
The Impact of Exploiting Instruction-Level
Parallelism on Shared-Memory Multiprocessors

Vijay S. Pai, Student Member, IEEE, Parthasarathy Ranganathan, Student Member, IEEE,

Hazim Abdel-Shafi, Student Member, IEEE, and Sarita Adve, Member, IEEE

AbstractÐCurrent microprocessors incorporate techniques to aggressively exploit instruction-level parallelism (ILP). This paper

evaluates the impact of such processors on the performance of shared-memory multiprocessors, both without and with the latency-

hiding optimization of software prefetching. Our results show that, while ILP techniques substantially reduce CPU time in

multiprocessors, they are less effective in removing memory stall time. Consequently, despite the inherent latency tolerance features

of ILP processors, we find memory system performance to be a larger bottleneck and parallel efficiencies to be generally poorer in ILP-

based multiprocessors than in previous generation multiprocessors. The main reasons for these deficiencies are insufficient

opportunities in the applications to overlap multiple load misses and increased contention for resources in the system. We also find that

software prefetching does not change the memory bound nature of most of our applications on our ILP multiprocessor, mainly due to a

large number of late prefetches and resource contention. Our results suggest the need for additional latency hiding or reducing

techniques for ILP systems, such as software clustering of load misses and producer-initiated communication.

Index TermsÐShared-memory multiprocessors, instruction-level parallelism, software prefetching, performance evaluation.

æ

1 INTRODUCTION

SHARED-MEMORY multiprocessors built from commodity
microprocessors are being increasingly used to provide

high performance for a variety of scientific and commercial
applications. Current commodity microprocessors improve
performance by using aggressive techniques to exploit high
levels of instruction-level parallelism (ILP). These techni-
ques include multiple instruction issue, out-of-order (dy-
namic) scheduling, nonblocking loads, and speculative
execution. We refer to these techniques collectively as ILP
techniques and to processors that exploit these techniques as
ILP processors. Most previous studies of shared-memory
multiprocessors, however, have assumed a simple processor
with single-issue, in-order scheduling, blocking loads, and
no speculation. A few multiprocessor architecture studies
model state-of-the-art ILP processors [2], [7], [8], [9], but do
not analyze the impact of ILP techniques.

To fully exploit recent advances in uniprocessor technol-
ogy for shared-memory multiprocessors, a detailed analysis
of how ILP techniques affect the performance of such
systems and how they interact with previous optimizations
for such systems is required. This paper evaluates the
impact of exploiting ILP on the performance of shared-
memory multiprocessors, both without and with the
latency-hiding optimization of software prefetching.1

For our evaluations, we study five applications using
detailed simulation, described in Section 2.

Section 3 analyzes the impact of ILP techniques on the
performance of shared-memory multiprocessors without
the use of software prefetching. All our applications see

performance improvements from the use of current ILP
techniques, but the improvements vary widely. In parti-
cular, ILP techniques successfully and consistently reduce
the CPU component of execution time, but their impact on
the memory stall time is lower and more application-
dependent. Consequently, despite the inherent latency
tolerance features integrated within ILP processors, we
find memory system performance to be a larger bottleneck
and parallel efficiencies to be generally poorer in ILP-based
multiprocessors than in previous-generation multiproces-
sors. These deficiencies are caused by insufficient opportu-
nities in the application to overlap multiple load misses and
increased contention for system resources from more
frequent memory accesses.

Software-controlled nonbinding prefetching has been
shown to be an effective technique for hiding memory
latency in simple processor-based shared memory systems
[6]. Section 4 analyzes the interaction between software
prefetching and ILP techniques in shared-memory multi-
processors. We find that, compared to previous generation
systems, increased late prefetches and increased contention
for resources cause software prefetching to be less effective
in reducing memory stall time in ILP-based systems. Thus,
even after adding software prefetching, most of our
applications remain largely memory bound on the ILP-
based system.

Overall, our results suggest that, compared to previous-
generation shared-memory systems, ILP-based systems
have a greater need for additional techniques to tolerate
or reduce memory latency. Specific techniques motivated

218 IEEE TRANSACTIONS ON COMPUTERS, VOL. 48, NO. 2, FEBRUARY 1999

. The authors are with the Department of Electrical and Computer
Engineering, Rice University, Houston, TX 77251-1892.
E-mail: {vijaypai, parthas, shafi, sarita}@rice.edu.

For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number 108235.

