
Isolating the Performance Impacts of Network
Interface Cards through Microbenchmarks

Technical Report #EE0401
Vijay S. Pai, Scott Rixner, and Hyong-youb Kim

Rice University
Houston, TX 77005

{vijaypai, rixner, hykim}@rice.edu

Abstract

This paper studies the impact of network interface cards (NICs) on network server performance,
testing six different Gigabit Ethernet NICs. Even with all other hardware and software configurations
unchanged, a network service running on a PC-based server can achieve up to 150% more throughput
when using the most effective NIC instead of the least effective one. This paper proposes a microbench-
mark suite that isolates the micro-level behaviors of each NIC that shape these performance effects and
relates these behaviors back to application performance. Unlike previous networking microbenchmark
suites, the new suite focuses only on performance rather than aiming to achieve portability. This choice
allows tight integration with the operating system, eliminating nearly all operating system overheads
outside of the device driver for the network interface. The results show that the throughputs achieved by
both a web server application and a software router have an evident relationship with the microbench-
marks related to handling bidirectional streams and small frames, but not with sends or receives of large
frames.

1 Introduction

Rapid developments in application and operating system software have reduced the CPU load of network

servers, the amount of main memory used for networking, and the bandwidth requirements of data transfers

between the CPU and its main memory [2, 11, 12, 13]. However, these techniques do not address the

overheads of processing data at the server’s network interface card (NIC), potentially leaving the NIC as

a performance bottleneck as network link speeds increase. Modern network servers include one or more

Gigabit Ethernet network interface cards (NICs), but many factors limit their ability to achieve the theoretical

maximum throughput of those interfaces. Simply replacing the Gigabit NIC in an otherwise identical server

can increase the network throughput achieved by an application up to 150%.

This work is supported in part by a donation from Advanced Micro Devices, by the Department of Energy under Contract
Nos. 03891-001-99-4G, 74837-001-0349 and/or 86192-001-0449 from the Los Alamos National Laboratory, and by the National
Science Foundation under Grant Nos. CCR-0209174 and CCR-0238187.

1

Although microbenchmarks often provide insight into low-level system behaviors, the recent operating

system improvements deployed in servers (such as zero-copyI/O) have not been incorporated into existing

application-level networking microbenchmarks such as netperf, LMbench, or the hbench:OS extensions to

LMbench [4, 5, 9]. Therefore, these microbenchmarks are tooheavyweight either to isolate performance

characteristics of NICs from the underlying operating systems or to send and receive data at rates high

enough to expose the limitations of NICs. At the other extreme, hardware-based network performance

analyzers such as the Spirent Smartbits have often been usedto test networking devices, including NICs,

but these must act as both the source and sink of data in order to verify their traffic. Thus, such systems

cannot isolate specific behaviors of a single NIC, such as send or receive performance alone. Finally, these

microbenchmarks (whether performed through applicationsor hardware) do not directly relate their results

to the performance of real network services.

This paper proposes a lightweight microbenchmark suite to effectively isolate the behaviors of modern

Gigabit Ethernet NICs and then relates those micro-level behaviors back to the performance of real net-

work services. These microbenchmarks show that most of the six NICs studied are able to achieve near

the maximum theoretical bandwidth of Gigabit Ethernet whensending or receiving a continuous unidirec-

tional stream of maximum-sized Ethernet frames. However, performance varies widely when sending or

receiving a continuous stream of minimum-sized frames, with the best interface achieving five times the

throughput of the worst (and even then achieving less than half of the theoretical limit). The ability of each

network interface to handle bidirectional traffic also varies greatly, with up to 73% throughput difference for

maximum-sized frames and a factor of seven throughput difference for minimum-sized frames.

While testing six network interfaces is not enough to generate a strong statistical correlation, the behav-

ior of each network interface on certain microbenchmarks has evident relationships with the performance

achieved by both a web server and a software router. For example, the tests related to sending or receiving

maximum-sized UDP datagrams have little or no correlation with the system performance of these ser-

vices. In contrast, the tests related to processing bidirectional streams (of either large or small frames) or

unidirectional streams of small frames (either send or receive) have a much clearer relationship to system

performance. These results indicate that resource contention between send and receive traffic and the fixed

overheads of processing Ethernet frames have greater impact on throughput than the size-dependent over-

heads of a single unidirectional stream. These results alsogive insight into the shortcomings of particular

interfaces and suggest areas of a network interface in whichcareful design is important.

The rest of this paper is organized as follows. Section 2 describes the behavior and performance of

2

a high-performance web server and software router using different network interfaces. Section 3 presents

the proposed microbenchmarks and explains their interaction with modern network interfaces. Section 4

presents the performance of various network interfaces on the microbenchmarks, and Section 5 discusses

the relationship between those results and the measured application performance. Section 6 concludes the

paper.

