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Abstract

Current mucroprocessors exploit high levels of
instruction-level parallelism (ILP) through techniques
such as multiple issue, dynamic scheduling, and non-
blocking reads. This paper presents the first detailed
analysis of the impact of such processors on shared-
memory multiprocessors using a detailed erecution-
driwven simulator. Using this analysis, we also exam-
ine the validity of common direct-execution simulation
techniques that employ previous-generation processor
models to approrimate ILP-based multiprocessors.

We find that ILP techniques substantially reduce
CPU time in multiprocessors, but are less effective in
reducing memory stall time. Consequently, despite the
presence of inherent latency-tolerating techniques in
ILP processors, memory stall time becomes a larger
component of execution time and parallel efficiencies
are generally poorer in ILP-based multiprocessors than
in previous-generation multiprocessors.

FEramining the validity of direct-execution simu-
lators with previous-generation processor models, we
find that, with appropriate approximations, such sim-
ulators can reasonably characterize the behavior of ap-
plications with poor overlap of read misses. However,
they can be highly inaccurate for applications with high
overlap of read misses. For our applications, the er-
rors in ezxecution time with these simulators range
from 26% to 192% for the most commonly used model,
and from -8% to 73% for the most accurate model.
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1 Introduction

Shared-memory multiprocessors built from com-
modity microprocessors are expected to provide high
performance for a variety of scientific and commer-
cial applications. Current commodity microprocessors
improve performance with aggressive techniques to ex-
ploit high levels of instruction-level parallelism (ILP).
For example, the HP PA-8000, Intel Pentium Pro, and
MIPS R10000 processors use multiple instruction is-
sue, dynamic (out-of-order) scheduling, multiple non-
blocking reads, and speculative execution. However,
most recent architecture studies of shared-memory
systems use direct-execution simulators, which typi-
cally assume a processor model with single issue, static
(in-order) scheduling, and blocking reads.

Although researchers have shown the benefits of ag-
gressive ILP techniques for uniprocessors, there has
not yet been a detailed or realistic analysis of the im-
pact of such ILP techniques on the performance of
shared-memory multiprocessors. Such an analysis is
required to fully exploit advances in uniprocessor tech-
nology for multiprocessors. Such an analysis is also
required to assess the validity of the continued use
of direct-execution simulation with simple processor
models to study next-generation shared-memory ar-
chitectures. This paper makes two contributions.

(1) This is the first detailed study of the effective-
ness of state-of-the-art ILP processors in a shared-
memory multiprocessor, using a detailed simula-
tor driven by real applications.

This is the first study on the validity of using
current direct-execution simulation techniques to
model shared-memory multiprocessors built from
ILP processors.

Our experiments for assessing the impact of ILP
on shared-memory multiprocessor performance show
that all our applications see performance improve-
ments from the use of current ILP techniques in multi-
processors. However, the improvements achieved vary
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widely. In particular, ILP techniques successfully and
consistently reduce the CPU component of execution
time, but their impact on the memory (read) stall
component is lower and more application-dependent.
This deficiency arises primarily because of insufficient
potential in our applications to overlap multiple read
misses, as well as system contention from more fre-
quent memory accesses.

The discrepancy in the impact of ILP techniques
on the CPU and read stall components leads to two
key effects for our applications. First, read stall
time becomes a larger component of execution time
than in previous-generation systems. Second, paral-
lel efficiencies for ILP multiprocessors are lower than
with previous-generation multiprocessors for all but
one application. Thus, despite the inherent latency-
tolerating mechanisms in ILP processors, multipro-
cessors built from ILP processors actually exhibit a
greater potential need for additional latency reducing
or hiding techniques than previous-generation multi-
processors.

Our results on the validity of using current direct-
execution simulation techniques to approximate ILP
multiprocessors are as follows. For applications where
our ILP multiprocessor fails to significantly overlap
read miss latency, a direct-execution simulation using
a simple previous-generation processor model with a
higher clock speed for the processor and the L1 cache
provides a reasonable approximation. However, when
ILP techniques effectively overlap read miss latency,
all of our direct-execution simulation models can show
significant errors for important metrics. Overall, for
total execution time, the most commonly used direct-
execution technique gave 26% to 192% error, while the
most accurate direct-execution technique gave -8% to
73% error.

The rest of the paper is organized as follows. Sec-
tion 2 describes our experimental methodology. Sec-
tions 3-5 describe and analyze our results. Section 6
discusses related work. Section 7 concludes the paper.

2 Experimental Methodology

The following sections describe the metrics used in
our evaluation, the architectures simulated, the simu-
lation environment, and the applications.
2.1 Measuring the Impact of ILP

To determine the impact of ILP techniques in mul-
tiprocessors, we compare two multiprocessor systems —
ILP and Simple — equivalent in every respect except
the processor used. The ILP system uses state-of-the-
art high-performance microprocessors with multiple
issue, dynamic scheduling, and non-blocking reads.
We refer to such processors as ILP processors. The
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Simple system uses previous-generation microproces-
sors with single issue, static scheduling, and blocking
reads, matching the processor model used in many
current direct-execution simulators. We refer to such
processors as Simple processors. We compare the ILP
and Simple systems to determine how multiprocessors
benefit from ILP techniques, rather than to propose
any architectural tradeoff between the ILP and Simple
architectures. Therefore, both systems have the same
clock rate and feature an identical aggressive mem-
ory system and interconnect suitable for ILP systems.
Section 2.2 provides more detail on these systems.