1. This paper combines results from two previous conference papers [11],
[12], using a common set of system parameters, a more aggressive MESI (vs.
MSI) cache-coherence protocol, a more aggressive compiler (the better of
SPARC SC 4.2 and gcc 2.7.2 for each application, rather than gcc 2.5.8), and
full simulation of private memory references.

0018-9340/99/$10.00 ß 1999 IEEE

by our results include clustering of load misses in the
applications to increase opportunities for load misses to
overlap with each other and techniques such as producer-
initiated communication that reduce latency to make
prefetching more effective (Section 5).

2 METHODOLOGY

2.1 Simulated Architectures

To determine the impact of ILP techniques on multi-
processor performance, we compare two systemsÐILP

and SimpleÐequivalent in every respect except the
processor used. The ILP system uses state-of-the-art ILP
processors while the Simple system uses simple processors
(Section 2.1.1). We compare the ILP and Simple systems
not to suggest any architectural trade-offs but, rather, to
understand how aggressive ILP techniques impact multi-
processor performance. Therefore, the two systems have
identical clock rates and include identical aggressive
memory and network configurations suitable for the ILP

system (Section 2.1.2). Fig. 1 summarizes all the system
parameters.

2.1.1 Processor Models

The ILP system uses state-of-the-art processors that include
multiple issue, out-of-order (dynamic) scheduling, non-
blocking loads, and speculative execution. The Simple

system uses previous-generation simple processors with
single issue, in-order (static) scheduling, and blocking
loads, and represents commonly studied shared-memory
systems. Since we did not have access to a compiler that
schedules instructions for our in-order simple processor, we
assume single-cycle functional unit latencies (as also

assumed by most previous simple-processor based

shared-memory studies). Both processor models include

support for software-controlled nonbinding prefetching to

the L1 cache.

2.1.2 Memory Hierarchy and Multiprocessor

Configuration

We simulate a hardware cache-coherent, nonuniform

memory access (CC-NUMA) shared-memory multiproces-

sor using an invalidation-based, four-state MESI directory

coherence protocol [4]. We model release consistency

because previous studies have shown that it achieves the

best performance [9].
The processing nodes are connected using a two-

dimensional mesh network. Each node includes a proces-

sor, two levels of caches, a portion of the global shared-

memory and directory, and a network interface. A split-

transaction bus connects the network interface, directory

controller, and the rest of the system node. Both caches use

a write-allocate, write-back policy. The cache sizes are

chosen commensurate with the input sizes of our applica-

tions, following the methodology described by Woo et al.

[14]. The primary working sets for our applications fit in the

L1 cache, while the secondary working sets do not fit in the

L2 cache. Both caches are nonblocking and use miss status

holding registers (MSHRs) [3] to store information on

outstanding misses and to coalesce multiple requests to the

same cache line. All multiprocessor results reported in this

paper use a configuration with eight nodes.

PAI ET AL.: THE IMPACT OF EXPLOITING INSTRUCTION-LEVEL PARALLELISM ON SHARED-MEMORY MULTIPROCESSORS 219

Fig. 1. System parameters.

2.2 Simulation Environment

We use RSIM, the Rice Simulator for ILP Multiprocessors, to
model the systems studied [10]. RSIM is an execution-
driven simulator that models the processor pipelines,
memory system, and interconnection network in detail,
including contention at all resources. It takes SPARC
application executables as input. To speed up our simula-
tions, we assume that all instructions hit in the instruction
cache. This assumption is reasonable since all our applica-
tions have very small instruction footprints.

2.3 Performance Metrics

In addition to comparing execution times, we also report
the individual components of execution timeÐCPU, data
memory stall, and synchronization stall timesÐto charac-
terize the performance bottlenecks in our systems. With ILP
processors, it is unclear how to assign stall time to specific
instructions since each instruction's execution may be
overlapped with both preceding and following instructions.
We use the following convention, similar to previous work
(e.g., [5]), to account for stall cycles. At every cycle, we
calculate the ratio of the instructions retired from the
instruction window in that cycle to the maximum retire rate
of the processor and attribute this fraction of the cycle to the
busy time. The remaining fraction of the cycle is attributed
as stall time to the first instruction that could not be retired
that cycle. We group the busy time and functional unit
(nonmemory) stall time together as CPU time. Henceforth,
we use the term memory stall time to denote the data
memory stall component of execution time.