2 Motivation

Web servers and software routers are two representative network services that exercise the network in very

different ways. A web server responds to incoming requests by producing and returning the appropriate

response, whereas a software router simply forwards incoming data to a different network with little or no

modification. Despite placing different demands on the Ethernet network interfaces, the performance of

each service changes dramatically with the capabilities ofthe network interface in the system.

2.1 Web Servers

A web server interacts with the network in two primary ways. The first is by receiving HTTP requests

sent by clients. These requests are typically quite small, on the order of 200 bytes of ASCII text. Web

clients and servers communicate using TCP, so the server responds to the requests with acknowledgments,

leading to minimum-sized (64 byte) Ethernet frames. The second way in which the web server interacts

with the network is to send responses to the clients’ HTTP requests. The web server either sends static

files or dynamically generated content, depending on the type of request. Both types of responses can vary

greatly in size—anywhere from empty files to several hundredmegabytes. Again, these responses are sent

using the TCP protocol over the Ethernet, so the data must first be segmented and encapsulated in Ethernet

frames. The maximum size of an Ethernet frame is 1518 bytes, which allows 1460 bytes of TCP content

(after subtracting 14 bytes for Ethernet headers, 20 bytes for IP headers, 20 bytes for TCP headers, and 4

bytes for Ethernet CRC). The server sends the data using TCP flow control policies based upon the receipt

of acknowledgments.

The network traffic of a web server is largely bimodal in size.Incoming requests and acknowledgments,

as well as outgoing acknowledgments, are very small frames,whereas response content includes many large

objects which result in maximum-sized frames. Therefore, to achieve high system performance, the network

interface in a web server must be able to support traffic volumes dominated by sends of large frames while

also receiving and sending small frames.

3

2.2 Software Routers

A software IP router behaves quite differently from a web server. First, a software router is connected

to more than one network. Second, incoming IP packets are notdestined for the router itself (except for

occasional router control messages); rather, the router’stask is to determine the network to which it is

connected that will bring the packet closest to its final destination and to forward the packet onto that

network. The router typically does not change the contents of the packet, although it will change the Ethernet

headers appropriately.

As the traffic that flows through a router is of all types, the size of incoming and outgoing frames varies

between the Ethernet minimum (64 bytes) and maximum (1518 bytes). Upon receiving a frame, the router

must either forward it over one of the other networks or generate an error and typically send that error

back on the receiving network. Therefore, to achieve high system performance, each network interface in a

software router must be able to support bidirectional traffic with arbitrary frame sizes.

2.3 Performance

The throughput of a PC-based server running either the thttpd web server [14] or the Click software router [8]

depends on the Gigabit Ethernet network interface that is installed. These differences can be seen on a

server with an AMD Athlon 2600+ XP processor running the FreeBSD 4.7 operating system, 2 GB of DDR

SDRAM, a 64-bit/66 MHz PCI bus, and a single 40 GB IDE disk (none of the workloads are disk intensive).

For the web workload, the server is accessed by a set of synthetic clients replaying traces from real web sites

using an infinite-demand model. The server and clients are connected using a Gigabit Ethernet switch. For

the router workload, the router is accessed by two clients which replay IP packet traces from real routers

as fast as the router can handle them without dropping packets. Each host is connected to the router over a

different network interface, and the two interfaces of the router are on separate Gigabit Ethernet switches.

Each client machine includes an AMD Athlon 2000+ XP processor, 512 MB of DDR SDRAM, and an Intel

Pro 1000 MT Desktop network interface.

The six copper-based Gigabit Ethernet adapters under test are the Intel PRO 1000 MT server and desktop

NICs, a programmable 3Com NIC based on the Alteon ACEnic withdistributed (ACE) and optimized (ACE

Optimized) firmware, a Netgear NIC, and an additional 3Com NIC. These NICs will be presented in more

detail in Table 1 in Section 3. The comparisons in this paper are not intended to recommend any of these

network interfaces over the others, since the different NICs vary in age, expense, and operating system

support. Further, this study is far from comprehensive given the large number of NICs available. Rather,

4

0

100

200

300

400

500

600

700

800

900

1000

B
an

dw
id

th
 (

M
bp

s)

CS NASA World Cup

Intel Server
Intel Desktop
ACE Optimized
Netgear
3Com
ACE

10
2

10
3

10
4

10
5

0

10

20

30

40

50

60

70

80

90

100

Response Size (Bytes)

C
um

ul
at

iv
e

P
er

ce
nt

ag
e

World Cup
CS
NASA

Figure 1: Throughput in Mbps achieved by the
thttpd web server running on a PC-based server
with various network interfaces on three work-
loads.

Figure 2: Cumulative distribution of the re-
sponse sizes for three web workloads.

the goals of this paper are solely to identify concrete performance differences when running representative

network services on servers equipped with various network interfaces and to relate those effects back to the

micro-level behaviors that shape them.

