
Comparing and Combining
Read Miss Clustering and Software Prefetching

�

Vijay S. Pai
�
and Sarita V. Adve

�
�
Electrical and Computer Engineering � Computer Science

Rice University University of Illinois
Houston, TX 77005 Urbana-Champaign, IL 61801

vijaypai@rice.edu sadve@cs.uiuc.edu

Abstract

A recent latency tolerance technique, read miss clus-
tering, restructures code to send demand miss references
in parallel to the underlying memory system. An alter-
nate, widely-used latency tolerance technique is software
prefetching, which initiates data fetches ahead of expected
demand miss references by a certain distance. Since both
techniques seem to target the same types of latencies and
use the same system resources, it is unclear which technique
is superior or if both can be combined. This paper shows
that these two techniques are actually mutually beneficial,
each helping to overcome limitations of the other.

We perform our study for uniprocessor and multiproces-
sor configurations, in simulation and on a real machine
(Convex Exemplar). Compared to prefetching alone (the
state-of-the-art implemented in systems today), the combi-
nation of the two techniques reduces execution time an av-
erage of 21% across all cases studied in simulation and an
average of 16% for 5 out of 10 cases on the Exemplar. The
combination sees execution time reductions relative to clus-
tering alone averaging 15% for 6 out of 11 cases in simula-
tion and 20% for 6 out of 10 cases on the Exemplar.

1 Introduction

Modern processors address long cache miss latencies
with techniques to exploit instruction-level parallelism
(ILP), such as out-of-order issue and non-blocking and
overlapped reads. Previous work found that such ILP
hardware techniques were often ineffective in targeting
data memory stalls because code typically did not expose
enough parallelism to exploit the features of the hard-
ware [23]. Motivated by this observation, we have re-
cently proposed code transformations that improve memory
parallelism by clustering multiple independent read misses

�
This work is supported in part by an IBM Partnership award, Intel Cor-

poration, the National Science Foundation under Grant No. CCR-9410457,
CCR-9502500, CDA-9502791, and CDA-9617383, and the Texas Ad-
vanced Technology Program under Grant No. 003604-025. Sarita V. Adve
is also supported by an Alfred P. Sloan Research Fellowship.

within the processor’s out-of-order instruction window
(called read miss clustering) [22]. An alternate, widely-
used latency-tolerance technique is software-controlled
non-binding prefetching. Prefetching helps tolerate laten-
cies by initiating (often multiple overlapping) data fetches
ahead of expected demand misses [4]. On the surface, both
techniques seem to target the same types of latencies and
use the same system resources; therefore, without further
analysis, it is unclear which technique is superior or if both
techniques can be used together. Since prefetching is al-
ready widely used, such an analysis is required for sys-
tem designers to incorporate read miss clustering in real
systems. This paper provides such an analysis. It shows
that the two techniques are actually mutually beneficial,
each helping to overcome the performance limitations of the
other. This result is surprising because prefetching is widely
believed to be an effective latency tolerance technique that
can already exploit parallelism in the memory system (by
sending multiple prefetches in parallel).

The read miss clustering transformation is based on a
novel adaptation of unroll-and-jam [22]. Specifically, it ex-
tends unroll-and-jam by mapping memory parallelism in a
modern ILP system to the previously-studied problem of
floating-point pipelining [2, 3, 20]. The new transforma-
tion aims to cluster multiple expected read misses together
within the same instruction window of an out-of-order pro-
cessor, without sacrificing data locality. Read miss clus-
tering was experimentally shown to improve latency toler-
ance and exploit hardware support for memory parallelism.
However, this technique leaves at least some misses ex-
posed as stalls, since it hides later read misses behind the
stall time of earlier misses. Further, certain dependences in
the code can prevent the needed code restructuring.

Software prefetching is a widely used latency-tolerance
method implemented on many commercial systems.
The most commonly known and implemented software
prefetching algorithms apply software pipelining to the in-
nermost loop for a given miss reference [17, 18, 19]. Such
software pipelining creates a prologue, which prefetches
data for the first iterations; a steady-state, which includes
computation along with prefetches scheduled ahead by a

certain number of iterations termed the prefetch distance;
and an epilogue, with only computation for the last itera-
tions. However, the lack of computation in the prologue
typically prevents that phase from overlapping the laten-
cies of its prefetches, leading to late prefetches and exposed
stall latencies. Further, the prefetch distances required
for many loops are excessive, shrinking the prefetching
steady-state. Some references are also inherently difficult
to prefetch since their addresses are not known sufficiently
in advance (e.g., linked list traversals). Software prefetch-
ing also adds instruction overhead for both the prefetches
and their address-generation instructions. Other limitations
of current prefetching algorithms are discussed in Section 3.

In this study, we show that read miss clustering and soft-
ware prefetching can profitably combine to address limi-
tations of either technique alone. Prefetching can help to
tolerate latencies remaining after miss clustering. Cluster-
ing can help prefetching by reducing the stalls caused by
prologue late prefetches, by decreasing the needed prefetch
distance and increasing the steady state length, and by ex-
tracting parallelism among demand misses for references
that are hard to prefetch.

We evaluate these latency tolerance techniques both with
a detailed simulator (RSIM) and on a real system (Convex
Exemplar), applying miss clustering by hand in both cases
and applying prefetching by hand for the simulation. We
consider prefetching for both regular and irregular appli-
cations [15, 16, 17, 27]. For the applications and systems
we study, clustering alone outperforms prefetching alone
for most cases. This result, however, is sensitive to system
trends, and there may be some applications where cluster-
ing is not applicable but prefetching is. More importantly,
this paper finds that the combination of read miss clustering
and prefetching yields better execution time benefits than
either technique alone in most cases, and we expect this
trend to continue. Specifically, for our systems and appli-
cations, compared to prefetching alone (the state-of-the-art
implemented today), the combination of the two techniques
reduces execution time an average of 21% across all cases
studied in simulation and an average of 16% for 5 out of
10 cases on the Exemplar. The combination sees execution
time reductions relative to clustering alone averaging 15%
for 6 out of 11 cases in simulation and 20% for 6 out of 10
cases on the Exemplar.

2 Background

2.1 Read Miss Clustering

Instructions in an out-of-order processor’s instruction
window (reorder buffer) can issue and complete out-of-
order. To maintain precise interrupts, however, instructions
commit their results and retire from the window in-order af-
ter completion [30]. The only exception is for writes, which

can use write-buffering to retire before completion.
Because of the growing gap in processor and memory

speeds, external cache misses can take hundreds of proces-
sor cycles. However, current out-of-order processors typi-
cally have only 32–80 element instruction windows. Con-
sider an outstanding read miss that reaches the head of the
window. If all other instructions in the window are fast (e.g.,
typical computation and read hits) or can be buffered aside
(e.g., writes), the independent instructions may not over-
lap enough latency to keep the processor busy throughout
the cache miss. Since the later instructions wait to retire
in-order, the instruction window will fill up and block the
processor. Thus, this miss still incurs stall time despite such
ILP features as out-of-order issue and non-blocking reads.

Suppose that independent misses from elsewhere in the
application could be scheduled into the instruction window
behind the outstanding read miss. Then, the later misses are
hidden behind the stall time of the first miss. Thus, read
miss latencies can typically be effectively overlapped only
behind other read misses, and such overlap only occurs if
read misses to multiple cache lines appear clustered within
the same instruction window. This phenomenon is termed
read miss clustering, or simply clustering [22].