In the first part of the study, the key metric used to
evaluate the impact of ILP is the ratio of the execution time
with the Simple system relative to that achieved by the
ILP system, which we call the ILP speedup. For detailed
analysis, we analogously define an ILP speedup for each
component of execution time.

2.4 Applications

Fig. 2 lists the applications and the input sets used in this
study. Radix, LU, and FFT are from the SPLASH-2 suite
[14], and Water and Mp3d are from the SPLASH suite [13].
These five applications and their input sizes were chosen to
ensure reasonable simulation times. (Since RSIM models
aggressive ILP processors in detail, it is about 10 times
slower than simple-processor-based shared-memory simu-
lators.) LUopt and FFTopt are versions of LU and FFT that
include ILP-specific optimizations that can potentially be
implemented in a compiler. Specifically, we use function
inlining and loop interchange to move load misses closer to
each other so that they can be overlapped in the ILP

processor. The impact of these optimizations is discussed in
Sections 3 and 5. Both versions of LU are also modified
slightly to use flags instead of barriers for better load
balance.

Since a SPARC compiler for our ILP system does not
exist, we compiled our applications with the commercial
Sun SC 4.2 or the gcc 2.7.2 compiler (based on better
simulated ILP system performance) with full optimization
turned on. The compilers' deficiencies in addressing the
specific instruction grouping rules of our ILP system are

partly hidden by the out-of-order scheduling in the ILP

processor.2

3 IMPACT OF ILP TECHNIQUES ON PERFORMANCE

This section analyzes the impact of ILP techniques on
multiprocessor performance by comparing the Simple and
ILP systems, without software prefetching.

3.1 Overall Results

Figs. 3 and 4 illustrate our key overall results. For each
application, Fig. 3 shows the total execution time and its
three components for the Simple and ILP systems
(normalized to the total time on the Simple system).
Additionally, at the bottom, the figure also shows the ILP
speedup for each application. Fig. 4 shows the parallel
efficiency3 of the ILP and Simple systems expressed as a
percentage. These figures show three key trends:

. ILP techniques improve the execution time of all our
applications. However, the ILP speedup shows a
wide variation (from 1.29 in Mp3d to 3.54 in LUopt).
The average ILP speedup for the original applica-
tions (i.e., not including LUopt and FFTopt) is only
2.05.

. The memory stall component is generally a larger
part of the overall execution time in the ILP system
than in the Simple system.

. Parallel efficiency for the ILP system is less than that
for the Simple system for all applications.

We next investigate the reasons for the above trends.

3.2 Factors Contributing to ILP Speedup

Fig. 3 indicates that the most important components of
execution time are CPU time and memory stalls. Thus, ILP
speedup will be shaped primarily by CPU ILP speedup and
memory ILP speedup. Fig. 5 summarizes these speedups
(along with the total ILP speedup). The figure shows that
the low and variable ILP speedup for our applications can
be attributed largely to insufficient and variable memory
ILP speedup; the CPU ILP speedup is similar and
significant among all applications (ranging from 2.94 to
3.80). More detailed data shows that, for most of our
applications, memory stall time is dominated by stalls due
to loads that miss in the L1 cache. We therefore focus on the
impact of ILP on (L1) load misses below.

The load miss ILP speedup is the ratio of the stall time
due to load misses in the Simple and ILP systems and is
determined by three factors, described below. The first
factor increases the speedup, the second decreases it, while
the third may either increase or decrease it.

. Load miss overlap. Since the Simple system has
blocking loads, the entire load miss latency is
exposed as stall time. In ILP, load misses can be
overlapped with other useful work, reducing stall
time and increasing the ILP load miss speedup. The

220 IEEE TRANSACTIONS ON COMPUTERS, VOL. 48, NO. 2, FEBRUARY 1999

2. To the best of our knowledge, the key compiler optimization identified
in this paper (clustering of load misses) is not implemented in any current
superscalar compiler.

3. The parallel efficiency for an application on a system with N
processors is defined as Execution time on uniprocessor

Execution time on multiprocessor� 1
N .

number of instructions behind which a load miss can
overlap is, however, limited by the instruction
window size; further, load misses have longer
latencies than other instructions in the instruction
window. Therefore, load miss latency can normally
be completely hidden only behind other load misses.
Thus, for significant load miss ILP speedup, applica-
tions should have multiple load misses clustered
together within the instruction window to enable
these load misses to overlap with each other.