Figure 1 shows the performance achieved by the thttpd web server for client traces extracted from a

university computer science department (CS), the 1998 soccer World Cup tournament (World Cup), and a

NASA web site (NASA). The first trace is obscured for anonymous review, while the latter two are avail-

able from the Internet Traffic Archive (http://ita.ee.lbl.gov/). Figure 2 shows the cumulative

distribution of response sizes in these traces. Responses larger than 200 KB, which are less than 3% of

the responses in all of the workloads, are not shown in the figure. The largest responses are over 17 MB

in CS, almost 7 MB in NASA, and almost 3 MB in World Cup. In Figure 1, the network interfaces are

ordered such that performance decreases from left to right.All other figures in this paper will maintain

this ordering, making it easy to remember the order of application-level performance of the NICs. The web

environment shows substantial performance differences across the NICs, with the fastest NIC consistently

achieving 40–60% more throughput than the least effective.

Figure 3 shows the performance achieved by the Click software router for traces from Advanced Net-

work Services (ADV), NASA Ames to MAE-West (AIX), and the University of Memphis (MEM). These

traces are from October 30, 2002, and were made available by the National Laboratory for Applied Network

Research. Figure 4 shows the cumulative distribution of packet sizes in these traces. This distribution is

largely bimodal between small and full-sized packets, witha much smaller fraction of medium-sized pack-

5

0

50

100

150

200

250

300

350

B
an

dw
id

th
 (

10
00

s
of

 P
ac

ke
ts

 p
er

 S
ec

on
d)

ADV AIX MEM

Intel Server
Intel Desktop
ACE Optimized
3Com
ACE

0 500 1000 1500
0

10

20

30

40

50

60

70

80

90

100

Packet Size (Bytes)

C
um

ul
at

iv
e

P
er

ce
nt

ag
e

MEM
AIX
ADV

Figure 3: Throughput in thousands of packets
per second achieved by the Click software router
running on a PC-based server with various net-
work interfaces on three workloads.

Figure 4: Cumulative distribution of packet sizes
in three router traces.

ets. As in the web environment, there is a substantial performance difference across NICs, with the fastest

NIC achieving 60–150% higher throughput than the least effective NIC. The driver for the Netgear NIC has

some incompatibilities with the Click software, which prevented them from working together.

The figures show that the choice of network interface can havea substantial impact on application-

level performance. The following sections explore the micro-level behaviors of NICs that shape system

performance.

3 Microbenchmarking NICs

This section proposes a set of benchmarks to study the performance impacts of network interface hardware

on real network services. Section 3.1 explains the shortcomings of current networking microbenchmarks.

Section 3.2 describes the functionality of real network interfaces and the overheads associated with transfer-

ring data through a network interface. Section 3.3 then describes the new microbenchmark suite and how it

aims to capture the overheads seen in network interfaces andreal applications.

3.1 Current Networking Microbenchmarks

A variety of microbenchmarks exist to capture the behavior of various network protocols and implemen-

tations. Of these, some of the most popular are netperf and LMbench [5, 9]. LMbench includes both

latency and bandwidth measurements, while netperf only includes bandwidth measurements. The netperf

6

NIC Abbreviation Year Checksumming Interrupt Coalescing
Intel Pro 1000 MT Server Intel Server 2002 TCP/UDP Rx/Tx 131usec (Tx), 28.6usec (Rx)
Intel Pro 1000 MT Desktop Intel Desktop 2002 TCP/UDP Rx/Tx 131usec (Tx), 28.6usec (Rx)
3Com 70024 Optimized ACE Optimized 1997 Disabled (HW bug) 4 msec (Tx) 400usec (Rx)
Netgear GA622 Netgear 2001 IP/TCP/UDP Rx/Tx None
3Com 3C996B 3Com 2002 IP/TCP/UDP Tx 150usec
3Com 70024 ACE 1997 Disabled (HW bug) 2 msec (Tx), 200usec (Rx)

Table 1: Characteristics of various network interfaces. (Rx and Tx mean receive and transmit, respectively.)

measurements, however, are more flexible. Both systems are portable across various operating systems and

architectures; the descriptions below focus on netperf butalso apply to LMbench.

The netperf microbenchmarks allow for testing the bandwidth of UDP and TCP streams from a sender to

a receiver. The UDP stream test generates datagrams as fast as the operating system can produce them, while

the TCP stream test sends data on a single connection that complies with TCP congestion control policies.

However, these programs use standard networking APIs (e.g., read andwrite) for portability rather

than more advanced system calls such assendfile that speed up CPU performance by using zero-copy

I/O [11]. Since the UDP test does not throttle its datagram production to any specific rate, the operating

system can also encounter overload conditions in which it does extra work to create datagrams only to

have them dropped by the device driver or the network interface. This extra wasted work can cause a

reduction in network throughput relative to the peak value achieved when the driver and network interface

are able to deliver all datagrams successfully. The TCP bandwidth test is limited by its use of only a single

connection, causing latency and window-size limitations to influence achieved bandwidth. It is possible

to run multiple copies of netperf to create multiple connections, but each such copy requires a separate

heavyweight process. In contrast, modern servers use such techniques as fast event notification and non-

blocking sockets to allow a single process to manage many connections without the overhead of context

switching or process management [2, 12].

