Isolating the Performance Impacts of Network
Interface Cards through Microbenchmarks

Technical Report #EE0401
Vijay S. Pai, Scott Rixner, and Hyong-youb Kim

Rice University
Houston, TX 77005
{vijaypai, rixner, hykim} @rice.edu

Abstract

This paper studies the impact of network interface card€@\lon network server performance,
testing six different Gigabit Ethernet NICs. Even with aher hardware and software configurations
unchanged, a network service running on a PC-based semwexcbéeve up to 150% more throughput
when using the most effective NIC instead of the least affectne. This paper proposes a microbench-
mark suite that isolates the micro-level behaviors of ealih tNat shape these performance effects and
relates these behaviors back to application performanoékéJprevious networking microbenchmark
suites, the new suite focuses only on performance ratharaimaing to achieve portability. This choice
allows tight integration with the operating system, eliating nearly all operating system overheads
outside of the device driver for the network interface. Tésults show that the throughputs achieved by
both a web server application and a software router have idemwrelationship with the microbench-
marks related to handling bidirectional streams and smeathés, but not with sends or receives of large
frames.

1 Introduction

Rapid developments in application and operating systetmaocé have reduced the CPU load of network
servers, the amount of main memory used for networking, laadandwidth requirements of data transfers
between the CPU and its main memory [2, 11, 12, 13]. HoweWesd techniques do not address the
overheads of processing data at the server's network aterfard (NIC), potentially leaving the NIC as
a performance bottleneck as network link speeds increasmleM network servers include one or more
Gigabit Ethernet network interface cards (NICs), but magydrs limit their ability to achieve the theoretical
maximum throughput of those interfaces. Simply replacig®igabit NIC in an otherwise identical server

can increase the network throughput achieved by an applicap to 150%.

This work is supported in part by a donation from Advanced mliDevices, by the Department of Energy under Contract
Nos. 03891-001-99-4G, 74837-001-0349 and/or 86192-@aB-Grom the Los Alamos National Laboratory, and by the Natlo
Science Foundation under Grant Nos. CCR-0209174 and CGR18Z7.

Although microbenchmarks often provide insight into leevél system behaviors, the recent operating
system improvements deployed in servers (such as zerot@ppave not been incorporated into existing
application-level networking microbenchmarks such apenét LMbench, or the hbench:OS extensions to
LMbench [4, 5, 9]. Therefore, these microbenchmarks arehtmvyweight either to isolate performance
characteristics of NICs from the underlying operating eys or to send and receive data at rates high
enough to expose the limitations of NICs. At the other ex&elmardware-based network performance
analyzers such as the Spirent Smartbits have often beenasest networking devices, including NICs,
but these must act as both the source and sink of data in ardarify their traffic. Thus, such systems
cannot isolate specific behaviors of a single NIC, such ag sereceive performance alone. Finally, these
microbenchmarks (whether performed through applicatmrsardware) do not directly relate their results
to the performance of real network services.

This paper proposes a lightweight microbenchmark suitdféatévely isolate the behaviors of modern
Gigabit Ethernet NICs and then relates those micro-levebbiers back to the performance of real net-
work services. These microbenchmarks show that most ofixhHI€s studied are able to achieve near
the maximum theoretical bandwidth of Gigabit Ethernet whending or receiving a continuous unidirec-
tional stream of maximum-sized Ethernet frames. Howewerfopmance varies widely when sending or
receiving a continuous stream of minimum-sized framesh Wikt best interface achieving five times the
throughput of the worst (and even then achieving less thHrohtne theoretical limit). The ability of each
network interface to handle bidirectional traffic also eargreatly, with up to 73% throughput difference for
maximume-sized frames and a factor of seven throughputrdiifee for minimum-sized frames.

While testing six network interfaces is not enough to geteesicstrong statistical correlation, the behav-
ior of each network interface on certain microbenchmarks éhadent relationships with the performance
achieved by both a web server and a software router. For dgathp tests related to sending or receiving
maximum-sized UDP datagrams have little or no correlatiati whe system performance of these ser-
vices. In contrast, the tests related to processing biitireal streams (of either large or small frames) or
unidirectional streams of small frames (either send orivegdave a much clearer relationship to system
performance. These results indicate that resource camnemetween send and receive traffic and the fixed
overheads of processing Ethernet frames have greater trapdabroughput than the size-dependent over-
heads of a single unidirectional stream. These resultsgi®oinsight into the shortcomings of particular
interfaces and suggest areas of a network interface in vdaigdful design is important.

The rest of this paper is organized as follows. Section 2riess the behavior and performance of

a high-performance web server and software router usirigrdift network interfaces. Section 3 presents
the proposed microbenchmarks and explains their interastith modern network interfaces. Section 4
presents the performance of various network interfacei@mticrobenchmarks, and Section 5 discusses
the relationship between those results and the measurdidadjgm performance. Section 6 concludes the

paper.

2 Motivation

Web servers and software routers are two representativeorieservices that exercise the network in very
different ways. A web server responds to incoming requegtsrbducing and returning the appropriate
response, whereas a software router simply forwards inapuiata to a different network with little or no

modification. Despite placing different demands on the Ebenetwork interfaces, the performance of

each service changes dramatically with the capabilitieghe@hetwork interface in the system.

2.1 Web Servers

A web server interacts with the network in two primary waysheTirst is by receiving HTTP requests
sent by clients. These requests are typically quite smallthe order of 200 bytes of ASCII text. Web
clients and servers communicate using TCP, so the seryavrrds to the requests with acknowledgments,
leading to minimum-sized (64 byte) Ethernet frames. Themsgavay in which the web server interacts
with the network is to send responses to the clients’ HTTRiests. The web server either sends static
files or dynamically generated content, depending on the ¢fpequest. Both types of responses can vary
greatly in size—anywhere from empty files to several hundnedabytes. Again, these responses are sent
using the TCP protocol over the Ethernet, so the data musbérsegmented and encapsulated in Ethernet
frames. The maximum size of an Ethernet frame is 1518 byth&shwallows 1460 bytes of TCP content
(after subtracting 14 bytes for Ethernet headers, 20 byted’fheaders, 20 bytes for TCP headers, and 4
bytes for Ethernet CRC). The server sends the data using D@rtéintrol policies based upon the receipt
of acknowledgments.