The key metric we use to evaluate the impact of
ILP is the speedup in execution time achieved by the
ILP system over the Simple system, which we call the
ILP speedup.

To study the factors affecting ILP speedup, we
study the components of execution time — busy, func-
tional unit stall, synchronization stall, and data mem-
ory stall. However, these components are difficult to
distinguish with ILP processors, as each instruction
can potentially overlap its execution with both previ-
ous and following instructions. We hence adopt the fol-
lowing convention, also used in other studies [17, 20].
If, in a given cycle, the processor retires the maximum
allowable number of instructions, we count that cycle
as part of busy time. Otherwise, we charge that cycle
to the stall time component corresponding to the first
instruction that could not be retired. Thus, the stall
time for a class of instructions represents the num-
ber of cycles that instructions of that class spend at
the head of the instruction window (also known as the
reorder buffer or active list) before retiring.

We analyze the effect of each component of execu-
tion time by examining the ILP speedup of that com-
ponent, which is the ratio of the times spent on the
component with the Simple and ILP systems.

2.2 Simulated Architectures

We model 8-processor NUMA shared-memory sys-
tems with the system nodes connected by a two-
dimensional mesh. Our systems use an invalidation
coherence protocol and are release-consistent [7].

The following details the processors and memory
hierarchy modeled. Figure 1 summarizes our system
parameters. The extended version of this paper also
includes results for 16 and 32 processor systems and a
sensitivity analysis for several parameters [16].

Processor Models. Our ILP processor resembles
the MIPS R10000 processor [12], with 4-way issue,
dynamic scheduling, non-blocking reads, register re-
naming, and speculative execution. Unlike the MIPS
R10000, however, our processor implements release
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ILP Processor
Processor speed 300MHz
Maximum fetch/retire rate 4
(instructions per cycle)
Instruction issue window

64 entries

2 integer arithmetic

2 floating point

2 address generation

Branch speculation depth 8

Memory unit size
Network parameters

150MHz

Functional units

32 entries

Network speed

Network width 64 bits

Flit delay (per hop) 2 network cycles
Cache parameters

64 bytes

Direct mapped, 16 K

Cache line size
L1 cache (on-chip)

L1 request ports 2

L1 hit time 1 cycle

Number of .1 MSHRs 8

L2 cache (off-chip) 4-way associative, 64 K
L2 request ports 1

L2 hit time 8 cycles, pipelined

Number of 1.2 MSHRs 8
Write buffer entries

Memory parameters
Memory access time 18 cycles (60 ns)
Memory transfer bandwidth | 16 bytes/cycle
Memory Interleaving 4-way

8 cache lines

Figure 1: System parameters

consistency. The Simple processor uses single-issue,
static scheduling, and blocking reads, and has the
same clock speed as the ILP processor.

Most recent direct-execution simulation studies as-
sume single-cycle latencies for all processor functional
units. We choose to continue with this approxima-
tion for our Simple model to represent currently used
simulation models. To minimize sources of differ-
ence between the Simple and ILP models, we also use
single-cycle functional unit latencies for ILP proces-
sors. Nevertheless, to investigate the impact of this
approximation, we simulated all our applications on
an 8-processor ILP system with functional unit laten-
cies similar to the UltraSPARC processor. We found
that the approximation has negligible effect on all ap-
plications except Water; even with Water, our overall
results continue to hold. This approximation has lit-
tle impact because, in multiprocessors, memory time
dominates, and ILP processors can easily overlap func-
tional unit latency.

For the experiments related to the validity of direct-
execution simulators, we also investigate variants of
the Simple model that reflect approximations for
ILP-based multiprocessors made in recent literature.
These are further described in Section 5.

Memory Hierarchy. The ILP and Simple sys-
tems have an identical memory hierarchy with identi-
cal parameters. Each system node includes a processor
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with two levels of caching, a merging write buffer [6]
between the caches, and a portion of the distributed
memory and directory. A split-transaction system bus
connects the memory, the network interface, and the
rest of the system node.

The L1 cache has 2 request ports, allowing it to
serve up to 2 data requests per cycle, and is write-
through with a no-write-allocate policy. The L2 cache
has 1 request port and is a fully-pipelined write-back
cache with a write-allocate policy. Each cache also
has an additional port for incoming coherence mes-
sages and replies. Both the L1 and L2 caches have
8 miss status holding registers (MSHRs) [11], which
reserve space for outstanding cache misses (the L1
cache allocates MSHRs only for read misses as it is
no-write-allocate). The MSHRs support coalescing so
that multiple misses to the same line do not initiate
multiple requests to lower levels of the memory hierar-
chy. We do not include such coalesced requests when
calculating miss counts for our analysis.