As a result of the above limitations, the netperf benchmarksincur more operating system overhead

than necessary and do not reflect the various performance optimizations applied to real network server

applications. Despite the extra computational work performed by these server applications, their use of such

techniques as zero-copy I/O and fast event notification for connection management allow them to achieve

higher network throughput than the values reported by netperf.

3.2 Network Interface Hardware

In order to properly benchmark network interfaces, their function must be well understood. Table 1 shows

some of the characteristics of the six network adaptors considered in this study and the abbreviations that

7

will be used to identify them throughout the paper. As shown in Table 1, the network adapters considered

in this study are the Intel Pro 1000 MT Server, Intel Pro 1000 MT Desktop, the 3Com 70024 based on

the programmable Alteon ACEnic with optimized firmware, theNetgear GA622, the 3Com 3C996B, and

the 3Com 70024 using the distributed firmware. The 3Com 70024entry appears twice because it is a pro-

grammable NIC, and two different firmware versions were tested: the firmware included with the FreeBSD

driver (ACE) and firmware that is parallelized across the twoprogrammable processors on the NIC and

makes better use of on-chip memory (ACE Optimized) [6]. Although these codes run on the same hard-

ware, they are considered separate network interfaces since the firmware performance characteristics vary

substantially.

All of the NICs studied have a PCI hardware interface to the host server, use a device driver to interact

with the operating system, use direct memory access (DMA) tocommunicate data between the host memory

and the network interface memory, maintain the Ethernet medium access control (MAC) policies (including

802.3x flow control), and have special signal processing hardware to interpret the physical (PHY) data layer

of the network. The Intel Desktop NIC has a 32-bit/66 MHz PCI interface, whereas the rest of the NICs

have a 64-bit/66 MHz PCI interface. Although the internals of the application-specific integrated circuits in

the NICs cannot be easily determined, they all share certaincharacteristics.

To initiate a send, the operating system invokes a device driver, which informs the network interface of

a new Ethernet frame by writing to a memory-mapped NIC register. All the interfaces studied use that write

to indicate to the NIC the presence of a DMA descriptor in a well-known location. The NIC first transfers

this descriptor by DMA, and then uses the contents of the descriptor to issue a second DMA that transfers

the actual frame data into its internal buffers. The frame remains in the NIC’s internal buffers until the MAC

layer is ready to transmit the frame. When the MAC is ready to transmit the frame, the NIC transfers the

data from its internal buffers to the network.

Receives are handled differently from sends because they appear as unsolicited traffic from the network.

Consequently, the operating system must have pre-allocated data storage in main memory for receives. The

network interface must provide the operating system with a mechanism to inform it of this reserved storage.

When data actually arrives, the interface first copies the data into its internal buffers. (The frame cannot be

transferred to the host until the frame is known to have a valid Ethernet CRC and the host I/O bus is ready.)

The NIC then initiates a DMA of the received data from its internal buffer to the pre-allocated operating

system buffer in main memory.

Calculating checksums for the IP, TCP, and UDP layers involves numerous simple computations and

8

can consume a significant amount of CPU resources. To alleviate the load on the CPU, many modern NICs

support checksum offloading for at least some packets [7]. Such checksum calculations are typically done

while data is being transferred through DMA. As shown in Table 1, the Intel NICs support TCP and UDP

checksumming for both transmitted and received packets, the Netgear NIC performs all checksumming

functions, and the 3Com NIC only performs checksumming on transmitted packets. While the ACE NIC

does have support for checksum offloading, it is disabled in this study to avoid a hardware bug reported by

the manufacturer.

Traditionally, network interfaces would interrupt the host processor after completing a send (to indicate

that the state information for that packet may be freed) or after a receive (to indicate that the driver should

process the new data). However, most of the interfaces studied in this paper improve performance by inter-

rupting the CPU only after a certain number of frames has arrived or been sent, a certain time has elapsed,

or some resource has become exhausted (such as DMA descriptors). Table 1 shows the time thresholds for

each of the NICs. As the table shows, these thresholds are setdifferently on the send and receive paths, since

these paths have different needs. The Intel NICs include further optimizations, as they do not automatically

interrupt the CPU when the timer expires on send-only workloads. In this case, the NICs wait until resources

become close to exhaustion, since the additional latency ofnotifying the CPU that a packet has been sent

has a minimal effect on server performance.

Both send and receive operations have some overheads that scale with the size of the frame (per-byte

overheads), including the transfer of frame data over the I/O bus, the transfers of data into and out of the

internal buffers of the network interface, and the TCP or UDPchecksum computations on the packet data.