Recent work discusses read miss clustering more thor-
oughly and proposes a compile-time algorithm for increas-
ing read miss clustering for modern out-of-order proces-
sors [22]. The algorithm is based on a novel adaptation of
unroll-and-jam, by which an outer-loop is unrolled and the
resulting inner-loop copies are fused (jammed) together [2].

Figures 1(a) and 1(b) provide pseudocode for the base
and clustered code, respectively. The pseudocode shows a
traversal of a 2-D matrix with dimensions

���������
, before

and after unroll-and-jam. (All pseudocode in this paper uses
row-major notation.) The initial code is a row-wise traver-
sal, optimized for spatial locality. Successive read misses
are separated by as many iterations as there are words in
a cache line, � (typically 	 –
�� for the �� –
��� byte cache
lines in modern microprocessors). Thus, if the instruction
window holds only � or fewer iterations, no read miss clus-
tering is available. A column-wise traversal would facili-
tate clustering by referencing different rows of the matrix
in successive iterations, but would destroy locality if there
were more rows in the matrix than available cache lines.
Using unroll-and-jam for read miss clustering (Figure 1(b))
effectively stops the “column-wise” traversal as soon as the
hardware resources for overlap are filled, allowing clus-
tering without sacrificing locality. The above use of read
miss clustering is graphically represented in Figures 2(a)
and 2(b). These figures represent the traversal order of a
matrix laid out in row-major order, with crosses for data el-
ements and shaded blocks for cache lines.

Unroll-and-jam has been used previously to improve
floating-point pipelining in the presence of recurrences (cy-

for(j=0;j<
���
;j++) for(j=0;j<

���
;j+= �)

for(i=0;i<
���
;i++) for(i=0;i<

���
;i++)����� A[j,i] ����� A[j,i]����� A[j+1,i]�����������

����� A[j+N-1,i]
(a) Original code (b) After clustering alone

for(j=0;j<
� �
;j++) for(j=0;j<

� �
;j+= �)

for(i=0;i< � ;i+= �) for(i=0;i< �
	 ;i+= �)
PF(&A[j,i]) PF(&A[j,i])�����������

PF(&A[j+N-1,i])
for(i=0;i<

���� � ;i++) for(i=0;i<
����� �
	 ;i++)

if(i �����������) if(i �����������)
PF(&A[j,i+ �]) PF(&A[j,i+ �])�����������

PF(&A[j+N-1,i+ �])����� A[j,i] ����� A[j,i]�����������
����� A[j+N-1,i]

for(;i<
���
;i++) for(;i<

���
;i++)����� A[j,i] ����� A[j,i]�����������

����� A[j+N-1,i]
(c) After prefetching alone (d) After both

Figure 1. Pseudocode of a 2-D matrix traver-
sal, (a) as originally generated, (b) after read
miss clustering with unroll-and-jam (postlude
not shown), (c) after software prefetching,
and (d) after the combination of clustering
and prefetching. All pseudocode uses row-
major notation.

cles in the dependence graph) [3, 20]. We have mapped
floating-point pipelining to memory parallelism and defined
two classes of dependences that limit memory parallelism
(address dependences and cache-line sharing dependences),
incorporating instruction-window constraints both during
and after the application of unroll-and-jam [22]. The anal-
ysis and transformation expose opportunities for clustering
both regular and irregular memory references while main-
taining locality.

2.2 Software Prefetching

The following discusses the best known and imple-
mented software prefetching algorithm for regular refer-
ences, as well as algorithms for irregular references.

2.2.1 Algorithm for Adding and Scheduling Prefetches

The best known software prefetching algorithm imple-
mented in a compiler is the loop-based algorithm of Mowry
et al. [17, 18, 19]. The analysis phase of the algorithm
identifies the static references that can miss (leading ref-
erences). Then, the scheduling phase uses loop peeling,

x
x

x
x

x

x
x

x
x

x

xxx
x

x
x

x
x

x
x

x
x

x

x
x

x
x

x

xxx
x

x
x

x
x

(a) Base code

x
x

x
x

x

x
x

x
x

x

x x x
x

x
x

x
x

x
x

x
x

x

x
x

x
x

x

x x x
x

x
x

x
x

(b) After clustering

Figure 2. Impact of matrix traversal order on
read miss clustering. Crosses represent el-
ements, and shaded blocks represent cache
lines. The matrix is shown in row-major order.

unrolling, and strip-mining to insert prefetches only for
the dynamic instances of leading references that are ex-
pected to miss. The innermost loop for a miss reference
is software pipelined to schedule a prefetch ahead of the de-
mand access by a certain number of iterations, called the
prefetch distance. The prefetch distance (�) is computed
as �����! #"%$ � �'&)(*%+-,/. � �10 , where 2 is the expected miss
latency in cycles, 3 estimates the shortest possible path
through an iteration in cycles, � is the number of succes-
sive inner-loop iterations that share a cache line, and

� �
rep-

resents the total number of inner-loop iterations (the upper
limit on inner-loop software pipelining). The term � ��& (*%+-,
represents the distance needed to completely overlap the
prefetch latency.

Software pipelining produces a prologue, steady-state,
and epilogue from the original inner loop. The prologue
consists only of prefetches to cover the first � iterations. The
steady-state includes both prefetches (scheduled according
to the prefetch distance) and computation for

� �54 � itera-
tions. Either strip-mining, unrolling, or a conditional test
is used to insure that a prefetch is issued for a reference
only once for every � iterations of the original loop. The
epilogue includes only computation for the last � iterations
of the original inner loop; no prefetches are issued since
all the inner-loop iterations have already been prefetched in
the prologue and steady-state. Figures 1(a) and 1(c) illus-
trate a matrix traversal before and after applying software
prefetching, respectively.

2.2.2 Extensions for Irregular Memory References

The above algorithm handles only affine references, but
newer prefetching algorithms have been developed to sup-
port two classes of irregular references. The first class sup-
ports references formed by indirection through an affine ref-
erence [17]. Such references require two prefetches: one for
the affine reference and one for the indirect reference itself.
Since the address calculation of the second prefetch uses the
data of the first, the first prefetch must be scheduled before

the second according to the prefetch distance. This effec-
tively doubles the needed prefetch distance.

More recent research has focused on linked data struc-
tures based on pointer-chasing (e.g., linked lists). Software
prefetching techniques for linked data structures use jump
pointers, naturally-occurring or artificially-created pointers
to later elements in the traversal [16, 27]. A recent study
also adds a prefetch array containing pointers to the first el-
ements of a linked data structure, thus allowing a prefetch-
ing prologue [15]. However, the prefetch arrays themselves
can cause new cache misses, and prefetch arrays were ac-
tually seen in that study to degrade performance on some
bandwidth-limited systems.