We choose cache sizes commensurate with the input
sizes of our applications, based on the methodology
of Woo et al. [22]. Primary working sets of all our
applications fit in the L1 cache, and secondary working
sets of most applications do not fit in the L2 cache.

2.3 Simulation Environment

We use the Rice Simulator for ILP Multiprocessors
(RSIM) to simulate the ILP and Simple architectures
described in Section 2.2. RSIM models the proces-
sors, memory system, and network in detail, including
contention at all resources. It is driven by application
executables rather than traces, allowing interactions
between the processors to affect the course of the sim-
ulation. The code for the processor and cache subsys-
tem performs cycle-by-cycle simulation and interfaces
with an event-driven simulator for the network and
memory system. The latter is derived from the Rice
Parallel Processing Testbed (RPPT) [5, 18].

Since we simulate the processor in detail, our sim-
ulation times are five to ten times higher than those
for an otherwise equivalent direct-execution simula-
tor. To speed up simulation, we assume that all in-
structions hit in the instruction cache (with a 1 cycle
hit time) and that all accesses to private data hit in
the L1 data cache. These assumptions have also been
made by many previous multiprocessor studies using
direct-execution. We do, however, model contention
for processor resources and L1 cache ports due to pri-
vate data accesses.

The applications are compiled with a version of the
SPARC V9 gcc compiler modified to eliminate branch
delay slots and restricted to 32 bit code, with the op-
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Application Input Size Cycles

LU 256 by 256 matrix, block 8 1.03 x 108
FFT 65536 points 3.67 x 107
Radix 1K radix, 512K keys, max: 512K | 3.15 x 107
Mp3d 50000 particles 8.82 x 106
Water 512 molecules 2.68 x 108
Erlebacher 64 by 64 by 64 cube, block 8 7.62 x 107

Figure 2: Application characteristics

tions -02 -funrollloop.
2.4 Applications

We use six applications for this study — LU, FFT,
and Radix from the SPLASH-2 suite [22], Mp3d and
Water from the SPLASH suite [21], and Erlebacher
from the Rice parallel compiler group [1]. We mod-
ified LU slightly to use flags instead of barriers for
better load balance. Figure 2 gives input sizes for the
applications and their execution times on a Simple
Uniprocessor.

We also study versions of LU and FFT that include
ILP-specific optimizations that can be implemented
in a compiler. Specifically, we use function inlining
and loop interchange to schedule read misses closer to
each other so that they can be overlapped in the ILP
processor. We refer to these optimized applications as
LU_opt and FFT _opt.

3 Impact of ILP on a Multiprocessor

This section describes the impact of ILP on multi-
processors by comparing the 8-processor Simple and
ILP systems described in Section 2.2.

3.1 Overall Results

Figures 3(a) and 3(b) illustrate our key overall re-
sults. For each application, Figure 3(a) shows the total
ILP speedup as well as the ILP speedup of the dif-
ferent components of execution time. The execution
time components include CPU time!, data memory
stalls, and synchronization stalls. Figure 3(b) indi-
cates the relative importance of the ILP speedups of
the different components by showing the time spent
on each component (normalized to the total time on
the Simple system). The busy and stall times are
calculated as explained in Section 2.1.

All of our applications exhibit speedup with ILP
processors, but the specific speedup seen varies
greatly, from 1.26 in Radix to 2.92 in LU_opt. All the
applications achieve similar and significant CPU ILP
speedup (3.15 to 3.70). In contrast, the data memory
ILP speedup is lower and varies greatly across the ap-
plications, from 0.74 (a slowdown!) in Radix to 2.61
in LU_opt.

1'We chose to combine the busy time and functional unit (FU)
stalls together into CPU time when computing ILP speedups,
because the Simple processor does not see any FU stalls.
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The key effect of the high CPU ILP speedups and
low data memory ILP speedups is that data memory
time becomes more dominant in ILP multiprocessors
than in Simple multiprocessors. Further, since CPU
ILP speedups are fairly consistent across all applica-
tions, and data memory time is the only other dom-
inant component of execution time, the data mem-
ory ILP speedup primarily shapes the overall ILP
speedups of our applications. We therefore analyze
the factors that influence data memory ILP speedup
in greater detail in Section 3.2.

Synchronization ILP speedup is also low and varies
widely across applications. However, since synchro-
nization does not account for a large portion of the
execution time, it does not greatly influence the overall
ILP speedup. Section 3.3 discusses the factors affect-
ing synchronization ILP speedup in our applications.

3.2 Data Memory ILP Speedup

We first discuss various factors that can contribute
to data memory ILP speedup (Section 3.2.1), and then
show how these factors interact in our applications
(Section 3.2.2).
3.2.1

Figure 3(b) shows that memory time is dominated
by read miss time in all of our applications. We
therefore focus on factors influencing read miss ILP
speedup. These factors are summarized in Figure 4.

The read miss ILP speedup is the ratio of the to-
tal stall time due to read misses in the Simple and
ILP systems. The total stall time due to read misses
in a given system is simply the product of the aver-

Contributing Factors

age number of L1 misses and the average exposed, or
unoverlapped, L1 cache miss latency. Equation (1)
in Figure 4 uses the above terms to express the read
miss ILP speedup and isolates two contributing factors
— the miss factor and the unoverlapped factor.