. Contention. Compared to the Simple system, the
ILP system can see longer latencies from increased
contention due to the higher frequency of misses,
thereby negatively affecting load miss ILP speedup.

. Change in the number of misses. The ILP system
may see fewer or more misses than the Simple

system because of speculation or reordering of
memory accesses, thereby positively or negatively
affecting load miss ILP speedup.

All of our applications except LU see a similar number
of cache misses in both the Simple and ILP case. LU sees
2.5 times fewer misses in ILP because of a reordering of
accesses that otherwise conflict. When the number of misses
does not change, the ILP system sees (> 1) load miss ILP
speedup if the load miss overlap exploited by ILP out-
weighs any additional latency from contention. We illus-
trate the effects of load miss overlap and contention using
the two applications that best characterize them: LUopt and
Radix.

Fig. 6a provides the average load miss latencies for
LUopt and Radix in the Simple and ILP systems, normal-
ized to the Simple system latency. The latency shown is
the total miss latency, measured from address generation to
data arrival, including the overlapped part (in ILP) and the
exposed part that contributes to stall time. The difference in

the bar lengths of Simple and ILP indicates the additional
latency added due to contention in ILP. Both of these
applications see a significant latency increase from resource
contention in ILP. However, LUopt can overlap all its
additional latency, as well as a large portion of the base
(Simple) latency, thus leading to a high memory ILP
speedup. On the other hand, Radix cannot overlap its
additional latency; thus, it sees a load miss slowdown in the
ILP configuration.

We use the data in Figs. 6b and 6c to further investigate
the causes for the load miss overlap and contention-related
latencies in these applications.

3.2.1 Causes for Load Miss Overlap

Fig. 6b shows the ILP system's L1 MSHR occupancy due to
load misses for LUopt and Radix. Each curve shows the
fraction of total time for which at least N MSHRs are
occupied by load misses, for each possible N (on the X axis).
This figure shows that LUopt achieves significant overlap of
load misses, with up to eight load miss requests out-
standing simultaneously at various times. In contrast, Radix
almost never has more than one outstanding load miss at
any time. This difference arises because load misses are
clustered together in the instruction window in LUopt, but
typically separated by too many instructions in Radix.

3.2.2 Causes for Contention

Fig. 6c extends the data of Fig. 6b by displaying the total
MSHR occupancy for both load and store misses. The figure
indicates that Radix has a large amount of store miss
overlap. This overlap does not contribute to an increase in

PAI ET AL.: THE IMPACT OF EXPLOITING INSTRUCTION-LEVEL PARALLELISM ON SHARED-MEMORY MULTIPROCESSORS 221

Fig. 2. Applications and input sizes.

Fig. 3. Impact of ILP on multiprocessor performance.

Fig. 4. Impact of ILP on parallel efficiency.

memory ILP speedup since store latencies are already
hidden in both the Simple and ILP systems due to release
consistency. The store miss overlap, however, increases
contention in the memory hierarchy, resulting in the ILP
memory slowdown in Radix. In LUopt, the contention-
related latency comes primarily from load misses, but its
effect is mitigated since overlapped load misses contribute
to reducing memory stall time.

3.3 Memory Stall Component and Parallel Efficiency

Using the above analysis, we can see why the ILP system
generally sees a larger relative memory stall time
component (Fig. 3) and a generally poorer parallel
efficiency (Fig. 4) than the Simple system.

Since memory ILP speedup is generally less than CPU
ILP speedup, the memory component becomes a greater
fraction of total execution time in the ILP system than in the
Simple system. To understand the reduced parallel
efficiency, Fig. 7 provides the ILP speedups for the
uniprocessor configuration for reference. The uniprocessor
also generally sees lower memory ILP speedups than CPU
ILP speedups. However, the impact of the lower memory
ILP speedup is higher in the multiprocessor because the
longer latencies of remote misses and increased contention
result in a larger relative memory component in the
execution time (relative to the uniprocessor). Additionally,
the dichotomy between local and remote miss latencies in a
multiprocessor often tends to decrease memory ILP speed-
up (relative to the uniprocessor), because load misses must

be overlapped not only with other load misses but with
load misses with similar latencies.4 Thus, overall, the
multiprocessor system is less able to exploit ILP features
than the corresponding uniprocessor system for most
applications. Consequently, the ILP multiprocessor gener-
ally sees lower parallel efficiency than the Simple multi-
processor.