However, there are also several overheads that are independent of the size of the frame (per-frame over-

heads), including the driver invocation, the memory-mapped I/O operations, the DMA descriptor transfer,

the initiation of the DMA (including I/O bus addressing and request phases), IP checksumming, MAC man-

agement, and interrupting the host.

3.3 Proposed Microbenchmarks

Although full-fledged network services exercise the send and receive data paths described in Section 3.2 with

various sizes and types of frames, the specific impacts of each data path and type of overhead (per-frame

or per-byte) are difficult to isolate because of the large number of data flows with distinct characteristics,

the complex interactions of the service code with the operating system, and the overhead of the operating

system. This paper proposes and utilizes a new microbenchmark suite specifically aimed at characterizing

9

the micro-level behaviors of network interfaces that impact system-level performance. The goal of this suite

is to isolate the primary micro-level behaviors exhibited by the network services and determine what, if any,

relationship exists between that specific behavior and overall system performance. The suite consists of the

following tests:

1. UDP send, 1472 byte datagrams: a continuous stream of maximum-sized UDP datagrams is sent from

a sender to a receiver. This test isolates the NIC’s ability to send large frames. UDP datagrams of

1472 byte results in maximum-sized Ethernet frames of 1518 bytes (including 14 bytes for Ethernet

headers, 20 bytes for IP headers, 8 bytes for UDP headers, and4 bytes for the Ethernet CRC). For

every Ethernet frame, there is also an 8 byte preamble and a 12byte inter-frame gap. Therefore, the

maximum theoretical UDP throughput on this test is 957 Mbps (1472

1538
×1000 Mbps).

2. UDP receive, 1472 byte datagrams: this test is the opposite of the UDP send test, and isolates the

NIC’s ability to receive large frames.

3. UDP 3-way, 1472 byte datagrams: the NIC under test simultaneously sends a stream of maximum-

sized UDP datagrams to one host while receiving a stream of maximum-sized UDP datagrams from

another host. This test isolates the NIC’s ability to exercise its send and receive paths simultane-

ously. As Gigabit Ethernet is full duplex, the maximum theoretical UDP throughput on this test is

1914 Mbps.

4. UDP send, 18 byte datagrams: a continuous stream of minimum-sized UDP datagrams is sent from a

sender to a receiver. This test isolates the NIC’s ability tosend small frames, which will expose the

impact of per-frame overheads. UDP datagrams of 18 bytes result in minimum-sized Ethernet frames

of 64 bytes (including Ethernet/IP/UDP headers and Ethernet CRC). Including the preamble and inter-

frame gap, the maximum theoretical UDP throughput on this test is 214 Mbps (18
84
×1000 Mbps).

5. UDP receive, 18 byte datagrams: this test is the opposite of the UDP send test, and isolates the NIC’s

ability to receive small frames.

6. UDP 3-way, 18 byte datagrams: as in the large frame 3-way test, the NIC under test simultaneously

sends and receives streams of minimum-sized UDP datagrams.This test isolates the ability of the

NIC to exercise its send and receive paths simultaneously when per-frame overheads are dominant.

The maximum theoretical UDP throughput of this test is 428 Mbps.

7. TCP send, 1460 byte segments: a continuous stream of maximum-sized TCP segments is sent from a

sender to a receiver over several TCP connections subject toTCP’s acknowledgment and flow control

policies. This test monitors the NIC’s ability to handle sending maximum-sized data frames while

10

receiving minimum-sized acknowledgment frames. This testis not the same as simply combining

tests 1 and 5 because the frame rate in the simultaneous streams will be paced according to TCP flow

control rules and balanced at one acknowledgment for every second data segment [1]. TCP segments

of 1460 bytes result in maximum-sized Ethernet frames of 1518 bytes (including 14 bytes for Ethernet

headers, 20 bytes for IP headers, 20 bytes for TCP headers, and 4 bytes for the Ethernet CRC).

Therefore, the maximum theoretical TCP throughput on this test is 949 Mbps (1460
1538

×1000 Mbps).

8. TCP receive, 1460 byte segments: this test is the oppositeof the TCP send test, and isolates the NIC’s

ability to receive large frames subject to TCP flow control while also sending acknowledgments.

9. TCP connection acceptance: a continuous stream of requests to open and close TCP connections

is sent to the NIC under test. This test isolates the NIC’s impact on the system’s ability to accept

connections.

10. TCP connection initiation: this test is the opposite of the TCP connection acceptance test, and isolates

the NIC’s impact on the system’s ability to initiate connections.