Linked-data structure prefetching schemes are limited
by the jump pointers used. For example, each node of
a singly-linked list has a single naturally-occurring jump
pointer to the next element in the traversal. Consequently,
the prefetch distance is limited to 1 iteration for techniques
that only use naturally-occurring jump pointers (e.g., greedy
prefetching [16]). Further, even artificial jump pointers may
not help for structures such as hash-tables, as these are typi-
cally dominated by traversals of very short lists (limiting the
maximum prefetching distance) and also see little work per
iteration. We consider two linked-data structure prefetching
schemes: greedy prefetching [16] and prefetch arrays [15].
Since the linked-data structure application we study is dom-
inated by accesses to hash tables with short lists, schemes
based on longer artificial jump pointers are not applicable.

3 Limitations of Read Miss Clustering and
Software Prefetching

This section discusses problems that limit read miss
clustering and software prefetching, as well as limitations
shared by both schemes.

3.1 Limitations of Read Miss Clustering

Incomplete latency hiding. A demand read miss that
has not completed by the time it reaches the head of the
instruction window will block retirement, incurring data
memory stall time. Read miss clustering alone usually
leaves some latencies exposed, since later misses are hid-
den behind the stall time of earlier misses.

Legality issues. Certain dependences can prevent the
inner-loop fusion step required by unroll-and-jam [3, 7].
These constraints can limit the applicability of clustering.

3.2 Limitations of Software Prefetching

Prologue late prefetches. The prefetching prologue is
meant to cover the references of the first few steady-state
iterations. However, the prologue is unlikely to hide their
latencies since it contains no computation. Thus, the data

requested by some of these prefetches arrives after their de-
mand references, leading to late prefetches and exposed la-
tencies. Since the prologue is invoked each time the inner
loop starts, prologue late prefetches arise on each outer-loop
iteration of a loop nest1. Prefetching schemes that do not
include a prologue would also see such exposed latencies
before each steady-state.

Short steady-states. Because of the deficiencies in
the prologue, effective prefetching depends on most inner-
loop iterations fitting in the steady-state. Using the
terms of Section 2.2, we see that the steady state has
� ��� $ � . ��� 4 � � & (*%+ , 0 iterations. Indirect prefetching
effectively doubles the needed prefetch distance, further
shrinking the steady-state.

The above shows that a large steady-state requires an in-
ner loop with a large number of iterations or a large amount
of computation per iteration. Many loops do not meet these
requirements. First, loops blocked for cache locality or fine-
grained communication tend to have few iterations. Second,
each loop iteration often includes little actual computation.
Inner-loop unrolling also cannot help, since increases in 3
are offset by decreases in

� �
.

Hard-to-prefetch references. Some references have
addresses that are difficult to calculate sufficiently in ad-
vance, making them hard to prefetch. Examples include
greedy prefetching of linked lists (which limits the avail-
able prefetch distance to one iteration) and references with
unanalyzable address calculations.

Instruction overhead. Prefetch instructions and their
address generation overhead increase dynamic instruction
count and CPU computation time. As a result, the latency-
tolerance benefits of prefetching do not always translate di-
rectly to overall execution time benefits.

Other limitations. We call a prefetch unnecessary if it
already hits in the L1 or L2 cache, early if the prefetched
line is evicted before its demand reference, and damaging
if the prefetch evicts some other useful line from the cache.
All of these classes of prefetches incur overhead and can
hurt performance. Some prefetching schemes (e.g., prefetch
arrays) can also introduce extraneous data fetches, increas-
ing resource contention.

3.3 Limitations Shared by Both Techniques

Both read miss clustering and software prefetching can
increase resource contention, increasing total system laten-
cies [22, 23]. Both techniques can also introduce new con-
flict misses by increasing the number of active lines in the
cache. Additionally, both techniques can increase the static
code size and instruction-cache footprint of an application.

1Previous work by Saavedra et al. attempted to reduce the number
of prologue invocations by merging prologues into earlier epilogues, but
found no performance benefits because of increased cache conflicts [28].

These performance limitations may impede these latency-
tolerance techniques in environments with low bandwidth
or poor instruction memory.

4 Combining Clustering and Prefetching

Software prefetching and read miss clustering seem to
target the same types of latencies, and both techniques re-
quire the same system resources (e.g., cache miss buffers
and memory system bandwidth). However, their latency-
tolerance methods are quite distinct, since prefetching
pipelines inner loops to add new fetches ahead of their de-
mand accesses and clustering restructures loop nests at an
outer-loop level to extract parallelism among demand read
misses. This section discusses how applying read miss clus-
tering before software prefetching can address the perfor-
mance limitations described in Section 3. Figure 1(d) shows
the matrix traversal of Figure 1(a) after applying the combi-
nation of clustering followed by prefetching.

Incomplete latency hiding. Effective prefetching can
tolerate all steady-state latencies, while read miss cluster-
ing alone leaves at least some miss latencies exposed. Thus,
prefetching can potentially tolerate the steady-state laten-
cies left behind after clustering.

Prologue late prefetches. Read miss clustering can re-
duce the effect of prologue late prefetches by reducing the
number of times an inner-loop is started. Consider a 2-level
loop nest with

� �
outer loop iterations, such as the code in

Figure 1(a). With prefetching alone, the inner loop would
be started

� �
times, with late prefetches on the first steady-

state iteration each time. If unroll-and-jam with a degree
of

�
is applied before prefetching, the outer loop will only

have
���
� iterations, and the inner loop only starts

���
� times.

This reduces the number of separate instances of prologue
late prefetches (or other exposed latencies at the beginning
of each steady-state) by a factor of

�
.

Short steady-states. Read miss clustering increases the
computation in an inner-loop iteration (the 3 term of Sec-
tion 2.2) without changing the number of inner-loop iter-
ations (

� �
) (as seen in Figures 1(a) and 1(b)). Since the

prefetch distance (in iterations) is inversely proportional to
3 , clustering can reduce the prefetch distance and increase
the length of the steady-state, increasing the effectiveness of
prefetching. (This implies that ��� in Figure 1(d) is smaller
than � in Figure 1(c).)

Hard-to-prefetch references. The memory parallelism
benefits of read miss clustering also apply to references
prefetched with a prefetch distance insufficient to overlap
their latency fully, or for unprefetched misses.

Instruction overhead. Read miss clustering through
unroll-and-jam can exploit scalar replacement, which re-
places redundant memory references with register opera-
tions and reduces the instruction count [2, 5, 7]. If the re-
dundant references tended to hit in the cache (as seen in

previous work [22]), scalar replacement can reduce both the
unnecessary prefetches resulting from these references and
their address-generation overhead.

Legality limitations of clustering. Unlike clustering,
software prefetching has no legality constraints caused by
dependences. Software prefetching can thus tolerate laten-
cies in portions of an application where dependences pre-
vent the use of clustering transformations.

Other limitations. The memory parallelism provided
by read miss clustering can help to tolerate any latencies
exposed by early or damaging prefetches, but may also in-
crease early or damaging prefetches by keeping more lines
active in the cache at once.

Trends. We expect 2 (the miss latency in cycles) to in-
crease as processor clock speeds improve faster than mem-
ory latencies. The number of cycles per iteration, 3 , is
likely to decrease with more aggressive processor archi-
tectures. Both hardware trends increase the prefetch dis-
tance. Additionally, software that more aggressively uses
locality transformations such as tiling sees shorter inner
loops with each inner loop initiated more times [1, 25, 32].
These hardware and software trends increase the impact of
prologue late prefetches, short steady-states, and hard-to-
prefetch references, all of which can be addressed by read
miss clustering. On the other hand, we expect the impact
of prefetching instruction overhead to be less important as
processor speeds increase in the future. For data-intensive
applications, this trend seems less substantial than the other
latency-related trends.