4 INTERACTION OF ILP TECHNIQUES WITH

SOFTWARE PREFETCHING

The previous section shows that the ILP system sees a
greater bottleneck from memory latency than the Simple

system. Software-controlled nonbinding prefetching has
been shown to effectively hide memory latency in shared-
memory multiprocessors with simple processors. This
section evaluates how software prefetching interacts with
ILP techniques in shared-memory multiprocessors. We
followed the software prefetch algorithm developed by
Mowry et al. [6] to insert prefetches in our applications by
hand with one exception. The algorithm in [6] assumes that
locality is not maintained across synchronization and, so,
does not schedule prefetches across synchronization ac-
cesses. We removed this restriction when beneficial. For a
consistent comparison, the experiments reported are with
prefetches scheduled identically for both Simple and ILP;
the prefetches are scheduled at least 200 dynamic instruc-
tions before their corresponding demand accesses. The
impact of this scheduling decision is discussed below,
including the impact of varying this prefetch distance.

4.1 Overall Results

Fig. 8 graphically presents the key results from our
experiments (FFT and FFTopt have similar performance,
so only FFTopt appears in the figure). The figure shows the
execution time (and its components) for each application on
Simple and ILP, both without and with software
prefetching (+PF indicates the addition of software pre-
fetching). Execution times are normalized to the time for the

222 IEEE TRANSACTIONS ON COMPUTERS, VOL. 48, NO. 2, FEBRUARY 1999

Fig. 5. ILP speedup for total execution time, CPU time, and memory stall
time in the multiprocessor system.

Fig. 6. Load miss overlap and contention in the ILP system.

4. FFT and FFTopt see better memory ILP speedups in the multi-
processor than in the uniprocessor because they overlap multiple load
misses with similar multiprocessor (remote) latencies. The section of the
code that exhibits overlap has a greater impact in the multiprocessor
because of the longer remote latencies incurred in this section.

application on Simple without prefetching. Fig. 9 sum-
marizes some key data.

Software prefetching achieves significant reductions in
execution time on ILP (13 percent to 43 percent) for three
cases (LU, Mp3d, and Water). These reductions are similar
to or greater than those in Simple for these applications.
However, software prefetching is less effective at reducing
memory stalls on ILP than on Simple (average reduction
of 32 percent in ILP, ranging from 7 percent to 72 percent
vs. average 59 percent and range of 21 percent to 88 percent
in Simple). The net effect is that, even after prefetching is
applied to ILP, the average memory stall time is 39 percent
on ILP with a range of 11 percent to 65 percent (vs. average
of 16 percent and range of 1 percent to 29 percent for
Simple). For most applications, the ILP system remains
largely memory-bound, even with software prefetching.

4.2 Factors Contributing to the Effectiveness of
Software Prefetching

We next identify three factors that make software prefetch-
ing less successful in reducing memory stall time in ILP

than in Simple, two factors that allow ILP additional
benefits in memory stall reduction not available in Simple,
and one factor that can either help or hurt ILP. We focus on
issues that are specific to ILP systems; previous work has
discussed non-ILP specific issues [6]. Fig. 10 summarizes
the effects that were exhibited by the applications we
studied. Of the negative effects, the first two are the most
important for our applications.

4.2.1 Increased Late Prefetches

The last column of Fig. 9 shows that the number of
prefetches that are too late to completely hide the miss
latency increases in all our applications when moving from
Simple to ILP. One reason for this increase is that
multiple-issue and out-of-order scheduling speed up
computation in ILP, decreasing the computation time with
which each prefetch is overlapped. Simple also stalls on
any load misses that are not prefetched or that incur a late
prefetch, thereby allowing other outstanding prefetched
data to arrive at the cache. ILP does not provide similar
leeway.

4.2.2 Increased Resource Contention

As shown in Section 3, ILP processors stress system
resources more than Simple. Prefetches further increase
demand for resources, resulting in more contention and

greater memory latencies. The resources most stressed in
our configuration were cache ports, MSHRs, ALUs, and
address generation units.

4.2.3 Negative Interaction with Clustered Misses

Optimizations to cluster load misses for the ILP system, as
in LUopt, can potentially reduce the effectiveness of
software prefetching. For example, the addition of prefetch-
ing reduces the execution time of LU by 13 percent on the
ILP system; in contrast, LUopt improves by only 3 percent.
(On the Simple system, both LU and LUopt improve by
about 10 percent with prefetching.) LUopt with prefetching
is slightly better than LU with prefetching on ILP (by 3
percent). The clustering optimization used in LUopt
decreases the amount of computation between successive
used in LUopt reduces the computation between successive
misses, contributing to a high number of late prefetches and
increased contention with prefetching.