The network traffic of a web server is largely bimodal in silteoming requests and acknowledgments,
as well as outgoing acknowledgments, are very small framlesteas response content includes many large
objects which result in maximume-sized frames. Therefarachieve high system performance, the network
interface in a web server must be able to support traffic vekidominated by sends of large frames while

also receiving and sending small frames.

2.2 Software Routers

A software IP router behaves quite differently from a welveer First, a software router is connected
to more than one network. Second, incoming IP packets areexiined for the router itself (except for
occasional router control messages); rather, the routsls is to determine the network to which it is
connected that will bring the packet closest to its final idesibn and to forward the packet onto that
network. The router typically does not change the contefttsegacket, although it will change the Ethernet
headers appropriately.

As the traffic that flows through a router is of all types, theegf incoming and outgoing frames varies
between the Ethernet minimum (64 bytes) and maximum (151­Upon receiving a frame, the router
must either forward it over one of the other networks or gateean error and typically send that error
back on the receiving network. Therefore, to achieve higltesy performance, each network interface in a

software router must be able to support bidirectional taffih arbitrary frame sizes.

2.3 Performance

The throughput of a PC-based server running either thedtihatgh server [14] or the Click software router [8]
depends on the Gigabit Ethernet network interface thatswlled. These differences can be seen on a
server with an AMD Athlon 2600+ XP processor running the B®PB 4.7 operating system, 2 GB of DDR
SDRAM, a 64-bit/66 MHz PCI bus, and a single 40 GB IDE disk @oifithe workloads are disk intensive).
For the web workload, the server is accessed by a set of ginttients replaying traces from real web sites
using an infinite-demand model. The server and clients areexied using a Gigabit Ethernet switch. For
the router workload, the router is accessed by two clientshvieplay IP packet traces from real routers
as fast as the router can handle them without dropping packeich host is connected to the router over a
different network interface, and the two interfaces of theter are on separate Gigabit Ethernet switches.
Each client machine includes an AMD Athlon 2000+ XP processb2 MB of DDR SDRAM, and an Intel
Pro 1000 MT Desktop network interface.

The six copper-based Gigabit Ethernet adapters undereetalintel PRO 1000 MT server and desktop
NICs, a programmable 3Com NIC based on the Alteon ACEnic digtributed (ACE) and optimized (ACE
Optimized) firmware, a Netgear NIC, and an additional 3Cor@.Nlhese NICs will be presented in more
detail in Table 1 in Section 3. The comparisons in this papemat intended to recommend any of these
network interfaces over the others, since the different\V@ry in age, expense, and operating system

support. Further, this study is far from comprehensive mithe large number of NICs available. Rather,

1000 100
900|- 90
800|- o ol
700t 2 70-
2] £
g 600 g 60+
= o)
g 500 E 501
g 400 T ot
a €
300+ Il Intel Server 3 30}
Il Intel Desktop
200+ Il ACE Optimized || 20+ N
[Netgear - —
100 1 3Com I 100 /- \(/:vé)rld cup
AN | | [N | | [] ACE) . NASA
NASA World Cup 0 0 " o
Response Size (Bytes)
Figure 1: Throughput in Mbps achieved by the Figure 2: Cumulative distribution of the re-

thttpd web server running on a PC-based server sponse sizes for three web workloads.
with various network interfaces on three work-
loads.

the goals of this paper are solely to identify concrete perémce differences when running representative
network services on servers equipped with various netwadskfaces and to relate those effects back to the
micro-level behaviors that shape them.

Figure 1 shows the performance achieved by the thttpd weteiséor client traces extracted from a
university computer science department (CS), the 1998esatforld Cup tournament (World Cup), and a
NASA web site (NASA). The first trace is obscured for anonymoeview, while the latter two are avail-
able from the Internet Traffic Archiveh{t p://ita. ee. | bl . gov/). Figure 2 shows the cumulative
distribution of response sizes in these traces. Respoasgs lthan 200 KB, which are less than 3% of
the responses in all of the workloads, are not shown in thediglihe largest responses are over 17 MB
in CS, almost 7 MB in NASA, and almost 3 MB in World Cup. In Figut, the network interfaces are
ordered such that performance decreases from left to rightother figures in this paper will maintain
this ordering, making it easy to remember the order of apptio-level performance of the NICs. The web
environment shows substantial performance differencessadhe NICs, with the fastest NIC consistently
achieving 40-60% more throughput than the least effective.

Figure 3 shows the performance achieved by the Click softwauter for traces from Advanced Net-
work Services (ADV), NASA Ames to MAE-West (AlX), and the Wmeirsity of Memphis (MEM). These
traces are from October 30, 2002, and were made availableeydtional Laboratory for Applied Network
Research. Figure 4 shows the cumulative distribution ok@iasizes in these traces. This distribution is

largely bimodal between small and full-sized packets, withuch smaller fraction of medium-sized pack-

350 100
Il Intel Server
- Il Intel Desktop 901
2 300 I ACE Optimized f
3 [3Com 80}
& [ACE
8250* - % 70t
8 S 60l
o 200f I~
g & ol
s .g 50 ;
@ 150+ g 4ol !
= 100F O 30f |
i)
é 20
g 50 10-
o o ‘ ‘
0 500) 1000 1500
ADV AIX MEM Packet Size (Bytes)

Figure 3: Throughput in thousands of packets Figure 4: Cumulative distribution of packet sizes
per second achieved by the Click software router in three router traces.

running on a PC-based server with various net-
work interfaces on three workloads.

ets. As in the web environment, there is a substantial pedace difference across NICs, with the fastest
NIC achieving 60—-150% higher throughput than the leastaife NIC. The driver for the Netgear NIC has
some incompatibilities with the Click software, which peeted them from working together.

The figures show that the choice of network interface can laasabstantial impact on application-
level performance. The following sections explore the mievel behaviors of NICs that shape system

performance.