Miss factor. This is the first factor isolated in
Equation (1). Tt specifies the ratio of the miss counts
in the Simple and ILP systems. These miss counts
can differ since reordering and speculation in the ILP
processor can alter the cache miss behavior. A miss
factor greater than 1 thus contributes positively to
read miss ILP speedup, as the ILP system sees fewer
misses than the Simple system.

Unoverlapped factor. This i1s the second factor
isolated in Equation (1). Tt specifies the ratio of the
exposed, or unoverlapped, miss latency in the ILP and
Simple systems. The lower the unoverlapped factor,
the higher the read miss ILP speedup.

In the Simple system, the entire L1 miss latency
is unoverlapped. To understand the factors contribut-
ing to unoverlapped latency in the ILP system, Equa-
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Figure 3: Effectiveness of ILP in a multiprocessor system

tion (2) first expresses the unoverlapped ILP miss la-
tency as the difference between the total ILP miss la-
tency and the overlapped miss latency. The total ILP
miss latency can be expanded, as in Equation (3), as
the sum of the miss latency incurred by the Simple
system and an extra latency component added by the
ILP system (for example, due to increased contention).
Finally, Equation (4) performs an algebraic simplifica-
tion to express the unoverlapped factor in terms of two
factors — the overlapped factor and the extra factor —
which are, respectively, the ILP overlapped and extra
latencies expressed as a fraction of the Simple miss la-
tency. Read miss ILP speedup is higher with a higher
overlapped factor and a lower extra factor.

The overlapped factorincreases with increased over-
lap of misses with other useful work. The number of
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instructions behind which a read miss can overlap is
limited by the instruction window size. Further, read
misses have longer latencies than other operations that
occupy the instruction window. Therefore, read miss
latency can normally be completely hidden only be-
hind other read misses. Thus, for a high overlapped
factor (and high read miss ILP speedup), applications
should exhibit read misses that appear clustered to-
gether within the instruction window.

On the other hand, the eztra factor must be low for
a high read miss ILP speedup. Extra miss latencies
can arise from contention for system resources, as the
ILP techniques allow ILP processors to issue mem-
ory references more frequently than Simple proces-
sors. Extra miss latency can also arise from a change
in miss behavior if the miss pattern in ILP processors
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# Simple L1 Misses
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Simple L1 Miss Latency
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SimpleL1 Miss Latency + ILP Extra L1 Miss Latency — ILP Overlapped L1 Miss Latency
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ILP Overlapped L1 Miss Latency ILP Extra L1 Miss Latency

®

Simple L1 Miss Latency SimpleL1 Miss Latency

o

Figure 4: Factors affecting read miss ILP speedup

Overlapped Factor Extra Factor

forces misses to be resolved at more remote levels of
the memory hierarchy.

In summary, the unoverlapped factor contributes
positively to read miss ILP speedup if the ILP unover-
lapped miss latency is less than the Simple miss la-
tency. This factor depends on how much potential for
read miss overlap is exploited (overlap factor) and on
how much is lost due to contention (extra factor). A
positive contribution results if the latency overlapped
by ILP exceeds any extra latency added by ILP.
3.2.2 Analysis of Applications

Read miss ILP speedup (not shown separately) is
low (less than 1.6) in all our applications except LU,
LU_opt, and FFT_opt; Radix actually exhibits a slow-
down. We next show how the factors discussed in
Section 3.2.1 contribute to read miss ILP speedup for
our applications.

Miss factor. Most of our applications have miss
factors close to 1, implying a negligible contribution
from this factor to read miss ILP speedup. LU and
LU_opt, however, have high miss factors (2.21 and
1.75 respectively), which contribute significantly to
the read miss ILP speedup. These high miss factors
arise because the ILP system reorders certain accesses
that induce repeated conflict misses in the Simple sys-
tem. In the ILP system, the first two conflicting re-
quests overlap, while subsequent requests to the con-
flicting lines coalesce with earlier pending misses, thus
reducing the number of misses seen by the system.

Unoverlapped factor. Figure 3(c) graphically
represents the unoverlapped, overlapped, and extra
latencies and factors described in Section 3.2.1. The
two bars for each application show the average L1 read
miss latency in Simple and ILP systems, normalized to
the Simple system latency. The light part of the ILP

4
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bar shows the average overlapped latency while the
dark part shows the unoverlapped latency. Because
of the normalization, the dark and the light parts of
the ILP bar also represent the unoverlapped and over-
lapped factors as percentages, respectively. The differ-
ence between the full ILP and Simple bars represents
the extra factor. Below each ILP bar, we also show the
miss factor for reference — the read miss ILP speedup
is the miss factor divided by the unoverlapped factor.

We measure the latency of a read miss from the
time the address for the miss is generated to the time
the value arrives at the processor; therefore, the extra
and overlapped factors in Figure 3(c) incorporate time
spent by a read miss in the processor memory unit and
any overlap seen during that time.