4.2.4 Overlapped Accesses

In ILP, accesses that are difficult to prefetch may be
overlapped because of nonblocking loads and out-of-order
scheduling. Prefetched lines in LU and LUopt often suffer
from L1 cache conflicts, resulting in these lines being
replaced to the L2 cache before being used by the demand
accesses. This L2 cache latency results in stall time in
Simple, but can be overlapped by the processor in ILP.
Since prefetching in ILP only needs to target those accesses
that are not already overlapped by ILP, it can appear more
effective in ILP than in Simple.

4.2.5 Fewer Early Prefetches

Early prefetches are those where the prefetched lines are
either invalidated or replaced before their corresponding
demand accesses. Early prefetches can hinder demand
accesses by invalidating or replacing needed data from the
same or other caches without providing any benefits in
latency reduction. In many of our applications, the number
of early prefetches drops in ILP, improving the effective-
ness of prefetching for these applications. This reduction
occurs because the ILP system allows less time between a
prefetch and its subsequent demand access, decreasing the
likelihood of an intervening invalidation or replacement.

4.2.6 Speculative prefetches

In ILP, prefetch instructions can be speculatively issued
past a mispredicted branch. Speculative prefetches can
potentially hurt performance by bringing unnecessary lines
into the cache or by bringing needed lines into the cache too
early. Speculative prefetches can also help performance by
initiating a prefetch for a needed line early enough to hide
its latency. In our applications, most prefetches issued past
mispredicted branches were to lines also accessed on the
correct path.

4.3 Impact of Software Prefetching on Execution
Time

Despite its reduced effectiveness in addressing memory
stall time, software prefetching achieves significant execu-
tion time reductions with ILP in three cases (LU, Mp3d,

PAI ET AL.: THE IMPACT OF EXPLOITING INSTRUCTION-LEVEL PARALLELISM ON SHARED-MEMORY MULTIPROCESSORS 223

Fig. 7. ILP speedup for total execution time, CPU time, and memory stall
time in the uniprocessor system.

and Water) for two main reasons. First, memory stall time

contributes a larger portion of total execution time in ILP.

Thus, even a reduction of a small fraction of memory stall

time can imply a reduction in overall execution time similar

to or greater than that seen in Simple. Second, ILP systems

see less instruction overhead from prefetching compared to

Simple systems because ILP techniques allow the overlap

of these instructions with other computation.

4.4 Alleviating Late Prefetches and Contention

Our results show that late prefetches and resource conten-

tion are the two key limitations to the effectiveness of

prefetching on ILP. We tried several straightforward

modifications to the prefetching algorithm and the system

to address these limitations [12]. Specifically, we doubled

and quadrupled the prefetch distance (i.e., the distance

224 IEEE TRANSACTIONS ON COMPUTERS, VOL. 48, NO. 2, FEBRUARY 1999

Fig. 8. Interaction between software prefetching and ILP.

Fig. 9. Detailed data on effectiveness of software prefetching. For the average, from LU and LUopt, only LUopt is considered since it provides better
performance than LU with prefetching and ILP.

Fig. 10. Factors affecting the performance of prefetching for ILP.

between a prefetch and the corresponding demand access)
and increased the number of MSHRs. However, these
modifications traded off benefits among late prefetches,
early prefetches, and contention, without improving the
combination of these factors enough to improve overall
performance. We also tried varying the prefetch distance for
each access according to the expected latency of that access
(versus a common distance for all accesses) and prefetching
only to the L2 cache. These modifications achieved their
purpose, but did not provide a significant performance
benefit for our applications [12].

5 DISCUSSION

Our results show that shared-memory systems are limited
in their effectiveness in exploiting ILP processors due to
limited benefits of ILP techniques for the memory system.
The analysis of Section 3 implies that the key reasons for the
limited benefits are the lack of opportunity for overlapping
load misses and/or increased contention in the system.
Compiler optimizations akin to the loop interchanges used
to generate LUopt and FFTopt may be able to expose more
potential for load miss overlap in an application. The simple
loop interchange used in LUopt provides a 13 percent
reduction in execution time compared to LU on an ILP

multiprocessor. Hardware enhancements can also increase
load miss overlap, e.g., through a larger instruction
window. Targeting contention requires increased hardware
resources, or other latency reduction techniques.