5 Methodology

5.1 Evaluation Environments

We perform our experiments both in simulation and on
current hardware, studying both multiprocessor and unipro-
cessor systems. The simulation results enable more de-
tailed analysis, and we primarily focus on these results.
We use the RSIM simulator to model an aggressive ILP-
based uniprocessor and a CC-NUMA multiprocessor with
the release consistency memory model and a directory-
based cache coherence protocol [24]. Table 1 summarizes
the base system parameters for our simulation study. The
cache sizes are scaled according to the application input
sizes, following the methodology of Woo et al. [33].

We also perform experiments on a Convex Exemplar
SPP-2000 with 180 MHz HP PA-8000 processors [12, 13].
Each processor has 4-way issue, a 56-entry out-of-order in-
struction window, and a 1 MB single-level data cache with
32-byte lines and up to 10 simultaneous misses outstand-
ing. The Exemplar supports a CC-NUMA configuration us-
ing SMP hypernodes of up to 16 processors. We perform
our experiments within a hypernode, treating the machine

Processor parameters
Clock rate 500 MHz
Fetch rate 4 instructions/cycle
Instruction window 64 instructions in-flight
Memory queue size 32
Outstanding branches 16
Functional units 2 ALUs, 2 FPUs, 2 address units
Instruction latencies
(cycles)

1 (addr. gen., most ALU),
3 (most FPU), 7 (int. mult./div.),
16 (FP div.), 33 (FP sqrt.)

Memory hierarchy and network parameters
L1 D-cache 16 KB, direct-mapped, 2 ports,

10 MSHRs, 64-byte line
L1 I-cache 16 KB, direct-mapped, 64-byte line
L2 cache 64 KB (for Erlebacher, FFT, and

LU) or 1 MB (for Em3d, MST, and
Ocean), 4-way associative, 1 port,
10 MSHRs, 64-byte line, pipelined

Memory banks 4-way, permutation interleaving
Bus 167 MHz, 256 bits, split transaction
Network 2D mesh, 250MHz, 64 bits, flit de-

lay of 2 network cycles per hop

Table 1. Base simulated configuration.

as an SMP and avoiding any data-placement issues. Our
explicitly parallel applications use the pthreads library.

5.2 Evaluation Workload

We perform our evaluations with six applications. Ta-
ble 2 summarizes the experimental applications and data
sets used on the simulated and real systems. We limit the
number of processors for each application according to the
scalability of the application and the limits of the system
(16 in simulation, 8 on the Exemplar). Each application is
compiled with the Sun SPARC SC4.2 compiler for the sim-
ulation and the Exemplar C compiler for the real machine,
with the optimization level -xO4 for the Sun compiler and
+O3 for the Exemplar. We add prefetching by hand for
the simulated system, following the algorithms described
in Section 2.2. Since the Exemplar C compiler supports
prefetching, we use compiler-generated prefetching for the
real machine [29]. The Exemplar compiler could prefetch
all test programs except MST. We add read miss cluster-
ing by hand, following the algorithm for analysis and trans-
formation reported in previous work [22]. Since prefetch-
ing has already been implemented in compilers, and miss
clustering is based on a transformation that has been imple-
mented in compilers (unroll-and-jam), we are confident that
the combined technique can be effectively implemented in
a real compilation system.

Four of our applications are regular. These applica-
tions are all array-based and only use indices that are affine
functions of the controlling loop variables. Erlebacher is
a shared-memory port of a program by Thomas Eidson at
ICASE, and FFT, LU, and Ocean are from the SPLASH-2

application suite [33]. For better load balance, LU is mod-
ified slightly to use flags instead of barriers. We also ap-
ply an additional transformation which combines loop in-
terchange and outer-loop prefetching to tolerate latencies in
the postludes left behind by unroll-and-jam [21]. Although
general outer-loop prefetching can increase early prefetches
and conflict or capacity misses, the short inner-loops of the
interchanged postludes make such problems unlikely.

We also consider two irregular applications, Em3d and
MST. Em3d is a shared-memory port of a Split-C bench-
mark [10] and uses indirection through affine array refer-
ences. MST is the minimal-spanning tree algorithm from
the Olden benchmarks [26]. MST uses linked data struc-
tures and is dominated by linked-list traversals for lookups
in a hash-table. In both of these applications, the inner loop
copies being fused in unroll-and-jam have different lengths,
so only the minimum length seen across the unrolled copies
is fused. Then, each copy completes its remaining length
separately. We do not run MST on the multiprocessor be-
cause of excessive synchronization overhead, and we do not
run MST at all on the real machine because the Exemplar
compiler does not prefetch its list traversals. For our sim-
ulation study, we prefetch MST with both greedy prefetch-
ing and prefetch arrays [15, 16]. We limit the prefetch array
length to 4 because typical linked-list lengths for MST were
found to be 2–4 [15]. Because the lists are so short, we also
do not add artificial jump pointers to the list elements.

5.3 Evaluation Metrics

Our key metric is total execution time. For detailed anal-
ysis, we categorize simulated execution time as follows:
data read miss stall, data read hit or write stall (usually
seen only in the event of high resource contention), CPU
(busy time and functional-unit stalls), synchronization, and
instruction memory stall times. We count stall cycles as fol-
lows, similar to previous work (e.g., [16, 23]). For each cy-
cle, we calculate the ratio of the instructions retired from the
instruction window to the maximum retire rate and attribute
this fraction of that cycle to busy time. The rest of the cycle
is attributed as stall time to the first instruction that could
not retire that cycle, or as instruction memory stall if no in-
struction is available in the window because of an I-cache
stall. We also gain insights by counting late prefetches, con-
sidering only those for which a demand reference exposes
data read miss stall time.

6 Experimental Results

Section 6.1 compares and combines clustering and
prefetching in simulation, and Section 6.2 confirms the ben-
efits of these techniques on a real system.

Simulated system Convex Exemplar

Application Input Size Procs. Input Size Procs.
Em3d 32K nodes, deg. 20, 20% rem. 1,16 100K nodes, deg. 20, 20% rem. 1,8
Erlebacher 64x64x64 cube, block 8 1,16 128x128x128 cube, block 8 1,8
FFT 65536 points 1,16 4M points 1,8
LU 256x256 matrix, block 16 1,8 4224x4224 matrix, block 128 1,8
MST 1024 nodes 1 N/A N/A
Ocean 258x258 grid 1,8 1026x1026 grid 1,8

Table 2. Application input sizes and number of processors for simulation and real system. MST is
not included for the real machine because the Exemplar compiler adds no prefetches for it.

6.1 Simulation Results

Figures 3(a) and (b) shows the multiprocessor and
uniprocessor execution times of the applications running on
the base simulated system. The execution time bars show
the original code (Base/noPF), the code after prefetching
alone (Base/+PF), after clustering alone (Clust/noPF),
and after the combination of the two (Clust/+PF). All
execution-time bars are split as described in Section 5.3 and
normalized to the execution time with neither prefetching
nor clustering. (For MST, this chart only shows prefetch
arrays. Greedy prefetching is described later.)