Figures 3(d) and 3(e) provide additional data to in-
dicate overlapped and extra latency after a read miss
is issued to the memory system. These figures illus-
trate MSHR, occupancy distributions at the L1 and
L2 caches, respectively. They give the fraction of to-
tal time (on the vertical axis) for which at least N
MSHRs are occupied by misses, where N is the number
on the horizontal axis. Recall that only read misses re-
serve .1 MSHRs, as the L1 cache is no-write-allocate.
Thus, the L1 MSHR occupancy graph indicates L1
read miss overlap in the system. Since the L2 MSHR,
occupancy graph includes both read and write misses,
an L2 MSHR, occupancy greater than the correspond-
ing .1 MSHR occupancy indicates resource contention
seen by reads due to interference from writes. We next
use the above data to understand the reasons for the
unoverlapped factor seen in each application.

LU_opt, FFT_opt, Erlebacher, and Mp3d have
moderate to high overlapped factors due to their mod-
erate to high .1 MSHR occupancies. Our clustering
optimizations in LU_opt and FFT_opt are responsible
for their higher overlap relative to LU and FFT re-
spectively. The increased frequency of reads due to
the high read overlap in these four applications leads
to an extra latency due to contention effects, primarily
in the main memory system. Write traffic additionally
increases this extra factor, though not significantly.
However, as shown in Figure 3(c), on all these appli-
cations, the positive effects of the overlapped factor
outweigh the negative effects of the extra factor, sub-
sequently leading to a low unoverlapped factor and,
hence, higher read miss ILP speedups.

Radix, on the other hand, illustrates the opposite
extreme. Figure 3(c) shows that in Radix, the nega-
tive effects of extra latency due to increased contention
significantly outweigh the positive effects due to over-
lap, leading to a high unoverlapped factor of 1.36.
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Figure 5: Parallel Efficiency with Simple and ILP systems

The high extra factor is primarily due to write traffic.
Figure 3(e) shows that in Radix, L2 MSHRs are sat-
urated for over 70% of the execution. Further misses
now stall at the L2 cache, preventing other accesses
from issuing to that cache; eventually, this backup
reaches the primary cache ports and the processor’s
memory units, causing misses to experience a high ex-
tra latency. This backup also causes Radix to see a
large read hit component. Further, the low L1 MSHR
occupancy, seen in Figure 3(c), shows that Radix has
little potential to overlap multiple read misses.

FFT is the only application to see neither overlap
effects nor contention effects, as indicated by the low
L1 and L2 MSHR occupancies. This leads to an un-
overlapped factor close to 1 and consequently a read
miss ILP speedup close to 1.

Finally, we discuss two applications — LU and Wa-
ter — which show relatively high overlapped and extra
factors, despite low MSHR occupancies. In LU (and
LU_opt, to a lesser extent), the ILP processor coalesces
accesses that cause L1 cache misses in the Simple case.
Our detailed statistics show that these misses are pri-
marily L2 cache hits in the Simple case. Thus, the
Simple miss latency includes these L2 cache hits and
remote misses while the ILP miss latency includes only
the remaining remote misses. This change in miss pat-
tern leads to a higher average miss latency in the ILP
system than in the Simple system, leading to a high
extra factor. The extra factor further increases from
a greater frequency of memory accesses, which leads
to increased network and memory contention in the
ILP system. LU can overlap only a portion of this ex-
tra latency, leading to an unoverlapped factor greater
than 1. However, LU still achieves a read miss ILP
speedup because of its miss factor.

Water stands apart from the other applications be-
cause of its synchronization characteristics. Its ex-
tra latency arises because reads must often wait on
a pending acquire operation to complete before issu-
ing. The latency contribution caused by this waiting,
however, is overlapped by the lock acquire itself. As a
result, Water has a large apparent overlap. Neverthe-
less, Water’s poor MSHR occupancy prevents it from
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getting a low unoverlapped factor, and its read miss
ILP speedup is close to 1.

In summary, the key reasons for the low read miss
ILP speedup in most of our applications are a lack of
opportunity in the applications for overlapping read
misses and/or increased contention in the system.
3.3 Synchronization ILP Speedup

In general, ILP processors can affect synchroniza-
tion time in the following ways. First, ILP reduces
synchronization waiting times through reduced com-
putation time and overlapped data read misses. Sec-
ond, acquire latency can be overlapped with previ-
ous operations of its processor, as allowed by release
consistency [7]. The third factor is a negative effect:
increased contention in the memory system due to
higher frequency of accesses can increase overall syn-
chronization latency.

The above factors combine to produce a variety of
synchronization speedups for our applications, ranging
from 0.88 in Mp3d to 2.01 in Radix. However, syn-
chronization accounts for only a small fraction of total
execution time in all our applications; therefore, syn-
chronization ILP speedup does not contribute much to
overall ILP speedup for our applications and system.

4 TImpact of ILP on Parallel Efficiency

Figure 5 shows the parallel efficiency achieved by
our 8-processor ILP and Simple systems for all our
applications, expressed as a percentage.? Except for
FFT_opt, parallel efficiency for ILP configurations is
considerably less than that for Simple configurations.
In the extended version of the paper, we show that this
trend continues in 16 and 32 processor systems [16].