The results of Section 4 show that, while software
prefetching improves memory system performance with
ILP processors, it does not change the memory-bound
nature of these systems for most of the applications because
the latencies are too long to hide with prefetching and/or
because of increased contention. Our results motivate
prefetching algorithms that are sensitive to increases in
resource usage. They also motivate latency-reducing (rather
than tolerating) techniques, such as producer-initiated
communication, which can improve the effectiveness of
prefetching [1].

6 CONCLUSIONS

This paper evaluates the impact of ILP techniques sup-
ported by state-of-the-art processors on the performance of
shared-memory multiprocessors. All our applications see
performance improvements from current ILP techniques.
However, while ILP techniques effectively address the CPU
component of execution time, they are less successful in
improving data memory stall time. These applications do
not see the full benefit of the latency-tolerating features of
ILP processors because of insufficient opportunities to
overlap multiple load misses and increased contention for
system resources from more frequent memory accesses.
Thus, ILP-based multiprocessors see a larger bottleneck
from memory system performance and generally poorer
parallel efficiencies than previous-generation multiproces-
sors.

Software-controlled nonbinding prefetching is a latency
hiding technique widely recommended for previous-gen-
eration shared-memory multiprocessors. We find that,

while software prefetching results in substantial reductions
in execution time for some cases on the ILP system,
increased late prefetches and increased contention for
resources cause software prefetching to be less effective in
reducing memory stall time in ILP-based systems. Even
after the addition of software prefetching, most of our
applications remain largely memory bound.

Thus, despite the latency-tolerating techniques inte-
grated within ILP processors, multiprocessors built from
ILP processors have a greater need for additional techni-
ques to hide or reduce memory latency than previous-
generation multiprocessors. One ILP-specific technique
discussed in this paper is the software clustering of load
misses. Additionally, latency-reducing techniques, such as
producer-initiated communication, that can improve the
effectiveness of prefetching appear promising.

ACKNOWLEDGMENTS

This work is supported in part by an IBM Partnership
Award, Intel Corp., the U.S. National Science Foundation
under Grant No. CCR-9410457, CCR-9502500, CDA-
9502791, and CDA-9617383, and the Texas Advanced
Technology Program under Grant No. 003604-025. Sarita
Adve is also supported by an Alfred P. Sloan Research
Fellowship, Vijay S. Pai by a Fannie and John Hertz
Foundation Fellowship, and Parthasarathy Ranganathan
by a Lodieska Stockbridge Vaughan Fellowship.

REFERENCES

[1] H. Abdel-Shafi et al. , ªAn Evaluation of Fine-Grain
Producer-Initiated Communication in Cache-Coherent Mul-
tiprocessors,º Proc. Third Int'l Symp. High-Performance Computer
Architecture, pp. 204-215, 1997.

[2] E.H. Gornish, ªAdaptive and Integrated Data Cache Prefetching
for Shared-Memory Multiprocessors,º PhD thesis, Univ. of Illinois
at Urbana-Champaign, 1995.

[3] D. Kroft, ªLockup-Free Instruction Fetch/Prefetch Cache Organi-
zation,º Proc. Eighth Int'l Symp. Computer Architecture, pp. 81-87,
1981.

[4] J. Laudon and D. Lenoski, ªThe SGI Origin 2000: A ccNUMA
Highly Scalable Server,º Proc. 24th Int'l Symp. Computer Architec-
ture, pp. 241-251, 1997.

[5] C.-K. Luk and T.C. Mowry, ªCompiler-Based Prefetching for
Recursive Data Structures,º Proc. Seventh Int'l Conf. Architectural
Support for Programming Languages and Operating Systems, pp. 222-
234, 1996.

[6] T. Mowry, ªTolerating Latency through Software-Controlled Data
Prefetching,º PhD thesis, Stanford Univ., 1994.

[7] B.A. Nayfeh et al. , ªEvaluation of Design Alternatives for a
Multiprocessor Microprocessor,º Proc. 23rd Int'l Symp. Computer
Architecture, pp. 67-77, 1996.

[8] K. Olukotun et al. , ªThe Case for a Single-Chip Multiprocessor,º
Proc. Seventh Int'l Conf. Architectural Support for Programming
Languages and Operating Systems, pp. 2-11, 1996.