3 Microbenchmarking NICs

This section proposes a set of benchmarks to study the peafare impacts of network interface hardware
on real network services. Section 3.1 explains the shoitagsrof current networking microbenchmarks.
Section 3.2 describes the functionality of real networkiifstces and the overheads associated with transfer-
ring data through a network interface. Section 3.3 thenrdmssthe new microbenchmark suite and how it

aims to capture the overheads seen in network interfaceseahdpplications.

3.1 Current Networking Microbenchmarks

A variety of microbenchmarks exist to capture the behavioramious network protocols and implemen-
tations. Of these, some of the most popular are netperf antdelgh [5, 9]. LMbench includes both

latency and bandwidth measurements, while netperf onlydies bandwidth measurements. The netperf

NIC Abbreviation | Year Checksumming Interrupt Coalescing
Intel Pro 1000 MT Server | Intel Server 2002 | TCP/UDP Rx/Tx 131usec (Tx), 28.6:sec (Rx)
Intel Pro 1000 MT Desktop Intel Desktop 2002 | TCP/UDP Rx/Tx 131usec (Tx), 28.6:sec (Rx)
3Com 70024 Optimized | ACE Optimized| 1997 | Disabled (HW bug) | 4 msec (Tx) 40Q:sec (Rx)

Netgear GA622 Netgear 2001 | IP/TCP/UDP Rx/Tx| None
3Com 3C996B 3Com 2002 | IP/TCP/UDP Tx 150usec
3Com 70024 ACE 1997 | Disabled (HW bug) | 2 msec (Tx), 20@:sec (Rx)

Table 1: Characteristics of various network interfacex dRd Tx mean receive and transmit, respectively.)

measurements, however, are more flexible. Both systemsaibfe across various operating systems and
architectures; the descriptions below focus on netperalaat apply to LMbench.

The netperf microbenchmarks allow for testing the bandwidtUDP and TCP streams from a sender to
areceiver. The UDP stream test generates datagrams as fastaperating system can produce them, while
the TCP stream test sends data on a single connection thaliesrwith TCP congestion control policies.
However, these programs use standard networking APIs feegqd andwr i t €) for portability rather
than more advanced system calls suclsasdf i | e that speed up CPU performance by using zero-copy
I/0 [11]. Since the UDP test does not throttle its datagrandpction to any specific rate, the operating
system can also encounter overload conditions in which ésdextra work to create datagrams only to
have them dropped by the device driver or the network interfaThis extra wasted work can cause a
reduction in network throughput relative to the peak valdeieved when the driver and network interface
are able to deliver all datagrams successfully. The TCPveiitll test is limited by its use of only a single
connection, causing latency and window-size limitatiomsnfluence achieved bandwidth. It is possible
to run multiple copies of netperf to create multiple conimed, but each such copy requires a separate
heavyweight process. In contrast, modern servers use subhitues as fast event notification and non-
blocking sockets to allow a single process to manage mangemions without the overhead of context
switching or process management [2, 12].

As a result of the above limitations, the netperf benchmamksir more operating system overhead
than necessary and do not reflect the various performandmipations applied to real network server
applications. Despite the extra computational work pentat by these server applications, their use of such
techniques as zero-copy I/O and fast event notification doinection management allow them to achieve

higher network throughput than the values reported by mitpe

3.2 Network Interface Hardware

In order to properly benchmark network interfaces, theirction must be well understood. Table 1 shows

some of the characteristics of the six network adaptorsidered in this study and the abbreviations that

will be used to identify them throughout the paper. As showiable 1, the network adapters considered
in this study are the Intel Pro 1000 MT Server, Intel Pro 1000 Desktop, the 3Com 70024 based on
the programmable Alteon ACEnic with optimized firmware, thetgear GA622, the 3Com 3C996B, and
the 3Com 70024 using the distributed firmware. The 3Com 7@0R4; appears twice because it is a pro-
grammable NIC, and two different firmware versions wereet#sthe firmware included with the FreeBSD
driver (ACE) and firmware that is parallelized across the wogrammable processors on the NIC and
makes better use of on-chip memory (ACE Optimized) [6]. 8ilthh these codes run on the same hard-
ware, they are considered separate network interfaces giecfirmware performance characteristics vary
substantially.

All of the NICs studied have a PCI hardware interface to thet kerver, use a device driver to interact
with the operating system, use direct memory access (DMAJtomunicate data between the host memory
and the network interface memory, maintain the Ethernetiumedccess control (MAC) policies (including
802.3x flow control), and have special signal processingvare to interpret the physical (PHY) data layer
of the network. The Intel Desktop NIC has a 32-bit/66 MHz P@eiface, whereas the rest of the NICs
have a 64-bit/66 MHz PCl interface. Although the interndlthe application-specific integrated circuits in
the NICs cannot be easily determined, they all share cectaracteristics.

To initiate a send, the operating system invokes a devieemirnvhich informs the network interface of
a new Ethernet frame by writing to a memory-mapped NIC regigtll the interfaces studied use that write
to indicate to the NIC the presence of a DMA descriptor in akebwn location. The NIC first transfers
this descriptor by DMA, and then uses the contents of therg#sc to issue a second DMA that transfers
the actual frame data into its internal buffers. The franmeai@s in the NIC’s internal buffers until the MAC
layer is ready to transmit the frame. When the MAC is readydagmit the frame, the NIC transfers the
data from its internal buffers to the network.

Receives are handled differently from sends because thpaaps unsolicited traffic from the network.
Consequently, the operating system must have pre-albcita storage in main memory for receives. The
network interface must provide the operating system witrealmnism to inform it of this reserved storage.
When data actually arrives, the interface first copies tha o its internal buffers. (The frame cannot be
transferred to the host until the frame is known to have alvathernet CRC and the host I/O bus is ready.)
The NIC then initiates a DMA of the received data from its int# buffer to the pre-allocated operating
system buffer in main memory.

Calculating checksums for the IP, TCP, and UDP layers imslrumerous simple computations and

can consume a significant amount of CPU resources. To akethia load on the CPU, many modern NICs
support checksum offloading for at least some packets [7¢h $hecksum calculations are typically done
while data is being transferred through DMA. As shown in €ab] the Intel NICs support TCP and UDP
checksumming for both transmitted and received packetsNitgear NIC performs all checksumming
functions, and the 3Com NIC only performs checksumming andmitted packets. While the ACE NIC

does have support for checksum offloading, it is disabletii;mgtudy to avoid a hardware bug reported by
the manufacturer.