To understand the reasons for the difference in par-
allel efficiencies between Simple and ILP multiproces-
sors, Figure 6 presents data to illustrate the impact of
ILP in uniprocessors, analogous to the data in Figure 3
for multiprocessors. As in multiprocessors, uniproces-
sor CPU ILP speedups are high while memory ILP

2Parallel efficiency of an application on an 8-processor ILP
multiprocessor — ( Ezecution time on ILP uniprocessor ) 1
p - Ezecution time on ILP multiprocessor

5
Parallel efficiency of an application on an 8-processor Simple
multiprocessor is defined analogously.
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Figure 6: Effectiveness of ILP in a uniprocessor system

speedups are generally low. However, comparing Fig-
ure 6(a) with Figure 3(a) shows that for all applica-
tions other than FFT_opt, the overall ILP speedup
is less in the multiprocessor than in the uniproces-
sor. This degradation directly implies lower parallel
efficiency for the ILP multiprocessor than the Simple
multiprocessor. We next describe several reasons for
the lower ILP speedup in the multiprocessor and then
describe why FFT _opt does not follow this trend.
First, comparing Figure 6(b) with Figure 3(b)
shows that, for most applications, the read miss com-
ponent of execution time is more significant in the mul-
tiprocessor because these applications see a large num-
ber of remote misses. Consequently, read miss ILP
speedup plays a larger role in determining overall ILP
speedup in the multiprocessor than in the uniproces-

sor. Since read miss ILP speedup is lower than CPU
ILP speedup, and since read miss ILP speedup is not
higher in the multiprocessor than in the uniprocessor,
the larger role of read misses results in an overall ILP
speedup degradation on the multiprocessor for these
applications.

Second, for some applications, our ILP multipro-
cessor may see less read miss overlap because of the
dichotomy between local and remote misses in mul-
tiprocessor configurations; multiprocessors not only
need a clustering of misses for effective overlap, but
also require remote misses to be clustered with other
remote misses in order to fully hide their latencies. All
applications other than FFT _opt that achieve signifi-
cant overlap in the uniprocessor see less overlap (and,
consequently, less read miss ILP speedup) in the mul-
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tiprocessor because their data layouts do not provide
similar latencies for each of the misses overlapped in
the instruction window.

Third, the read miss ILP speedups of most appli-
cations degrade from increased contention in the mul-
tiprocessor. Radix is an extreme example where L2
MSHR saturation occurs in the multiprocessor case
but not in the uniprocessor. This MSHR saturation
arises because extensive false-sharing in the multipro-
cessor causes writes to take longer to complete; there-
fore, writes occupy the MSHRs for longer, increasing
the MSHR contention seen by reads.

Finally, synchronization presents additional over-
head for multiprocessor systems, and in most cases
sees less ILP speedup than the overall application.

FFT_opt stands apart from the other applications
for two key reasons. First, FFT _opt avoids a reduction
in read miss overlap since reads that cluster together in
the instruction window in the blocked transpose phase
of the algorithm are usually from the same block, with
the same home node and sharing pattern. Therefore,
these reads do not suffer from the effects of the di-
chotomy between local and remote misses described
above. Second, the introduction of remote misses
causes the blocked transpose phase of the algorithm
to contribute more to the total execution time, as this
is the section with the most communication. As this
is also the only phase that sees significant read miss
ILP speedup, total read miss ILP speedup increases,
preventing degradation in overall ILP speedup.

5 Impact of ILP
Methodology

The previous sections use a detailed cycle-by-cycle
simulator to understand the impact of ILP on a mul-
tiprocessor. We next explore the validity of modeling
ILP systems with direct-execution simulators based on
the Simple processor model and its variants.

5.1 Models and Metrics

For the experiments in this section, we study three
variants of the Simple model to approximate the ILP
model based on recent literature [9, 10]. The first
two, Simple.2xP and Simple.4xP, model the Simple
processor sped up by factors of two and four, respec-
tively. Simple.2xP seeks to set peak IPC equal to
the TPC achieved by the target ILP system (Our ILP
system generally obtains an TPC of approximately 2
for our applications). Simple.4xP seeks to achieve an
instruction issue rate equal to ILP, which is 4 in our
system. For the memory hierarchy and interconnect,
both models use the same latencies (in terms of ab-
solute time) as the ILP system. Thus the latencies

on Simulation
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in Figure 1, which are given in terms of processor cy-
cles, need to be appropriately scaled for these models.
The final approximation, Simple.4xP.1cL1, not only
speeds up the processor by a factor of 4, but further
recognizes that L1 cache hits should not stall the pro-
cessor. Hence, this model additionally speeds L1 cache
(and write buffer) access time to one processor cycle
of this model. The rest of the memory hierarchy and
the interconnect remain unchanged.

We use the total execution time and the relative
importance of various components of execution time
as the primary metrics to describe the effectiveness of
these simulation models. The extended version of this
paper also examines other metrics [16]. Due to lack of
space, we do not present the results for FFT and LU.

5.2 Execution Time and its Components

Figure 7 shows the total execution time (and
its components) for each application and simulation
model, normalized to the execution time for the ILP
model for the specific application.