6.1.1 Comparing Clustering and Prefetching

We focus here on the first three bars of Figure 3 for
each application and system configuration (i.e., base code,
prefetching alone, and clustering alone). Section 6.1.2
discusses the fourth bar, which combines clustering and
prefetching. (Previous work has already covered each
scheme in isolation [22, 23].)

Comparing clustering alone to prefetching alone, we see
that clustering gives comparable or better overall execu-
tion times than prefetching for all applications except the
uniprocessor Ocean. In the multiprocessor, clustering re-
duces execution time an average of 20% (ranging 5–39%),
while prefetching reduces execution time an average of 17%
for 3 out of 5 applications (ranging 9–30%, with less than
5% degradation on the other 2 codes). In the uniprocessor,
clustering reduces execution time an average of 30% (rang-
ing 5–39%), while prefetching reduces execution time an
average of 17% (ranging 1–35%).

To understand the differences between clustering and
prefetching, we consider the individual components of exe-
cution time. Prefetching alone actually has a greater impact
on data memory stall time for all applications except LU
and MST. However, the instruction overhead of prefetching
(discussed in Section 3) increases CPU time and offsets the
greater memory stall time for all cases except the unipro-
cessor Ocean. This CPU overhead actually leads to slight
performance degradations relative to the base code in the
multiprocessor Em3d and Ocean. Additionally, clustering
alone actually sees reductions in the CPU component of ex-
ecution time for many of the applications because of the

scalar replacement benefits of unroll-and-jam (discussed in
Section 4). Both latency tolerance techniques have little
negative impact on instruction memory stalls, since these
loop-based applications still tend to hit in the I-cache.

In MST, prefetch arrays provide substantial benefits but
also increase the needed working set and cause new misses.
These new misses cannot be prefetched well because the
index into the array is calculated through a hash function
just before the traversal, and the arrays are too short to al-
low prefetching of the remaining elements. Additionally,
the prefetch arrays always fetch several items of the list be-
ing traversed, even though a hash match might arise within
the first 1 or 2 list entries. Thus, the remaining prefetches
are useless and increase overhead without tolerating any la-
tency. Other linked-data structure prefetching schemes such
as greedy prefetching do not increase the needed working
set. Figure 4 includes results with greedy prefetching as
well, with GPF and PFA denoting greedy prefetching and
prefetch arrays, respectively. Greedy prefetching suffers
from hard-to-prefetch references, as the prefetch distance
for its linked-list traversals is limited to 1 iteration, and each
iteration has very little computation. On the other hand,
clustering alone tolerates latencies more effectively by re-
structuring the demand references at an outer-loop level
so that multiple lists are traversed in parallel. Prefetching
schemes that use longer artificial jump pointers would be
inapplicable, since the linked-lists in MST are very short2.

6.1.2 Combination of Clustering and Prefetching

Overall results. The fourth bar of each application and
system configuration in Figure 3 combines clustering and
prefetching. Even though each scheme in isolation toler-
ates substantial latencies, the combination allows additional
benefits in many cases. Except for the uniprocessor Em3d
and MST, this combination either performs the best or sees
less than 1% degradation from the best. Compared to clus-
tering alone, the combination reduces execution time an av-

2Root jumping is a linked-data structure prefetching technique moti-
vated by short linked lists in which prefetches are issued for a later list
traversal in lockstep with the current list traversal. Because list lengths are
not known in advance in MST, the ideal prefetch distance cannot be deter-
mined. In [27], only the very next list traversal is prefetched (in lockstep
with the current traversal), thereby limiting parallelism.

||0

|20

|40

|60

|80

|100

 N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

noPF

100.0

Base Clust

Em3d

+PF

100.5

noPF

90.6

+PF

91.5

noPF

100.0

Base Clust

Erlebacher

+PF

69.6

noPF

69.8

+PF

57.1

noPF

100.0

Base Clust

FFT

+PF

90.8

noPF

78.3

+PF

70.4

noPF

100.0

Base Clust

LU

+PF

89.0

noPF

60.7

+PF

56.6

noPF

100.0

Base Clust

Ocean

+PF

104.6

noPF

95.4

+PF

95.4
Instr
Sync
CPU

Rd. hit/Wt.
Rd. miss

(a) Multiprocessor execution time

||0

|20

|40

|60

|80

|100

 N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

noPF

100.0

Base Clust

Em3d

+PF

98.6

noPF

88.6

+PF

91.9

noPF

100.0

Base Clust

Erlebacher

+PF

65.3

noPF

55.5

+PF

44.1

noPF

100.0

Base Clust

FFT

+PF

87.9

noPF

73.7

+PF

62.6

noPF

100.0

Base Clust

LU

+PF

95.4

noPF

51.6

+PF

52.0

noPF

100.0

Base Clust

MST

+PF

74.7

noPF

51.1

+PF

58.0

noPF

100.0

Base Clust

Ocean

+PF

73.8

noPF

85.9

+PF

69.1

Instr
Sync
CPU

Rd. hit/Wt.
Rd. miss

(b) Uniprocessor execution time

Figure 3. Execution times on base simulated system with software prefetching, clustering, and their
combination. All times are shown normalized to the execution time with neither technique.

||0

|20

|40

|60

|80

|100

 N
or

m
al

ize
d

ex
ec

ut
io

n
tim

e

noPF

100.0

Base Clust

MST

GPF

100.0

PFA

74.7

noPF

51.1

GPF

51.1

PFA

58.0

Instr
Sync
CPU

Rd. hit/Wt.
Rd. miss

Figure 4. Greedy prefetching and prefetch ar-
rays for MST on base simulated uniprocessor.
Execution times are normalized to the unclus-
tered code without prefetching.

erage of 12% for 3 out of 5 applications in the multiproces-
sor (ranging 7–18%, with a 1% degradation in 1 code and no
impact on another) and 18% for 3 of 6 uniprocessor codes
(ranging 15–21%, with less than 5% degradation in 2 codes
and 14% degradation in MST). Compared to prefetching
alone, the combination reduces execution time an average
of 18% in the multiprocessor (ranging 9–36%) and 24% in
the uniprocessor (ranging 6–49%). We compute these av-
erages conservatively by comparing clustered prefetching
against the best of either the base code or the code with
one optimization alone (for cases where one optimization
degrades performance).

Figure 5 shows the impact of clustering on the number

||0

|20

|40

|60

|80

|100

 N
o
rm

a
liz

e
d
 la

te
 p

re
fe

tc
h
 s

ta
lls

Em3d

47.8

Erle.

53.9

FFT

15.4

LU

45.5

Ocean

94.9

(a) Multiprocessor

||0

|20

|40

|60

|80

|100

 N
o
rm

a
liz

e
d
 la

te
 p

re
fe

tc
h
 s

ta
lls

Em3d

45.8

Erle.

59.6

FFT

61.6

LU

56.5

MST

6.9

Ocean

104.3

(b) Uniprocessor

Figure 5. Number of late prefetch stalls after
clustered prefetching represented as a per-
centage of the late prefetch stalls seen with
prefetching alone.

of late prefetches that lead to stalls. All bars show the num-
ber of late prefetch stalls for clustered prefetching as a per-
centage of the number for prefetching alone. Figures 5(a)
and 5(b) show multiprocessor and uniprocessor systems, re-
spectively. Read miss clustering reduces the number of late
prefetch stalls by an average of 49% on the multiprocessor
and 44% on the uniprocessor, with dramatic improvements
in all cases except Ocean.