[9] V.S. Pai et al. , ªAn Evaluation of Memory Consistency Models for
Shared-Memory Systems with ILP Processors,º Proc. Seventh Int'l
Conf. Architectural Support for Programming Languages and Operating
Systems, pp. 72-83, 1996.

[10] V.S. Pai et al., RSIM Reference Manual, Version 1.0, ECE TR 9705,
Rice Univ., 1997.

[11] V.S. Pai et al. , ªThe Impact of Instruction Level Parallelism on
Multiprocessor Performance and Simulation Methodology,º Proc.
Third Int'l Symp. High Performance Computer Architecture, pp. 72-83,
1997.

[12] P. Ranganathan et al. , ªThe Interaction of Software Prefetching
with ILP Processors in Shared-Memory Systems,º Proc. 24th Int'l
Symp. Computer Architecture, pp. 144-156, 1997.

PAI ET AL.: THE IMPACT OF EXPLOITING INSTRUCTION-LEVEL PARALLELISM ON SHARED-MEMORY MULTIPROCESSORS 225

[13] J.P. Singh et al. , ªSPLASH: Stanford Parallel Applications for
Shared-Memory,º Computer Architecture News, pp. 5-44, Mar. 1992.

[14] S.C. Woo et al. , ªThe SPLASH-2 Programs: Characterization and
Methodological Considerations,º Proc. 22nd Int'l Symp. Computer
Architecture, pp. 24-36, 1995.

Vijay S. Pai received a BSEE degree in 1994
and an MS degree in electrical engineering in
1997, both from Rice University. He is currently
a PhD candidate in the Department of Electrical
and Computer Engineering at Rice University.
His graduate education has been partly sup-
ported by a Fannie and John Hertz Foundation
graduate fellowship. His research interests
include uniprocessor and multiprocessor com-
puter architecture, compilation, and perfor-

mance evaluation, with a focus on effectively exploiting instruction-
level parallelism in multiprocessors. He is also a primary developer and
maintainer of the publicly-available Rice Simulator for ILP Multi-
processors (RSIM). He is a student member of the ACM and the IEEE
Computer Society and a member of the Eta Kappa Nu, Phi Beta Kappa,
and Tau Beta Pi honorary societies.

Parthasarathy Ranganathan received his
BTech degree from the Indian Institute of
Technology, Madras, in 1994 and his MS degree
from Rice University in 1997. He is currently a
doctoral candidate in the Department of Elec-
trical and Computer Engineering at Rice Uni-
versity. His broad research areas are in high-
performance computer architecture and perfor-
mance evaluation. He is a primary developer
and maintainer of the publicly distributed Rice

Simulator for ILP Multiprocessors (RSIM) infrastructure. He is currently
working on developing cost-effective high-performance uniprocessor
and multiprocessor systems for commercial database and multimedia
applications. He is a student member of the ACM and the IEEE
Computer Society, a member of Eta Kappa Nu, and a recipient of the
Lodieska Stockbridge Vaughan fellowship.

Hazim Abdel-Shafi received his BSEE from
Santa Clara University and his MS in electrical
engineering from Rice University. He is currently
a doctoral student in the Electrical and Compu-
ter Engineering Department of Rice University.
His main area of research is parallel and
distributed processing. Specific areas of interest
include techniques to tolerate and reduce
memory latency in shared-memory multiproces-
sors, architectural support for multimedia appli-

cations, and reliability and computation migration in distributed
computing environments. He is a student member of the ACM and the
IEEE Computer Society, and a member of Alpha Sigma Nu and Tau
Beta Pi.

Sarita Adve received a BTech degree in
electrical engineering from the Indian Institute
of Technology-Bombay in 1987, and the MS and
PhD degrees in computer science from the
University of Wisconsin-Madison in 1989 and
1993, respectively. She is currently an assistant
professor in the Department of Electrical and
Computer Engineering at Rice University. Her
research interests are in computer architecture,
parallel computing, and performance evaluation

methods. She received a U.S. National Science Foundation CAREER
award in 1995, an IBM University Partnership award in 1997 and 1998,
and an Alfred P. Sloan Research Fellowship in 1998. She is an
associate editor for the ACM Transactions on Modeling and Computer
Simulation and has served on several conference program committees.
She is a member of the ACM and the IEEE Computer Society.

226 IEEE TRANSACTIONS ON COMPUTERS, VOL. 48, NO. 2, FEBRUARY 1999