Section 3 already compares the Simple and ILP
models. The ILP speedup of an application indicates
the factor by which the total execution time of the
Simple model deviates from the actual time with ILP.
As a result, the error in predicted total execution time
increases for applications that are better at exploiting
ILP. This error occurs from mispredicting the time
spent in each component of execution time in propor-
tion to the ILP speedup of that component. Errors in
the total execution time with the Simple model range
from 26% to 192% for our applications.

Simple.2xP and Simple.4xP reduce the errors in
total execution time by reducing busy time compared
to Simple. Busy time falls by factors of roughly 2 and
4, respectively, in these models, and actually resembles
ILP busy time in the case of Simple.4xP. However,
absolute read miss time stays nearly unchanged com-
pared to Simple, and actually increases in some cases
due to added contention. Synchronization time also
remains mostly unchanged. Further, these two models
add extraneous read hit stall components, since every
L1 cache access now takes more than one processor
cycle; one of these cycles is considered busy, but the
remaining processor cycles are considered stall time
because of blocking reads. Similarly, each of these
models also incurs an unwanted write component.3
As a result, errors in total execution time range from

3Neither the Simple nor the ILP processor stall for the com-
pletion of writes; however, the Simple processor must wait for
a write to access the write-buffer before retiring that write,
whereas ILP can retire a write before it is issued to the memory
system, as long as a slot in the memory unit is available.
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Figure 7: Predicting execution time and its components using simple simulation models

21% to 153% for Simple.2xP and 20% to 127% for
Simple.4xP, for our applications.

Simple.4xP.1cL1 removes the extraneous read hit
and write components of Simple.4xP. This model is
more accurate than the other Simple-based models
in predicting the total execution time, giving approx-
imately 25% or less error on five applications. How-
ever, in the presence of high read miss ILP speedup,
the inaccuracies in predicting read miss time still per-
sist, giving an error of 73% in predicting the execu-
tion time for LU_opt. Simple.4xP.1cL1 also signifi-
cantly overestimates read miss time in FFT _opt and
Erlebacher, bloating this component by 72% and 59%
respectively. However, FFT_opt and Erlebacher do
not see corresponding errors in total execution time
because Simple.4xP.1cL1 does not account for the
functional unit stall component of ILP. This under-
estimate of CPU time offsets some of the overesti-
mate in read miss time prediction, but does not solve
the Simple-based models’ fundamental inability to ac-
count for the effects of high or moderate read miss
ILP speedup. Overall, as with the other Simple-based
models, the errors seen with this model are also highly
application-dependent, ranging from -8% to 73%, de-
pending on how well the application exploits ILP.

5.3 FError in Component Weights

For certain studies, accurate prediction of the rel-
ative weights of the various components of execution
may be more important than an accurate prediction
of total execution time. We therefore next examine
how well the Simple-based models predict the rela-
tive importance of the various components of execu-
tion time. We specifically focus on the Simple and
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LU Erle. | Mp3d | FFT | Water | Radix
opt opt
ILP 44.1 53.3 89.0 41.6 39.5 76.1
Simple 394 | 36.9 81.5 27.0 19.1 44.4
4xP.1cl.1 | 66.3 | 67.4 92.4 60.4 44.3 73.4

Figure 8: Relative importance of memory component

Simple.4xP.1cL1models, since the former is the most
widely used, and the latter is the most accurate in pre-
dicting total execution time for our applications. We
also focus only on the percentage of execution time
spent on the memory component with these simula-
tion models; Figure 8 tabulates this data. Similar in-
formation for the other components and models can
be derived from the graphs of Figure 7.

As shown in Section 3, the memory component is a
greater portion of execution time on ILP systems than
on Simple systems. Simple thus underestimates the
importance of memory time in all of our applications
(by more than 30% on four of them). In contrast,
Simple.4xP.1cL1 tends to overestimate the relative
weight of the memory component, as this model fails
to account for read miss overlap and also generally
underestimates CPU time. These errors are highest
in applications with moderate to high memory ILP
speedup, with overestimates of 50%, 45%, and 27% in
LU_opt, FFT_opt, and Erlebacher respectively.

5.4 Summary and Alternative Models
The Simple, Simple.2xP, and Simple.4xP models
see a large range of errors across all our applications.
In contrast, the Simple.4xP.1cL1 model provides a
more reasonable approximation to ILP on many of our
applications. However, although this model predicts
the behavior of the busy and L1 cache hit compo-
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nents of the execution time reasonably well, it does
not model the possibility of read miss speedup. Con-
sequently, this model reasonably approximates ILP
behavior for applications with low read miss ILP
speedup, but can show high inaccuracies in predict-
ing the performance of ILP on applications with high
read miss ILP speedup.

A key insight for Simple.4xP. 1cL1is that ILP pro-
cessors hide nearly all of the L1 cache hit latency.
However, our detailed statistics (not shown here) show
that ILP also overlaps most of the L2 cache hit latency.
Thus, a reasonable extension to Simple.4xP.1cL1
would be to speed up L2 cache hit time to a single
processor cycle. However, this model would remain
inadequate in predicting the performance of applica-
tions which overlap portions of their local and remote
memory accesses. Extending the above model further
to account for local and remote memory accesses seems
impractical, as overlap in these components of memory
is highly application-specific and hardware-dependent,
and is not known a prior:.