All of the UDP and connection microbenchmarks can be throttled using arate parameter. This elimi-

nates unnecessary overhead in the operating system resulting from unsuccessful transmissions or connection

attempts. The TCP send and receive tests support a configurable number of independent connections. Fur-

thermore, all transmissions of UDP and TCP data are performed by a special system call into FreeBSD that

bypassesread andwrite, instead continually replaying pre-built packets of the appropriate size to the

device driver. This system call enables the microbenchmarks to isolate the performance of the NIC from

other operating system effects as much as possible. However, the performance of the device driver can still

impact the results, since the NIC cannot function without its driver. Each test reads statistics about the net-

work interface from the device driver to determine if all relevant data was actually sent on the Ethernet. The

throttling and connection parameters for the maximum achievable throughput are selected through iterative

search.

Obvious omissions from the suite include latency tests, TCPtests with small data segments and TCP

3-way tests. Latencies are not tested because the latency ofthe network interface only impacts the number of

TCP connections required to achieve a given level of bandwidth in a network server. A TCP test with small

data segments (6 bytes) would be highly subject to TCP implementation details, because TCP congestion

control policies only specify that an acknowledgment for a segment should be sent no later than 500 ms

afterward or upon receiving two maximum-sized segments worth of data, whichever comes first [1]. An

aggressive TCP implementation could thus delay an acknowledgment until receivingd2×1460

6
e = 487 data

11

0

100

200

300

400

500

600

700

800

900

1000

B
an

dw
id

th
 (

M
bp

s)

UDP Send UDP Receive TCP

Intel Server
Intel Desktop
ACE Optimized
Netgear
3Com
ACE

Figure 5: Throughput in Mbps achieved using the
microbenchmarks of Section 3.3 with maximum-
sized frames (1472 byte UDP datagrams or 1460
byte TCP segments to form 1518 byte Ethernet
frames). In each of these tests, the sending and
receiving NICs are the same.

0

100

200

300

400

500

600

700

800

900

1000

B
an

dw
id

th
 (

M
bp

s)

UDP Send UDP Receive TCP Send TCP Receive

Intel Server
Intel Desktop
ACE Optimized
Netgear
3Com
ACE

Figure 6: Throughput in Mbps achieved using the
microbenchmarks of Section 3.3 with maximum-
sized frames (1472 byte UDP datagrams or 1460
byte TCP segments to form 1518 byte Ethernet
frames). In all of the send tests, the best receiving
NIC, Intel Server, is used. In all of the receive
tests, the best sending NIC, 3Com, is used.

segments. In practice, most TCP implementations do not waitso long to acknowledge even small segments.

A TCP 3-way test simultaneously sends and receives streams of both large and small segments subject to

TCP flow control, making it difficult to isolate any particular performance characteristic.

4 Microbenchmark Results

This section details the results of the proposed microbenchmark suite in gauging the performance of the

network interfaces under test. Each microbenchmark from Section 3.3 is run using each of the six network

interfaces that were considered in Section 2.3. In most cases, the microbenchmark is first run with the NIC

under test being used both to send and receive frames. Then, each NIC is tested as a sender by sending

frames to the best receiver and as a receiver by receiving frames from the best sender. This enables send and

receive performance to be isolated for each NIC.

4.1 Maximum-sized Frames

Figure 5 shows the performance of various network interfaces in the data transmission tests which send and

receive maximum-sized Ethernet frames. Each test involvestwo machines, and both systems are configured

identically to the client machines described in Section 2.3, with the exception that in each test the sender and

12

receiver both use the NIC being tested. For example, the leftmost bar shows the result of running the UDP

Send microbenchmark, where the sending host uses an Intel Server NIC and the receiving host also uses an

Intel Server NIC. The three groups of bars show the achieved bandwidth of each of the six network interfaces

on the UDP Send (test 1), UDP Receive (test 2), and TCP (tests 7and 8) microbenchmarks, respectively,

from Section 3.3. These tests show that all of the network interfaces can achieve near maximum throughput

when sending large UDP datagrams. However, the throughput of the 3Com network interface drops sub-

stantially on the UDP receive path. Detailed analysis showsthat this drop comes from a workaround in the

driver, which limits the maximum length of a DMA transfer in order to avoid tripping a bug in the TCP

checksumming features of this NIC. TCP throughput is near the maximum for both Intel network interfaces

and the optimized ACE, slightly lower for the Netgear, and substantially lower for 3Com and the unopti-

mized ACE. The 3Com suffers from the poor receive path of the peer because TCP is a reliable protocol.

The unoptimized ACE suffers because its firmware shares a single programmable processor between send

and receive (e.g., ACK) processing; this is in contrast to the parallelized firmware of the optimized ACE.

Figure 6 shows the send and receive performance of each NIC when paired with the best receiving and

sending NICs, respectively. For the UDP and TCP send test, the Intel Server NIC is used as a receiver.

Despite UDP’s unreliability, this configuration can impactUDP send because of the 802.3x flow control

mechanisms supported at the MAC layer by these network interfaces. However, our results show little impact

on these interfaces. The TCP performance improves for 3Com (since this interface had a fine send path and

a poor receive path) and for ACE (by reducing the latency of the receiver and consequently of ACKs). For

the UDP and TCP receive test, the 3Com NIC is used as a sender. The Netgear and unoptimized ACE now

approach the theoretical maximum throughput, indicating that their results in Figure 5 were hindered by

their send-sides and that these NICs may be more heavily optimized for receive processing.