Compared to clustering alone, some of the improvements
seen with clustered prefetching are negated by the CPU
overhead of prefetching. Additionally, an increase in read
hit and write time (from increased contention) also degrades
the performance of some applications. On the other hand,
the scalar replacement benefits of clustering sometimes re-

||0

|20

|40

|60

|80

|100

 N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

noPF

100.0

Base Clust

Em3d(MP)

+PF

100.5

noPF

90.6

+PF

87.4

noPF

100.0

Base Clust

Em3d(UP)

+PF

98.6

noPF

88.6

+PF

89.1
Instr
Sync
CPU

Rd. hit/Wt.
Rd. miss

Figure 6. Execution times of Em3d on base
system when less clustering is used in com-
bination with prefetching.

duce the CPU overhead of prefetching and the number of
unnecessary prefetches for some applications.

Application-specific details. In Em3d, clustering im-
proves prefetching by overlapping prologue late prefetches
and by increasing the otherwise small steady-state sizes
(caused by short loops and indirect prefetching), reducing
late prefetch stalls over 50%. Prefetching tolerates read
miss latencies remaining after clustering alone. However,
clustered prefetching sees stalls from exposed read hits. A
closer examination shows register spilling when clustering
and prefetching are applied together, though neither one
alone causes spills. These spills tend to hit in the cache,
but increase contention for cache ports. Previous work on
unroll-and-jam suggests limiting the unrolling degree based
on register pressure [7]. An unroll-and-jam algorithm suit-
able for combining with prefetching may profit from heuris-
tics that consider the additional register pressure caused by
prefetching. To demonstrate the potential effectiveness of
using less clustering in combination with prefetching, Fig-
ure 6 shows the performance of Em3d with a smaller degree
of unroll-and-jam in the Clust/+PF run (4, instead of the
6 used in Clust/noPF). The resulting reduction in register
spills and read hit stall time improves total execution time
and allows benefits for clustered prefetching in the multi-
processor.

Erlebacher, FFT, and LU all have important phases
blocked for cache locality and/or load balance: the fine-
grained wavefront pipeline in Erlebacher, the transpose in
FFT, and the entire code of LU. None of these blocked por-
tions achieves a steady-state with prefetching alone. Clus-
tering actually enables a steady state for the transpose of
FFT, reducing the number of late prefetch stalls by 85%
for the multiprocessor. Clustering also overlaps prologue
late prefetches in all three applications. Erlebacher also
sees some benefits from scalar replacement of references
that tend to cause unnecessary prefetches, while scalar re-
placement in LU substantially reduces the total instruction
count. In Erlebacher and FFT, prefetching helps to toler-
ate steady-state latencies left behind by clustering in other
phases of the application. These three applications bene-

fit significantly from clustered prefetching, with substantial
benefits relative to prefetching alone in all cases and relative
to clustering alone in all but the uniprocessor LU. (The in-
cremental latency tolerance of prefetching in the uniproces-
sor LU is not sufficient to offset its CPU overhead, leading
to a slight degradation relative to clustering alone.)

For MST, prefetch arrays improve the unclustered ver-
sion, but degrade the performance of the clustered code. In
particular, clustering leaves less available bandwidth for the
extra fetches added by prefetch arrays, exposing the nega-
tive effects of this scheme’s increased working set and new
misses. Greedy prefetching avoids such degradations, but
also provides no benefits over clustering alone because of
its limited prefetch distance. Thus, clustering alone pro-
vides the best performance in MST.

Ocean sees an increase in conflict misses from clus-
tering. Combined with prefetching, this causes additional
contention-related stalls and early prefetches. Additionally,
these conflicts also turn some unnecessary prefetches into
necessary ones, increasing the number of late prefetch stalls
in the uniprocessor and causing clustered prefetching to see
more data memory stall time than prefetching alone. How-
ever, scalar replacement provides some benefits in Ocean
by reducing unnecessary prefetches and the CPU overhead
of prefetching. The net effect is that clustered prefetching
provides the best overall execution time.

6.1.3 Sensitivity to system parameters

Processor speeds and external memory latencies diverge
further for processors in the gigahertz frequency range. To
model this trend, we also performed experiments that model
1 GHz processors without changing any absolute memory
hierarchy times (in ns or MHz).

The results in Figure 7 show behavior qualitatively sim-
ilar to Figure 3. (Em3d is shown with reduced clustering
in combination with prefetching. MST is still shown with
prefetch arrays; greedy prefetching again had negligible im-
pact.) As expected, CPU overhead becomes less important,
reducing prefetching overhead in both the base and clus-
tered versions. Prefetching alone now outperforms cluster-
ing alone in the multiprocessor Erlebacher and the unipro-
cessor Ocean, but clustered prefetching remains the best for
all but the uniprocessor MST. Clustered prefetching reduces
execution time relative to prefetching alone an average of
21% across all cases, and reduces execution time relative to
clustering alone an average of 13% in all but the uniproces-
sor MST. These results are similar to the base configuration,
and we expect this trend to continue based on the discussion
in Section 4.

6.2 Results on Real Machine

Table 3 gives the impact of prefetching, clustering, and
their combination for multiprocessor and uniprocessor ap-

||0

|20

|40

|60

|80

|100

 N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

noPF

100.0

Base Clust

Em3d

+PF

97.2

noPF

89.8

+PF

81.5

noPF

100.0

Base Clust

Erlebacher

+PF

64.0

noPF

68.5

+PF

54.4

noPF

100.0

Base Clust

FFT

+PF

87.2

noPF

81.4

+PF

74.8

noPF

100.0

Base Clust

LU

+PF

85.5

noPF

63.9

+PF

53.7

noPF

100.0

Base Clust

Ocean

+PF

98.6

noPF

95.4

+PF

90.0
Instr
Sync
CPU

Rd. hit/Wt.
Rd. miss

(a) Multiprocessor execution time

||0

|20

|40

|60

|80

|100

 N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

noPF

100.0

Base Clust

Em3d

+PF

98.0

noPF

87.9

+PF

85.9

noPF

100.0

Base Clust

Erlebacher

+PF

57.9

noPF

53.1

+PF

41.6

noPF

100.0

Base Clust

FFT

+PF

82.2

noPF

76.0

+PF

63.8

noPF

100.0

Base Clust

LU

+PF

90.0

noPF

53.0

+PF

49.8

noPF

100.0

Base Clust

MST

+PF

74.0

noPF

50.2

+PF

57.3

noPF

100.0

Base Clust

Ocean

+PF

66.8

noPF

85.8

+PF

63.2

Instr
Sync
CPU

Rd. hit/Wt.
Rd. miss

(b) Uniprocessor execution time

Figure 7. Execution times on simulated system with faster processors.

plications run on the Convex Exemplar. Total execution
times are normalized to the code with the same number
of processors with neither prefetching nor clustering. (De-
tailed categorizations are not available on the real machine.)
Here, clustering alone outperforms prefetching alone for
6 out of 10 applications and systems shown. Clustered
prefetching performs better than both clustering alone and
prefetching alone for 5 out of 10 cases (multiprocessor and
uniprocessor Erlebacher, multiprocessor and uniprocessor
FFT, and uniprocessor Ocean). Compared to prefetching
alone, clustered prefetching reduces execution time an aver-
age of 14% for 2 out of 5 multiprocessor codes (ranging 11–
16%) and 19% for 3 out of 5 uniprocessor codes (ranging
3–29%). Compared to clustering alone, clustered prefetch-
ing reduces execution time an average of 21% for 3 out of
5 multiprocessor codes (ranging 11–40%) in the multipro-
cessor and 20% for 3 out of 5 uniprocessor codes (ranging
4–40%). As in Section 6.1.2, these averages are computed
conservatively by comparing against the base code when
a code is degraded by its sole optimization. Additionally,
we do not count LU since both prefetching and clustered
prefetching are greatly degraded here. All the observed
degradations are discussed below.

