 64-bit Quad-issue CMOS RISC Microprocessor. Digital Technical
Journal, 7(1):119-132, 1995.

K.I. Farkas and Norman P. Jouppi. Complexity/Performance Tradeoffs
with Non-Blocking Loads. In Proceedings of the 21st Annual Interna-

tional Symposium on Computer Architecture, pages 211-222, June 1994.

K. Farkas, N. Jouppi, and P. Chow. Register File Design Considera-
tions in Dynamically Scheduled Processors. In Proceedings of the 2nd
International Symposium on High-Performance Computer Architecture,

pages 40-51, February 1996.

[GGH92|

[GLL*90]

[HKO*94]

[HLRW92]

[HSH96]

54

Kourosh Gharachorloo, Anoop Gupta, and John Hennessy. Hiding
Memory Latency Using Dynamic Scheduling in Shared-Memory Mul-
tiprocessors. In Proceedings of the 19th International Symposium on

Computer Architecture, pages 22-33, 1992.

Kourosh Gharachorloo, Daniel Lenoski, James Laudon, Phillip Gib-
bons, Anoop Gupta, and John Hennessy. Memory Consistency and
Event Ordering in Scalable Shared-Memory Multiprocessors. In Pro-

ceedings of the 17th International Symposium on Computer Architec-
lure, pages 1526, May 1990.

Mark Heinrich, Jeffrey Kuskin, David Ofelt, John Heinlein, Joel Baxter,
Jaswinder Pal Singh, Richard Simoni, Kourosh Gharachorloo, David
Nakahira, Mark Horowitz, Anoop Gupta, Mendel Rosenblum, and
John Hennessy. The Performance Impact of Flexibility in the Stan-
ford FLASH Multiprocessor. In Proceedings of the 6th International

Conference on Architectural Support for Programming Languages and

Operating Systems, pages 274-285, 1994.

Mark D. Hill, James R. Larus, Steven K. Reinhardt, and David A.
Wood. Cooperative Shared Memory: Software and Hardware Support
for Scalable Multiprocessors. In Proceedings 5th International Confer-

ence on Architectural Support for Programming Languages and Operat-

ing Systems, pages 262-273, October 1992.

Chris Holt, Jaswinder Pal Singh, and John Hennessy. Application and
Architectural Bottlenecks in Large Scale Distributed Shared Memory
Machines. In Proceedings of the 23rd Annual International Symposium
on Computer Architecture, pages 134-145, May 1996.

[TW89]

[Kro81]

[MIP6]

[NHO96]

[ONH*96]

[Pou94|

[PRA97a]

39

Norman P. Jouppi and David W. Wall. Available Instruction-Level
Parallelism for Superscalar and Superpipelined Machines. In Proceed-
ings of the 3rd International Conference on Architectural Support for
Programming Languages and Operating Systems, pages 272-282, April
1989.

David Kroft. Lockup-Free Instruction Fetch/Prefetch Cache Organiza-
tion. In Proceedings of the 8th International Symposium on Computer

Architecture, pages 81-87, May 1981.

MIPS Technologies, Inc. R10000 Microprocessor User’s Manual, Ver-
ston 2.0, December 1996.

Basem A. Nayfeh, Lance Hammond, and Kunle Olukotun. Evaluation of
Design Alternatives for a Multiprocessor Microprocessor. In Proceedings
of the 23rd International Symposium on Computer Architecture, pages
6777, May 1996.

Kunle Olukotun, Basem A. Nayfeh, Lance Hammond, Ken Wilson, and
Kunyung Chang. The Case for a Single-Chip Multiprocessor. In Pro-
ceedings of the Tth International Conference on Architectural Support
for Programming Languages and Operating Systems, pages 2—11, Octo-
ber 1996.

D.K. Poulsen. Memory Latency Reduction via Data Prefetching and
Data Forwarding in Shared-Memory Multiprocessors. PhD thesis, Uni-

versity of Illinois at Urbana-Champaign, 1994.

Vijay S. Pai, Parthasarathy Ranganathan, and Sarita V. Adve. RSIM:
An Execution-Driven Simulator for ILLP-Based Shared-Memory Multi-
processors and Uniprocessors. In Proceedings of the Third Workshop on

Computer Architecture Fducation, February 1997.

[PRA9T7D]

[PRAH96]

[Raj95]

[RBH*95]

[RPASA97]

[RPWO6]

56

Vijay S. Pai, Parthasarathy Ranganathan, and Sarita V. Adve. The
Impact of Instruction Level Parallelism on Multiprocessor Performance
and Simulation Methodology. In Proceedings of the 3rd International

Symposium on High Performance Computer Architecture, pages 72-83,
February 1997.

Vijay S. Pai, Parthasarathy Ranganathan, Sarita V. Adve, and Tracy
Harton. An Evaluation of Memory Consistency Models for Shared-
Memory Systems with ILP Processors. In Proceedings of the 7th In-
ternational Conference on Architectural Support for Programming Lan-

guages and Operating Systems, pages 12-23, October 1996.

Usha Rajagopalan. The Effects of Interconnection Networks on the Per-
formance of Shared-Memory Multiprocessors. Master’s thesis, Depart-

ment of Electrical and Computer Engineering, Rice University, January

1995.

Mendel Rosenblum, Edouard Bugnion, Stephen Alan Herrod, Emmet
Witchel, and Anoop Gupta. The Impact of Architectural Trends on Op-
erating System Performance. In Proceedings of the 15th ACM Sympo-
stum on Operating Systems Principles, pages 285-298, December 1995.

Parthasarathy Ranganathan, Vijay S. Pai, Hazim Abdel-Shafi, and
Sarita V. Adve. The Interaction of Software Prefetching with ILP Pro-
cessors in Shared-Memory Systems. In Proceedings of the 24th Annual

International Symposium on Compuler Architecture, June 1997.

Steven K. Reinhardt, Robert W. Pfile, and David A. Wood. Decoupled
Hardware Support for Distributed Shared Memory. In Proceedings of

the 23rd Annual International Symposium on Computer Architecture,

pages 34-43, May 1996.

[SF91]

[SWG92]

[WOT+95]

[ZB92]

57

Gurindar Sohi and Manoj Franklin. High-Bandwidth Data Memory
Systems for Superscalar Processors. In Proceedings of the 4th Interna-
tional Conference on Architectural Support for Programming Languages

and Operating Systems, pages 53-62, April 1991.

Jaswinder Pal Singh, Wolf-Dietrich Weber, and Anoop Gupta.
SPLASH: Stanford Parallel Applications for Shared-Memory. Computer
Architecture News, 20(1):5-44, March 1992.

Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie, Jaswinder Pal
Singh, and Anoop Gupta. The SPLASH-2 Programs: Characteriza-
tion and Methodological Considerations. In Proceedings of the 22nd
International Symposium on Computer Architecture, pages 24-36, June

1995.

Richard N. Zucker and Jean-Loup Baer. A Performance Study of Mem-
ory Consistency Models. In Proceedings of the 19th International Sym-
posium on Computer Architecture, pages 2-12, May 1992.