Traditionally, network interfaces would interrupt the hpsocessor after completing a send (to indicate
that the state information for that packet may be freed) tara receive (to indicate that the driver should
process the new data). However, most of the interfacesestudithis paper improve performance by inter-
rupting the CPU only after a certain number of frames hasetror been sent, a certain time has elapsed,
or some resource has become exhausted (such as DMA dessytiftable 1 shows the time thresholds for
each of the NICs. As the table shows, these thresholds adéfee¢ntly on the send and receive paths, since
these paths have different needs. The Intel NICs includeduioptimizations, as they do not automatically
interrupt the CPU when the timer expires on send-only wado In this case, the NICs wait until resources
become close to exhaustion, since the additional latencytifiying the CPU that a packet has been sent
has a minimal effect on server performance.

Both send and receive operations have some overheads #awath the size of the frame (per-byte
overheads), including the transfer of frame data over Beblis, the transfers of data into and out of the
internal buffers of the network interface, and the TCP or UbBcksum computations on the packet data.
However, there are also several overheads that are indepeotithe size of the frame (per-frame over-
heads), including the driver invocation, the memory-mabld® operations, the DMA descriptor transfer,
the initiation of the DMA (including 1/0O bus addressing amdjuest phases), IP checksumming, MAC man-

agement, and interrupting the host.

3.3 Proposed Microbenchmarks

Although full-fledged network services exercise the sertraneive data paths described in Section 3.2 with
various sizes and types of frames, the specific impacts df data path and type of overhead (per-frame
or per-byte) are difficult to isolate because of the large Ineinof data flows with distinct characteristics,

the complex interactions of the service code with the opegatystem, and the overhead of the operating

system. This paper proposes and utilizes a new microben&hsade specifically aimed at characterizing

the micro-level behaviors of network interfaces that imEystem-level performance. The goal of this suite
is to isolate the primary micro-level behaviors exhibitgttie network services and determine what, if any,
relationship exists between that specific behavior andathv&rstem performance. The suite consists of the

following tests:

1. UDP send, 1472 byte datagrams: a continuous stream ofrmendsized UDP datagrams is sent from
a sender to a receiver. This test isolates the NIC’s abititgand large frames. UDP datagrams of
1472 byte results in maximum-sized Ethernet frames of 1%48sh(including 14 bytes for Ethernet
headers, 20 bytes for IP headers, 8 bytes for UDP headers} byiees for the Ethernet CRC). For
every Ethernet frame, there is also an 8 byte preamble andogité2nter-frame gap. Therefore, the
maximum theoretical UDP throughput on this test is 957 M@é%(x 1000 Mbps).

2. UDP receive, 1472 byte datagrams: this test is the ogpos$ithe UDP send test, and isolates the
NIC'’s ability to receive large frames.

3. UDP 3-way, 1472 byte datagrams: the NIC under test simedtasly sends a stream of maximum-
sized UDP datagrams to one host while receiving a stream ginmuan-sized UDP datagrams from
another host. This test isolates the NIC’s ability to exsdis send and receive paths simultane-
ously. As Gigabit Ethernet is full duplex, the maximum the@al UDP throughput on this test is
1914 Mbps.

4. UDP send, 18 byte datagrams: a continuous stream of minisized UDP datagrams is sent from a
sender to a receiver. This test isolates the NIC’s abilitggod small frames, which will expose the
impact of per-frame overheads. UDP datagrams of 18 bytedt iesninimum-sized Ethernet frames
of 64 bytes (including Ethernet/IP/UDP headers and Eth€2R). Including the preamble and inter-
frame gap, the maximum theoretical UDP throughput on tlekise214 Mbpsﬁ x 1000 Mbps).

5. UDP receive, 18 byte datagrams: this test is the oppoktteedJDP send test, and isolates the NIC'’s
ability to receive small frames.

6. UDP 3-way, 18 byte datagrams: as in the large frame 3-watyttee NIC under test simultaneously
sends and receives streams of minimum-sized UDP datagréhis.test isolates the ability of the
NIC to exercise its send and receive paths simultaneousbnvpler-frame overheads are dominant.
The maximum theoretical UDP throughput of this test is 42&&b

7. TCP send, 1460 byte segments: a continuous stream of maxsized TCP segments is sent from a
sender to a receiver over several TCP connections subjé€ R acknowledgment and flow control

policies. This test monitors the NIC’s ability to handle digergy maximum-sized data frames while

10

receiving minimum-sized acknowledgment frames. This igestot the same as simply combining
tests 1 and 5 because the frame rate in the simultaneoumstraé be paced according to TCP flow
control rules and balanced at one acknowledgment for eesyrsl data segment [1]. TCP segments
of 1460 bytes result in maximum-sized Ethernet frames o81Hies (including 14 bytes for Ethernet
headers, 20 bytes for IP headers, 20 bytes for TCP headais4 amtes for the Ethernet CRC).
Therefore, the maximum theoretical TCP throughput on #8sis 949 Mbps%‘% x 1000 Mbps).

8. TCP receive, 1460 byte segments: this test is the oppafdite TCP send test, and isolates the NIC’s
ability to receive large frames subject to TCP flow controlle/also sending acknowledgments.

9. TCP connection acceptance: a continuous stream of rmsqteespen and close TCP connections
is sent to the NIC under test. This test isolates the NIC'saichpn the system’s ability to accept
connections.

10. TCP connection initiation: this test is the oppositehaf TCP connection acceptance test, and isolates

the NIC’s impact on the system’s ability to initiate conriens.