The multiprocessor version of Ocean sees the best per-
formance with prefetching alone, with 8% degradation from
clustered prefetching. The simulation results of Section 6.1
had suggested an increase in conflicts with clustering or
clustered prefetching. The HP PA-8000 may further exacer-
bate these problems, as its cache is direct-mapped and must

serialize conflicting references [29].

Em3d sees only minor performance differences between
prefetching alone, clustering alone, and clustered prefetch-
ing. Em3d sees an anomalous benefit from prefetching in
the unclustered version due to a detail of the Exemplar C
compiler. We observe from assembly-code analysis that
this compiler does not generate a prologue or epilogue for
prefetched loops. The lack of a prologue may not affect per-
formance, since those prefetches would likely be late (Sec-
tion 2.2). Without an epilogue, however, the algorithm al-
ways fetches extra data beyond the end of the inner loop. In
Em3d, these items are actually used in later outer-loop iter-
ations. With clustered prefetching, most of these prefetches
become unnecessary and simply add instruction overhead,
since misses from later iterations of the original outer-loop
would have already been fetched by the restructured code.

Prefetching does not always benefit by omitting the epi-
logue. In particular, extraneous fetches might not touch
useful data and could increase conflict and capacity misses
(especially for tiled codes), as well as coherence traffic
and apparent data sharing for fine-grained shared-memory
multiprocessor codes. Such problems arise in LU, where
prefetching dramatically degrades performance. Clustered
prefetching can mitigate these negative effects by reducing
the prefetch distance, thereby limiting the extraneous data
fetched, and by overlapping the resulting capacity or com-
munication misses. Nevertheless, clustering alone signif-
icantly outperforms clustered prefetching and prefetching
alone for LU. We consider the Em3d and LU results more

Multiprocessor system Uniprocessor system
Application Base Base+PF Clust Clust+PF Base Base+PF Clust Clust+PF

Em3d 100.0 89.5 90.8 92.8 100.0 88.5 87.1 90.2
Erlebacher 100.0 76.9 78.5 68.2 100.0 77.5 65.7 54.8
FFT 100.0 88.3 83.4 74.3 100.0 90.5 71.1 68.5
LU 100.0 241.5 77.3 118.6 100.0 219.8 76.3 100.4
Ocean 100.0 56.2 102.9 60.9 100.0 49.3 78.5 47.7

Table 3. Execution times on Convex Exemplar with software prefetching, clustering, and their com-
bination. All times are shown normalized to the execution time with the same number of processors
and neither prefetching nor clustering.

indicative of specific compiler issues rather than underlying
problems in clustered prefetching.

7 Related Work

Section 2 discusses the previous work that our study uses
most directly. Previous prefetching techniques have also
provided some memory parallelism among prefetches, but
their main focus has been on fetching sufficiently in ad-
vance. Roth and Sohi discuss parallelism among prefetches,
but they use this largely to facilitate fetching ahead and
make no attempt to fully utilize the resources for paral-
lelism [27]. In contrast, read miss clustering restructures
the code aiming to fully utilize the miss buffers of the cache,
increasing the parallelism achieved by prefetching.

Chen and Baer studied hardware prefetching combined
with local instruction scheduling to improve the effective-
ness of nonblocking reads [8]. Because the code transfor-
mations studied were limited to the basic-block level, their
benefits stemmed primarily from overlapping misses with
independent computation.

Saavedra et al. observed that tiled codes were more dif-
ficult to prefetch [28]. They suggest optimizations to im-
prove cache performance for tiled codes, but do not target
the short steady-states. As a result, their analysis generally
favors prefetching alone over the combination of prefetch-
ing and tiling. We show that using unroll-and-jam for read
miss clustering can help to lengthen steady-states, allowing
us to maintain the bandwidth benefits of tiling while also
improving prefetching effectiveness.

Two works on unroll-and-jam have particular relevance.
Carr has considered prefetches and cache misses while cal-
culating the heuristics used when applying unroll-and-jam
for scalar replacement or locality [5]. However, that work
did not seek to improve prefetching, but instead assumed
that prefetching was effective given enough hardware re-
sources. Carr et al. have used unroll-and-jam to improve
software pipelining, without considering cache misses [6].
That study would reduce floating-point stalls in the software
pipelining prologue and steady-state by improving floating-
point parallelism, but would not lengthen the steady-state.

Our previous work suggested negative interactions be-

tween clustering and prefetching [23]. However, that work
achieved clustering through loop interchange, which can in-
crease resource contention by eliminating inner-loop spatial
locality. In contrast, our current study achieves clustering
through unroll-and-jam and shows how this technique can
actually improve prefetching.

Finally, this work has focused on software latency tol-
erance techniques. Hardware techniques such as hardware
prefetching or multithreading also provide latency toler-
ance [9, 11, 14, 31]. The interaction of read miss clustering
with such hardware techniques remains an open question.

8 Conclusions and Future Work

This work compares and combines two latency-hiding
techniques, read miss clustering and software prefetching.
For the applications and systems we study, clustering alone
outperforms prefetching alone for most cases. This result,
however, is sensitive to system trends, and there may be
some applications where clustering is not applicable but
prefetching is. More interestingly, the combination of read
miss clustering and prefetching yields better execution time
benefits than either technique alone in most cases, and we
expect this trend to continue since each technique can ad-
dress limitations in the other.

Cases where clustered prefetching falls short can be at-
tributed to a small number of application-dependent causes
that are not fundamental limitations of the technique itself
(e.g., cache conflicts in Ocean, register pressure in Em3d,
compiler anomalies for Em3d and LU on the Exemplar, or
insufficient bandwidth for MST with prefetch arrays). Com-
piler or hardware solutions that target these problems can
provide further benefits for clustered prefetching. Other in-
teresting candidates for clustered prefetching research in-
clude other data-intensive application domains with tile-
structured loop nests, such as some multimedia codes.

Acknowledgments

We thank Vikram Adve, Keith Cooper, Chen Ding, Ken
Kennedy, John Mellor-Crummey, Partha Ranganathan, and
Willy Zwaenepoel for valuable comments on this work.

References

[1] W. Abu-Sufah, D. J. Kuck, and D. H. Lawrie. On the Perfor-
mance Enhancement of Paging Systems Through Program
Analysis and Transformations. IEEE Trans. on Computers,
C-30(5):341–356, May 1981.