6 Related Work

There have been very few multiprocessor studies
that model the effects of ILP. Albonesi and Koren
provide a mean-value analysis model of bus-based ILP
multiprocessors that offers a high degree of parametric
flexibility [2]. However, the ILP parameters for their
experiments (e.g., overlapped latency and percentage
of requests coalesced) are not derived from any spe-
cific workload or system. Our simulation study shows
that these parameters vary significantly with the ap-
plication, as well as other hardware factors [16], and
provides insight into the impact and behavior of the
parameters. Furthermore, their model assumes a uni-
form distribution of misses and does not properly ac-
count for read clustering, which we have shown to be
a key factor in providing read miss overlap.

Nayfeh et al. considered design choices for a single-
package multiprocessor [13], with a few simulation
results that used an ILP multiprocessor. Olukotun
et al. compared a complex ILP uniprocessor with a
one-chip multiprocessor composed of less complex ILP
processors [14]. There have also been a few studies
of consistency models using ILP multiprocessors [8,
17, 23]. However, none of the above work details the
benefits achieved by ILP in the multiprocessor.

Our variants of the Simple processor model in Sec-
tion 5 are based on the works of Heinrich et al. [9]
and Holt et al. [10]. Both studies aim to model TLP
processor behavior with faster simple processors, but
neither work validates these approximations.

The Wisconsin Wind Tunnel-IT (used in [19]) uses
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a more detailed analysis at the basic-block level that
accounts for pipeline latencies and functional unit
resource constraints to model a superscalar Hyper-
SPARC processor. However, this model does not ac-
count for memory overlap, which, as our results show,
is an important factor in determining the behavior of
more aggressive ILP processors.

There exists a large body of work on the impact of
ILP on uniprocessor systems. Several of these stud-
ies also identify and/or investigate one or more of the
factors we study to determine read miss ILP speedup,
such as the presence of read clustering (e.g. [15]), co-
alescing (e.g. [4]), and contention (e.g. [3]).

7 Conclusions

This paper first analyzes the impact of state-of-
the-art ILP processors on the performance of shared-
memory multiprocessors. It then examines the valid-
ity of evaluating such systems using commonly em-
ployed direct-execution simulation techniques based
on previous-generation processors.

To determine the effectiveness of ILP techniques,
we compare the execution times for a multiproces-
sor built of state-of-the-art processors with those for
a multiprocessor built of previous-generation proces-
sors. We use this comparison not to suggest an ar-
chitectural tradeoff, but rather to understand where
current multiprocessors have succeeded in exploiting
ILP and where they need improvement.

We find that, for our applications, ILP techniques
effectively address the CPU component of execution
time, but are less successful in improving the data read
stall component of execution time in multiprocessors.
The primary reasons for lower read miss speedups with
ILP techniques are an insufficient potential in our ap-
plications to have multiple read misses outstanding
simultaneously and/or system contention from more
frequent memory accesses.

The disparity in the impact of ILP on CPU time
and read miss time has two implications. First, read
stall time becomes a much larger component of exe-
cution time in ILP multiprocessors than in previous-
generation multiprocessors. Second, most of our appli-
cations show lower parallel efficiency on an ILP multi-
processor than on a previous-generation multiproces-
sor. The key reasons for the reduced parallel efficiency
on most of our applications are the greater impact
of read stall time in the multiprocessor than in the
uniprocessor, increased contention in the multiproces-
sor, and the reduced overlap due to the dichotomy
between local and remote memory accesses. However,
these do not appear to be fundamental problems; one
of our applications exploits enough overlap in the ILP
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multiprocessor to see an increase in parallel efficiency.
Overall, our results indicate that despite the
latency-tolerating techniques integrated within ILP
processors, multiprocessors built from ILP proces-
sors have a greater need for additional memory la-
tency reducing and hiding techniques than previous-
generation multiprocessors. These techniques include
conventional hardware and software techniques, and
aggressive compiler techniques to enhance the read
miss overlap in applications, while accounting for the
dichotomy between local and remote memory accesses.
When addressing the validity of using current
direct-execution simulation models to approximate an
ILP multiprocessor, we find that a model that in-
creases the speed of both the CPU and the L1 cache
is a reasonable approximation for applications with
low read miss ILP speedup. However, this model can
show significant inaccuracy in cases of high or moder-
ate read miss ILP speedup since it does not properly
account for the effects of overlapping read misses.
Unfortunately, full ILP simulation will invariably
take more simulation time than direct-execution simu-
lation models. Therefore, in the absence of an alterna-
tive, we expect that direct-execution-based simulators
will continue to be used, particularly for large applica-
tions and large data sets. This study provides insights
on the inaccuracies that can be generated and suggests
that the results of such simulations should be inter-
preted with care. For more accurate analysis of large
applications, parallelization may serve as the enabling
technology for high-performance ILP simulations.
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