All of the UDP and connection microbenchmarks can be tredttising a at e parameter. This elimi-
nates unnecessary overhead in the operating systemmgsuditm unsuccessful transmissions or connection
attempts. The TCP send and receive tests support a configumaitmber of independent connections. Fur-
thermore, all transmissions of UDP and TCP data are perfbtme special system call into FreeBSD that
bypasses ead andwr i t e, instead continually replaying pre-built packets of therapriate size to the
device driver. This system call enables the microbenchsnarksolate the performance of the NIC from
other operating system effects as much as possible. Hoytbegperformance of the device driver can still
impact the results, since the NIC cannot function withasitliiver. Each test reads statistics about the net-
work interface from the device driver to determine if allednt data was actually sent on the Ethernet. The
throttling and connection parameters for the maximum aelile throughput are selected through iterative
search.

Obvious omissions from the suite include latency tests, @3B with small data segments and TCP
3-way tests. Latencies are not tested because the latetioy oétwork interface only impacts the number of
TCP connections required to achieve a given level of banttwida network server. A TCP test with small
data segments (6 bytes) would be highly subject to TCP impieation details, because TCP congestion
control policies only specify that an acknowledgment foregraent should be sent no later than 500 ms
afterward or upon receiving two maximum-sized segmentshwofr data, whichever comes first [1]. An

aggressive TCP implementation could thus delay an ackmgment until receivind%} = 487 data

11

1000

9001

8001

700+

6001

500+

4001

Bandwidth (Mbps)

300 I Intel Server

Il Intel Desktop
200

I ACE Optimized
[Netgear

[3Com

1 ACE

100

UDP Receive

UDP Send

TCP

Figure 5: Throughput in Mbps achieved using the
microbenchmarks of Section 3.3 with maximum-
sized frames (1472 byte UDP datagrams or 1460
byte TCP segments to form 1518 byte Ethernet
frames). In each of these tests, the sending and

1000

N

o

o
T

Bandwidth (Mbps)
ol
o
o

w
o
o

Il Intel Server
Il Intel Desktop

nN
o
o

I ACE Optimized
[0 Netgear
] 3Com
[_J ACE

UDP Send

=
o
o

UDP Receive

TCP Send TCP Receive

Figure 6: Throughput in Mbps achieved using the
microbenchmarks of Section 3.3 with maximum-

sized frames (1472 byte UDP datagrams or 1460
byte TCP segments to form 1518 byte Ethernet
frames). In all of the send tests, the best receiving

NIC, Intel Server, is used. In all of the receive
tests, the best sending NIC, 3Com, is used.

receiving NICs are the same.

segments. In practice, most TCP implementations do notseddng to acknowledge even small segments.
A TCP 3-way test simultaneously sends and receives streabtiolarge and small segments subject to

TCP flow control, making it difficult to isolate any particulperformance characteristic.

4 Microbenchmark Results

This section details the results of the proposed microbmack suite in gauging the performance of the
network interfaces under test. Each microbenchmark froati®e3.3 is run using each of the six network
interfaces that were considered in Section 2.3. In mostcdise microbenchmark is first run with the NIC
under test being used both to send and receive frames. Theln,NIC is tested as a sender by sending
frames to the best receiver and as a receiver by receivingesdrom the best sender. This enables send and

receive performance to be isolated for each NIC.

4.1 Maximum-sized Frames

Figure 5 shows the performance of various network intedace¢he data transmission tests which send and
receive maximum-sized Ethernet frames. Each test invalvesnachines, and both systems are configured

identically to the client machines described in Section ®ith the exception that in each test the sender and

12

receiver both use the NIC being tested. For example, thedstt bar shows the result of running the UDP
Send microbenchmark, where the sending host uses an Imer$HC and the receiving host also uses an
Intel Server NIC. The three groups of bars show the achiesadwidth of each of the six network interfaces
on the UDP Send (test 1), UDP Receive (test 2), and TCP (test&l B) microbenchmarks, respectively,
from Section 3.3. These tests show that all of the netwosfates can achieve near maximum throughput
when sending large UDP datagrams. However, the throughptiied3Com network interface drops sub-
stantially on the UDP receive path. Detailed analysis shibwatthis drop comes from a workaround in the
driver, which limits the maximum length of a DMA transfer inder to avoid tripping a bug in the TCP
checksumming features of this NIC. TCP throughput is neanmbximum for both Intel network interfaces
and the optimized ACE, slightly lower for the Netgear, andstantially lower for 3Com and the unopti-
mized ACE. The 3Com suffers from the poor receive path of @wr pecause TCP is a reliable protocol.
The unoptimized ACE suffers because its firmware sharesgiespmogrammable processor between send
and receive (e.g., ACK) processing; this is in contrast ¢éoparallelized firmware of the optimized ACE.
Figure 6 shows the send and receive performance of each Né@ pdired with the best receiving and
sending NICs, respectively. For the UDP and TCP send test|ntiel Server NIC is used as a receiver.
Despite UDP’s unreliability, this configuration can imp&adDP send because of the 802.3x flow control
mechanisms supported at the MAC layer by these networkates. However, our results show little impact
on these interfaces. The TCP performance improves for 3Gorog this interface had a fine send path and
a poor receive path) and for ACE (by reducing the latency efrdteiver and consequently of ACKs). For
the UDP and TCP receive test, the 3Com NIC is used as a serfueiNdtgear and unoptimized ACE now
approach the theoretical maximum throughput, indicathrag their results in Figure 5 were hindered by

their send-sides and that these NICs may be more heaviljnizgiil for receive processing.

4.2 Minimum-sized Frames

Figure 7 shows the UDP data throughput for minimum-sizethés (18 byte datagrams) between identi-
cal NICs (tests 4 and 5). The achieved throughput on thesehbsarks are not only dramatically lower
than in Figure 5, but they are also significantly lower thaa tilaximum possible utilization for Ethernet
(214 Mbps). These results indicate that these NICs are migmied for high performance on small frames
and that per-frame overheads substantially limit perforcea The two Intel NICs and the 3Com NIC per-
form best on small frames for the six NICs tested, with thell8erver NIC most efficient at sending and

the Intel Desktop NIC most efficient at receiving.