[2] F. E. Allen and J. Cocke. A Catalogue of Optimizing Trans-
formations. In R. Rustin, editor, Design and Optimization of
Compilers, pages 1–30. Prentice-Hall, 1972.

[3] D. Callahan, J. Cocke, and K. Kennedy. Estimating Inter-
lock and Improving Balance for Pipelined Machines. Jour-
nal of Parallel and Distributed Computing, 5(4):334–358,
Aug. 1988.

[4] D. Callahan, K. Kennedy, and A. Porterfield. Software
Prefetching. In Proc. of the 4th Int’l Conf. on Architec-
tural Support for Programming Languages and Operating
Systems, pages 40–52, Apr. 1991.

[5] S. Carr. Combining Optimization for Cache and Instruction-
Level Parallelism. In Proc. of the Conf. on Parallel Archi-
tectures and Compilation Techniques, pages 238–247, Oct.
1996.

[6] S. Carr, C. Ding, and P. Sweany. Improving Software
Pipelining with Unroll-and-Jam. In Proceedings of 29th
Hawaii International Conference on System Sciences, Jan.
1996.

[7] S. Carr and K. Kennedy. Improving the Ratio of Mem-
ory Operations to Floating-Point Operations in Loops.
ACM Trans. on Programming Languages and Systems,
16(6):1768–1810, Nov. 1994.

[8] T.-F. Chen and J.-L. Baer. Reducing Memory Latency via
Non-blocking and Prefetching Caches. In Proc. of the 5th
Int’l Conf. on Architectural Support for Programming Lan-
guages and Operating Systems, pages 51–61, Oct. 1992.

[9] T.-F. Chen and J.-L. Baer. A Performance Study of Hardware
and Software Data Prefetching Schemes. In Proc. of the 21st
Annual Int’l Symp. on Computer Architecture, pages 223–
232, Apr. 1994.

[10] D. E. Culler, A. Dusseau, S. C. Goldstein, A. Krishnamurthy,
S. Lumetta, T. von Eicken, and K. Yelick. Parallel Program-
ming in Split-C. In Proc. of Supercomputing, pages 262–273,
Nov. 1993.

[11] A. Gupta, J. Hennessy, K. Gharachorloo, T. Mowry, and W.-
D. Weber. Comparative Evaluation of Latency Reducing and
Tolerating Techniques. In Proc. of the 18th Annual Int’l
Symp. on Computer Architecture, pages 254–263, May 1991.

[12] Hewlett-Packard Company. Exemplar Architecture (S and
X-Class Servers), Jan. 1997.

[13] D. Hunt. Advanced Features of the 64-bit PA-8000. In Pro-
ceedings of IEEE Compcon, pages 123–128, Mar. 1995.

[14] N. P. Jouppi. Improving direct-mapped cache perfor-
mance by the addition of a small fully-associative cache and
prefetch buffers. In Proc. of the 17th Annual Int’l Symp. on
Computer Architecture, pages 364–373, May 1990.

[15] M. Karlsson, F. Dahlgren, and P. Stenström. A Prefetching
Technique for Irregular Accesses to Linked Data Structures.
In Proc. of the 6th Int’l Symp. on High Performance Com-
puter Architecture, pages 206–217, Jan. 2000.

[16] C.-K. Luk and T. C. Mowry. Compiler-Based Prefetching
for Recursive Data Structures. In Proc. of the 7th Int’l Conf.
on Architectural Support for Programming Languages and
Operating Systems, pages 222–233, Oct. 1996.

[17] T. Mowry. Tolerating Latency through Software-controlled
Data Prefetching. PhD thesis, Stanford University, 1994.

[18] T. Mowry and A. Gupta. Tolerating Latency Through
Software-Controlled Prefetching. Journal on Parallel and
Distributed Computing, pages 87–106, June 1991.

[19] T. C. Mowry, M. S. Lam, and A. Gupta. Design and Eval-
uation of a Compiler Algorithm for Prefetching. In Proc. of
the 5th Int’l Conf. on Architectural Support for Programming
Languages and Operating Systems, pages 62–73, Oct. 1992.

[20] A. Nicolau. Loop Quantization or Unwinding Done Right.
In Proc. of the 1st Int’l Conf. on Supercomputing, pages 294–
308, June 1987.

[21] V. S. Pai. Exploiting Instruction-Level Parallelism for Mem-
ory System Performance. PhD thesis, Department of Electri-
cal and Computer Engineering, Rice University, Aug. 2000.

[22] V. S. Pai and S. Adve. Code Transformations to Improve
Memory Parallelism. In Proc. of the 32nd Annual Int’l Sym-
posium on Microarchitecture, pages 147–155, Nov. 1999.

[23] V. S. Pai, P. Ranganathan, H. Abdel-Shafi, and S. Adve.
The Impact of Exploiting Instruction-Level Parallelism on
Shared-Memory Multiprocessors. IEEE Trans. on Comput-
ers, 48(2):218–226, Feb. 1999.

[24] V. S. Pai, P. Ranganathan, and S. V. Adve. RSIM Reference
Manual, Version 1.0. Electrical and Computer Engineering
Department, Rice University, Aug. 1997. Technical Report
9705.

[25] A. K. Porterfield. Software Methods for Improvement of
Cache Performance on Supercomputer Applications. PhD
thesis, Rice University, Apr. 1989.

[26] A. Rogers, M. C. Carlisle, J. H. Reppy, and L. J. Hendren.
Supporting dynamic data structures on distributed-memory
machines. ACM Trans. on Programming Languages and Sys-
tems, 17(2):233–263, Mar. 1995.

[27] A. Roth and G. S. Sohi. Effective Jump-Pointer Prefetching
for Linked Data Structures. In Proc. of the 26th Annual Int’l
Symp. on Computer Architecture, pages 111–121, May 1999.

[28] R. H. Saavedra, W. Mao, D. Park, J. Chame, and S. Moon.
The Combined Effectiveness of Unimodular Transforma-
tions, Tiling, and Software Prefetching. In Proc. of the 10th
Intl. Parallel Processing Symp., pages 39–45, Apr. 1996.

[29] V. Santhanam, E. H. Gornish, and W.-C. Hsu. Data Prefetch-
ing on the HP PA-8000. In Proc. of the 24th Annual Int’l
Symp. on Computer Architecture, pages 264–273, June 1997.

[30] J. E. Smith and A. R. Pleszkun. Implementing precise in-
terrupts in pipelined processors. IEEE Trans. on Computers,
C-37(5):562–573, May 1988.

[31] D. M. Tullsen, S. J. Eggers, J. S. Emer, H. M. Levy, J. L.
Lo, and R. L. Stamm. Exploiting Choice: Instruction Fetch
and Issue on an Implementable Simultaneous Multithread-
ing Processor. In Proc. of the 23rd Annual Int’l Symp. on
Computer Architecture, pages 191–202, May 1996.

[32] M. E. Wolf and M. S. Lam. A Data Locality Optimizing
Algorithm. In Proc. of the Conf. on Programming Language
Design and Implementation, pages 30–44, June 1991.

[33] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta.
The SPLASH-2 Programs: Characterization and Method-
ological Considerations. In Proc. of the 22nd Annual Int’l
Symp. on Computer Architecture, pages 24–36, June 1995.