4.2 Minimum-sized Frames

Figure 7 shows the UDP data throughput for minimum-sized frames (18 byte datagrams) between identi-

cal NICs (tests 4 and 5). The achieved throughput on these benchmarks are not only dramatically lower

than in Figure 5, but they are also significantly lower than the maximum possible utilization for Ethernet

(214 Mbps). These results indicate that these NICs are not designed for high performance on small frames

and that per-frame overheads substantially limit performance. The two Intel NICs and the 3Com NIC per-

form best on small frames for the six NICs tested, with the Intel Server NIC most efficient at sending and

the Intel Desktop NIC most efficient at receiving.

13

0

10

20

30

40

50

60

70

80
B

an
dw

id
th

 (
M

bp
s)

UDP Send UDP Receive

Intel Server
Intel Desktop
ACE Optimized
Netgear
3Com
ACE

Figure 7: UDP throughput in Mbps achieved
using microbenchmarks of Section 3.3 with
minimum-sized frames (18 byte UDP datagrams
to form 64 byte Ethernet frames). In each of
these tests, the sending and receiving NICs are the
same.

0

10

20

30

40

50

60

70

80

B
an

dw
id

th
 (

M
bp

s)

UDP Send UDP Receive

Figure 8: UDP throughput in Mbps achieved
using the microbenchmarks of Section 3.3 with
minimum-sized frames (18 byte UDP datagrams
to form 64 byte Ethernet frames). In all of the
send tests, the best receiving NIC, Intel Desktop,
is used. In all of the receive tests, the best sending
NIC, Intel Server, is used.

Figure 8 shows the send and receive performance of each NIC when paired with the most efficient

receiving and sending NICs, respectively. When paired withthe Intel Desktop as receiver, only the Intel

Server NIC improves performance, implying that it is slightly more optimized for sending small frames than

receiving them. When paired with the Intel Server NIC as sender, the Intel Desktop, Netgear, and 3Com

NICs all achieve higher receive throughput, suggesting that all of those NICs are better suited for receiving

small frames than sending them. The ACE and ACE Optimized NICs show negligible improvement when

paired with the best receiving or sending NICs, and they are also the worst performers at sending and

receiving small frames.

4.3 Simultaneous Send and Receive Traffic

Figures 9 and 10 show the bidirectional throughput of each NIC using the 3-way UDP microbenchmarks

(tests 3 and 6). Figure 9 shows the performance of each NIC when maximum-sized UDP datagrams are

being sent to it by the best sender, the 3Com NIC, and it is sending maximum-sized UDP datagrams to

the best receiver, the Intel Server NIC. These results show aclear trend among the NICs, as performance

degrades from the left to the right in the figure. Recall that the NICs are organized from left to right in order

of their application-level performance. Only the Intel Server NIC is able to achieve nearly the sum of its

individual send and receive bandwidth. The other network interfaces most likely have some limited resource

shared between the send and receive paths; possible limitations include PCI bandwidth (a likely problem

14

0

200

400

600

800

1000

1200

1400

1600

1800

2000

B
an

dw
id

th
 (

M
bp

s)

Intel

Serve
r Intel

Deskt
op ACE

Optim
ize

d
Netgear

3Com
ACE

UDP Send
UDP Receive

Figure 9: UDP Throughput in Mbps achieved for
the UDP 3-way test for maximum-sized frames.
In all cases the best sending NIC, 3Com, sends
frames to the NIC being tested at the same time
that the NIC being tested sends frames to the best
receiving NIC, Intel Server.

0

20

40

60

80

100

120

B
an

dw
id

th
 (

M
bp

s)

Intel

Serve
r Intel

Deskt
op ACE

Optim
ize

d

Netgear
3Com

ACE

UDP Send
UDP Receive

Figure 10: UDP Throughput in Mbps achieved
for the UDP 3-way test for minimum-sized
frames. In all cases the best sending NIC, Intel
Server, sends frames to the NIC being tested at the
same time that the NIC being tested sends frames
to the best receiving NIC, Intel Desktop.

for the Intel Desktop NIC, which only has a 32-bit PCI interface with a theoretical maximum of 2 Gbps), a

shared programmable processor (in unoptimized ACE), or on-board memory bandwidth (since each bit of

network traffic is touched twice as described in Section 3.2,the card must provide at least twice as much

memory bandwidth as full-duplex network bandwidth).