13

80 Il Intel Server 80 —
I Intel Desktop

[ACE Optimized 70}
70r [Netgear

[3Com
60 1 ACE 60

Bandwidth (Mbps)
[
Bandwidth (Mbps)
D
o

I I

UDP Send UDP Receive

UDP Send UDP Receive

Figure 7: UDP throughput in Mbps achieved Figure 8: UDP throughput in Mbps achieved
using microbenchmarks of Section 3.3 with ysing the microbenchmarks of Section 3.3 with
minimum-sized frames (18 byte UDP datagrams — minimum-sized frames (18 byte UDP datagrams
to form 64 byte Ethernet frames). In each of g form 64 byte Ethernet frames). In all of the
these tests, the sending and receiving NICs are the ggngd tests, the best receiving NIC, Intel Desktop,

same. is used. In all of the receive tests, the best sending
NIC, Intel Server, is used.

Figure 8 shows the send and receive performance of each NHED whired with the most efficient
receiving and sending NICs, respectively. When paired thithintel Desktop as receiver, only the Intel
Server NIC improves performance, implying that it is sliglhore optimized for sending small frames than
receiving them. When paired with the Intel Server NIC as senithe Intel Desktop, Netgear, and 3Com
NICs all achieve higher receive throughput, suggestingahaf those NICs are better suited for receiving
small frames than sending them. The ACE and ACE OptimizedsMl@w negligible improvement when
paired with the best receiving or sending NICs, and they &e #he worst performers at sending and

receiving small frames.

4.3 Simultaneous Send and Receive Traffic

Figures 9 and 10 show the bidirectional throughput of eadd d8ing the 3-way UDP microbenchmarks
(tests 3 and 6). Figure 9 shows the performance of each NIQ wieximum-sized UDP datagrams are
being sent to it by the best sender, the 3Com NIC, and it isisgmdaximum-sized UDP datagrams to
the best receiver, the Intel Server NIC. These results sholeaa trend among the NICs, as performance
degrades from the left to the right in the figure. Recall thatNlICs are organized from left to right in order
of their application-level performance. Only the Intel @arNIC is able to achieve nearly the sum of its
individual send and receive bandwidth. The other netwaskefaces most likely have some limited resource

shared between the send and receive paths; possible iongahclude PCI bandwidth (a likely problem

14

[N
)
o

2000

1800

Il UDP Send Il UDP Send
[] UDP Receive [] UDP Receive

=

o

=]
T

1600

1400

[

)

o

o

T
®
=]
T

10001

800

Bandwidth (Mbps)
(2]
o

N
o
T

Bandwidth (Mbps)

N
o
T

ey © <D ' & <
et R 07 e @ ° 2
e oae*‘ 0?‘\@\ «® ?

<
<

X M < 5
N & W N ?‘O.\@@eé $Q\Q‘a@ ,50"6\
< o o

Figure 9: UDP Throughput in Mbps achieved for Figure 10: UDP Throughput in Mbps achieved
the UDP 3-way test for maximum-sized frames. for the UDP 3-way test for minimum-sized

In all cases the best sending NIC, 3Com, sends frames. In all cases the best sending NIC, Intel
frames to the NIC being tested at the same time Server, sends frames to the NIC being tested at the
that the NIC being tested sends frames to the best same time that the NIC being tested sends frames
receiving NIC, Intel Server. to the best receiving NIC, Intel Desktop.

for the Intel Desktop NIC, which only has a 32-bit PCI intedavith a theoretical maximum of 2 Gbps), a
shared programmable processor (in unoptimized ACE), dvaard memory bandwidth (since each bit of
network traffic is touched twice as described in Section &,card must provide at least twice as much
memory bandwidth as full-duplex network bandwidth).

Figure 10 shows the performance of each NIC when minimumedsizDP datagrams are being sent to
it by the best sender, the Intel Server NIC, and it is sendimgmum-sized UDP datagrams to the best
receiver, the Intel Desktop NIC. In this test, no NIC is aldeapproach the sum of its individual send
and receive bandwidth for minimum-sized datagrams. Each &bhieves a slight improvement over its
individual send or receive throughput except for ACE. ACEiaces the same throughput as in either send

or receive because both paths share the same processdr,isvbiturated because of per-frame overheads.

4.4 Connection Establishment

Figure 11 shows the rate of TCP connection establishmenh wienecting between two NICs of the same
type, when accepting connections (test 9) from the best Nt€dnnection initiation (3Com), and when ini-

tiating connections (test 10) to the the best NIC for corinacicceptance (Intel Desktop). TCP connection
establishment generates bidirectional traffic of smalingea. The trends in Figure 11 are therefore similar
to the trends in Figure 10. The Intel NICs are the best coimeetcceptors and the Netgear and 3Com

NICs are the best connection initiators. The two ACE NICdqren poorly at both connection initiation and

15

w
o
T

N
ol
T

=
ol
T

Connections per Millisecond
N
[=]

Il Intel Server
Il Intel Desktop
I ACE Optimized

=
[=]
T

[Netgear
1 3Com
[1 ACE

ol
T

Initiate/Accept Accepting Initiating

Figure 11: Number of TCP connections per millisecond adden the Initiate/Accept tests both NICs are
the same. In the Accepting tests, the initiating NIC is th&t batiator, the 3Com NIC. In the Initiating tests,
the accepting NIC is the best accepter, the Intel Desktop NIC

acceptance, as is to be expected from their poor performahea dealing with small frames.

4.5 Summary

The results of the microbenchmark tests on the six netwadskfaces show three significant behaviors.
First, all of the NICs achieve near wire-speed on the largeé& UDP send test, and all but one achieve near
wire-speed on the large frame UDP receive test. These NkC#has able to handle per-byte overheads at
wire-speed, and maximum-sized Ethernet frames are suifitieamortize the per-frame overheads.

Second, none of the NICs tested can achieve even 50% of theetloal peak on the small frame send
and receive tests. While these NICs can handle the per-wgih@ads of even higher data rates, the per-
frame overheads become overwhelming at the increased fi@meemanded by small frames. The ability
of a NIC to handle small frames is a potential differentiatas the fastest NIC achieves five times the
throughput of the slowest.

The third key behavior is the bidirectional performancehaf six network interfaces. With maximum-
sized frames, only the Intel Server NIC can achieve a thrpugthat is close to the sum of its individual
send and receive throughput; this NIC also achieves 73% tidieectional throughput than the lowest
performing interface. This result indicates that eithés thIC has completely separate resources for the
send and receive paths or that its shared resources arsiprad to handle wire-speed in both directions,
whereas the rest of the NICs suffer from some sort of resagotention. Finally, none of the network inter-

faces are able to achieve a throughput that is close to theitmindividual send and receive throughputs

16

Correlation UDP, max UDP, min TCP
Coefficient Send| Recv | 3-way || Send| Recv | 3-way || Send| Recv | Conn. Acc.| Conn. Init.
CS 0.07| 0.32 0.85(0.56| 0.35 0.53|| 0.82| 0.32 0.52 0.38
Web NASA 0.08 | 0.29 0.84(0.55| 0.35 0.52|| 0.83| 0.30 0.52 0.38
wWC -0.12| 0.56 0.94|| 0.63]| 0.44 0.63|| 0.55| 0.56 0.57 0.34
ADV -0.81| 0.20 0.90|| 0.68| 0.48 0.70|| 0.61| 0.21 0.61 0.51
Router | AIX -0.82| 0.11 0.89| 0.78| 0.61 0.80|| 0.73| 0.11 0.74 0.65
MEM -0.83 | -0.06 0.76 || 0.97| 0.89 0.97| 0.78| -0.05 0.96 0.85

Table 2: Correlation coefficients between the throughpeperted by the microbenchmarks used for testing
network interfaces and the high-level network serviceseamfti®n 2. The “max” and “min” indicate the use
of maximum-sized or minimum-sized frames.

on minimum-sized frames. This behavior stems from bothuesocontention and per-frame overheads.
Furthermore, this test shows that the Intel Server NIC dodead share resources between the send and
receive paths, and these shared resources become satuithtdloe per-frame overheads of small frames.
Even so, the Intel Server NIC achieves a bidirectional thhpuit seven times higher than the slowest NIC.
The connection establishment tests are similar to thedutional tests with small frames, since these tests

have the same types of network traffic.

5 Discussion

As described in Section 3, this microbenchmark suite aimsafiiure networking behaviors that appear
in real network services and that have performance imphetsvary with the network interface. Some
microbenchmarks clearly have no impact on system-levdbpaance. For example, for UDP send of
maximume-sized frames, there is less than 3% differencedmtthe slowest and fastest network interface,
so this behavior cannot possibly account for the differermfeup to 150% in system performance. Since
this study only considers six different network interfacégere is not sufficient data to establish statisti-
cally strong correlations between the microbenchmarkssgstem-level performance for the higher-level
services. Nevertheless, statistical methods are usefipriaviding insight into the relationship between
the microbenchmarks and system-level throughput. Tabdp@rts the correlation coefficient between each
microbenchmark and the system-level throughput for eadtklead, calculated using MATLAB'sor -
r coef . Entries near 0 suggest that the microbenchmark listedainrtiw of the table is of little value as a
performance predictor for the service and workload spetifighat column, while entries nearl suggest
that the microbenchmark is a valuable performance preadicto

As the table shows, the performance of the web server hassa odtationship to the performance of

the NIC on the TCP send test and on the UDP 3-way test with maxksized frames. The similarity

17

to the TCP send test is intuitive, as the major function of & \werver is to send responses over TCP
connections. Figure 2 shows that NASA and CS have over 70%eaf HTTP responses greater than the
size of a single maximum-sized segment, while less than 5D%%eoWorld Cup data responses exceed
a single segment. As a result, the World Cup workload hasrfeequences of maximum-sized frames
between HTTP requests and thus has less correlation to Ti@P Jde similarity to the UDP 3-way test
with maximum-sized frames follows the observation thatlibbachmark results of Figure 9 degrade from
left to right, just as the NICs are arranged by applicaterel performance. This relationship indicates that
the resource contention of simultaneous send and recepacis performance even for web servers that
have their data bitrates dominated by send. Furthermoeepéhformance of the NIC on the UDP send
and receive tests with minimum-sized frames corresponde oiosely to application performance than the
performance of the NIC on the UDP send and receive tests wétkimum-sized frames. This indicates
that the performance of unidirectional streams of smath&s, such as acknowledgments, is an important
element of application performance. Finally, the TCP catina tests are not nearly as matched to web
server performance as would be expected. Ultimately, thizsecause the NICs are able to handle almost
ten times the connection rate required for the web apptinatOnly the World Cup web workload sees a
noticeable correlation with the UDP receive of maximal fesmnthis workload has smaller response sizes
than the other tests and thus sees a greater fraction ofrd#ita from HTTP requests. This result suggests
that HTTP requests may behave more similarly to large fraimes small frames.

Table 2 also shows that the performance of the softwarer@ueost closely related to the performance
of the NIC on the UDP 3-way send tests with both minimum-siaad maximum-sized frames. Again,
the similarity of these tests to the application is intutias the router must be able to handle bidirectional
streams of all frame sizes. The UDP send test with maximaeddrames appears to have a strong negative
correlation with the software router, but this is simply armauical fluke; all of the NICs are within 0.5% of
each other and their variations coincidentally correspaeghtively to the differences in the software router.
The software router’'s performance is also reasonably redtetith the NIC’s performance on the UDP
send and receive tests with minimum-sized frames. Thisreg#s the point that the per-frame overhead
of minimum-sized frames is difficult to handle at high franses and can have a profound impact on
performance. Finally, the TCP connection tests are sumglissimilar to the performance of the software
router, despite the fact that the router does not initiateeoeive any connections. However, these tests
consist of small connection-establishment and shutdoamds, similar to the bidirectional small frame

traffic of the software router.

18

Overall, the results of the microbenchmark tests show tietriicro-level behaviors that are most rele-
vant to the performance of both web servers and softwarem®are the 3-way tests, with both maximum-
sized and minimum-sized frames having significant impabesE results indicate that resource contention
between different flows in a router or among HTTP responsd@d,RHrequests, and acknowledgments in
a web server has a first-order impact on system-level pedioce Additionally, the ability of the net-
work interface to send or receive small frames is of muchtgresignificance in shaping its comparative

system-level performance than its ability to send or reckiwge frames.

6 Conclusions

The network interface card used in a network server can dreatlg impact its application-level perfor-
mance. Simply changing the Gigabit Ethernet NIC in a netvearver can increase the throughput of a web
server by as much as 60% and increase the throughput of aaseftauter by as much as 150%. This paper
promotes microbenchmarking of network interfaces as atto@olate the low-level behaviors that shape
their impact on application-level performance.

A suite of ten lightweight microbenchmarks isolates keyea$p of network interface performance that
relate well to application-level performance. These bematks have minimal dependence on the operating
system, allowing the device driver and NIC itself to be tdstEhe benchmarks isolate the ability of a net-
work interface to send and receive small and large UDP daegjrto handle bidirectional UDP traffic, and
to handle TCP flows and connections. The microbenchmarktsestuow that all NICs tested can achieve
near wire-speed in sending large frames, but that the pedioce of NICs varies greatly when process-
ing bidirectional streams of large frames (up to 73% pertoroe difference between NICs), bidirectional
streams of small frames (up to a factor of seven performaifisgahce), or unidirectional streams of small
frames (up to a factor of five performance difference). Allfjlo each test has too few data points (only six
interfaces) to provide a strong statistical correlatidre throughputs achieved by both the web server and
the software router correspond closely to the microbencksn@lated to handling bidirectional flows and
small frames.

The microbenchmark results indicate directions for prbféduture investigation. Some studies and
experimental implementations have proposed offloading S&jmentation of large data regions to the net-
work interface to reduce CPU utilization [3, 10]. The reswif Section 4.1 indicate that given sufficient CPU
resources, the existing TCP stack can already saturateigiadiGEthernet links of most network interfaces

for large frames. Since CPU speeds continue to increaser flistn all other system components, it does

19

not seem profitable to focus solely on reducing the CPU atibin required to send large frames. Instead,
new techniques should focus on offloading processing tHaemable more efficient management of small
frames and simultaneous send and receive streams. Teehrimueduce the per-frame overheads of com-
munication between the host and the network interface, @iger invocation, interrupts, memory-mapped
I/0, and DMA initiation) will likely yield greater benefitoof small frames. Techniques to reduce resource
contention such as parallelizing the firmware of a prograbiemaetwork interface (as in ACE Optimized)
or carefully provisioning memory bandwidth on the NIC wilkdly yield greater benefits for bidirectional
flows.

Although this work correlates NIC performance back to aggtions, it does not directly integrate NIC
performance into a formal system-performance vector akihdse previously described by Saavedra and
Smith or Seltzer et al. [15, 16]. These vector-based metlbgaes have been used to analyze scientific or
operating-system-intensive codes in terms of microbemeck#ike segments. Although complicated by in-
teractions with operating system and network stack imptgation details, integration of NIC performance
into such a vector-based methodology should enable fastdysas and performance correlation for other

network-based workloads.

References

[1] M. Alliman, V. Paxson, and W. Stevens. TCP Congestion @bntETF RFC 2581, April 1999.

[2] G. Banga, J. C. Mogul, and P. Druschel. A scalable andigkglvent delivery mechanism for UNIX.
In Proceedings of the USENIX 1999 Annual Technical Conference, pages 253—-265, June 1999.

[3] H. Bilic, Y. Birk, I. Chirashnya, and Z. Machulsky. Defed Segmentation for Wire-Speed Trans-
'r&]issionzcgol_large TCP Frames over Standard GbE Networksddn nterconnects I X, pages 81-85,
ugust .

[4] A. B. Brown and M. |. Seltzer. Operating System Benchnragkin the Wake ofimbench: A Case
Study of the Performance of NetBSD on the Intel x86 Archuest In Proceedings of the ACM
S GMETRICS Conference on Measurement and Modding of Computer Systems, pages 214-224, June
1997.

[5] Information Networks Division, Hewlett-Packard ConmyaNetperf: A Network Performance Bench-
mark, February 1995. Revision 2.0.

[6] H. Kim, V. S. Pai, and S. Rixner. Exploiting Task-level @mrrency in a Programmable Network
Interface. InProceedings of the ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, pages 61-72, June 2003.

[7] K.Kleinpaste, P. Steenkiste, and B. Zill. Software Sonppor Outboard Buffering and Checksumming.
In Proceedings of the ACM SSIGCOMM ’' 95 Conference on Applications, Technologies, Architectures,
and Protocols for Computer Communication, pages 87—-98, August 1995.

[8] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaash The Click Modular RouterACM
Transactions on Computer Systems, 18(3):263—-297, August 2000.

[9] L. McVoy and C. Staelin. Imbench: Portable Tools for Penfiance Analysis. IfProceedings of the
1996 USENIX Technical Conference, pages 279-295, January 1996.

20

[10] Microsoft Corporation. Windows Network Task Offloada Microsoft Windows Platform Develop-
ment, December 2001.

[11] E. M. Nahum, T. Barzilai, and D. Kandlur. Performancsuss in WWW ServerdEEE/ACM Trans-
actions on Networking, 10(2):2-11, February 2002.

[12] V. S. Pai, P. Druschel, and W. Zwaenepoel. Flash: An Efficand Portable Web Server. Bnoceed-
ings of the USENIX 1999 Annual Technical Conference, pages 199-212, June 1999.

[13] V. S. Pai, P. Druschel, and W. Zwaenepoel. 1/O-Lite: Aifigdl I/O Buffering and Caching System.
In Proceedings of the Third USENIX Symposium on Operating Systems Design and Implementation,
pages 15-28, February 1999.

[14] J. Poskanzerthttpd - tiny/turbo/throttling HTTP server. Acme Labs, February 2000. Unix manual
page.

[15] R. H. Saavedra and A. J. Smith. Analysis of Benchmarkr&ttaristics and Benchmark Performance
Prediction.ACM Transactions on Computer Systems, 14(4):344—-384, November 1996.

[16] M. Seltzer, D. Krinsky, K. Smith, and X. Zhang. The CaseApplication-Specific Benchmarking. In
Proceﬁdl 8%89 of the 1999 Wobrkshop on Hot Topics in Operating Systems (HotOS V1), pages 102-107,
March 1 .

21