Figure 10 shows the performance of each NIC when minimum-sized UDP datagrams are being sent to

it by the best sender, the Intel Server NIC, and it is sending minimum-sized UDP datagrams to the best

receiver, the Intel Desktop NIC. In this test, no NIC is able to approach the sum of its individual send

and receive bandwidth for minimum-sized datagrams. Each NIC achieves a slight improvement over its

individual send or receive throughput except for ACE. ACE achieves the same throughput as in either send

or receive because both paths share the same processor, which is saturated because of per-frame overheads.

4.4 Connection Establishment

Figure 11 shows the rate of TCP connection establishment when connecting between two NICs of the same

type, when accepting connections (test 9) from the best NIC for connection initiation (3Com), and when ini-

tiating connections (test 10) to the the best NIC for connection acceptance (Intel Desktop). TCP connection

establishment generates bidirectional traffic of small frames. The trends in Figure 11 are therefore similar

to the trends in Figure 10. The Intel NICs are the best connection acceptors and the Netgear and 3Com

NICs are the best connection initiators. The two ACE NICs perform poorly at both connection initiation and

15

0

5

10

15

20

25

30

35

40

C
on

ne
ct

io
ns

 p
er

 M
ill

is
ec

on
d

Initiate/Accept Accepting Initiating

Intel Server
Intel Desktop
ACE Optimized
Netgear
3Com
ACE

Figure 11: Number of TCP connections per millisecond achieved. In the Initiate/Accept tests both NICs are
the same. In the Accepting tests, the initiating NIC is the best initiator, the 3Com NIC. In the Initiating tests,
the accepting NIC is the best accepter, the Intel Desktop NIC.

acceptance, as is to be expected from their poor performancewhen dealing with small frames.

4.5 Summary

The results of the microbenchmark tests on the six network interfaces show three significant behaviors.

First, all of the NICs achieve near wire-speed on the large frame UDP send test, and all but one achieve near

wire-speed on the large frame UDP receive test. These NICs are thus able to handle per-byte overheads at

wire-speed, and maximum-sized Ethernet frames are sufficient to amortize the per-frame overheads.

Second, none of the NICs tested can achieve even 50% of the theoretical peak on the small frame send

and receive tests. While these NICs can handle the per-byte overheads of even higher data rates, the per-

frame overheads become overwhelming at the increased framerate demanded by small frames. The ability

of a NIC to handle small frames is a potential differentiator, as the fastest NIC achieves five times the

throughput of the slowest.

The third key behavior is the bidirectional performance of the six network interfaces. With maximum-

sized frames, only the Intel Server NIC can achieve a throughput that is close to the sum of its individual

send and receive throughput; this NIC also achieves 73% morebidirectional throughput than the lowest

performing interface. This result indicates that either this NIC has completely separate resources for the

send and receive paths or that its shared resources are provisioned to handle wire-speed in both directions,

whereas the rest of the NICs suffer from some sort of resourcecontention. Finally, none of the network inter-

faces are able to achieve a throughput that is close to the sumof its individual send and receive throughputs

16

Correlation UDP, max UDP, min TCP
Coefficient Send Recv 3-way Send Recv 3-way Send Recv Conn. Acc. Conn. Init.

Web
CS 0.07 0.32 0.85 0.56 0.35 0.53 0.82 0.32 0.52 0.38
NASA 0.08 0.29 0.84 0.55 0.35 0.52 0.83 0.30 0.52 0.38
WC -0.12 0.56 0.94 0.63 0.44 0.63 0.55 0.56 0.57 0.34

Router
ADV -0.81 0.20 0.90 0.68 0.48 0.70 0.61 0.21 0.61 0.51
AIX -0.82 0.11 0.89 0.78 0.61 0.80 0.73 0.11 0.74 0.65
MEM -0.83 -0.06 0.76 0.97 0.89 0.97 0.78 -0.05 0.96 0.85

Table 2: Correlation coefficients between the throughputs reported by the microbenchmarks used for testing
network interfaces and the high-level network services of Section 2. The “max” and “min” indicate the use
of maximum-sized or minimum-sized frames.

on minimum-sized frames. This behavior stems from both resource contention and per-frame overheads.

Furthermore, this test shows that the Intel Server NIC does indeed share resources between the send and

receive paths, and these shared resources become saturatedwith the per-frame overheads of small frames.

Even so, the Intel Server NIC achieves a bidirectional throughput seven times higher than the slowest NIC.

The connection establishment tests are similar to the bidirectional tests with small frames, since these tests

have the same types of network traffic.

5 Discussion

As described in Section 3, this microbenchmark suite aims tocapture networking behaviors that appear

in real network services and that have performance impacts that vary with the network interface. Some

microbenchmarks clearly have no impact on system-level performance. For example, for UDP send of

maximum-sized frames, there is less than 3% difference between the slowest and fastest network interface,

so this behavior cannot possibly account for the differences of up to 150% in system performance. Since

this study only considers six different network interfaces, there is not sufficient data to establish statisti-

cally strong correlations between the microbenchmarks andsystem-level performance for the higher-level

services. Nevertheless, statistical methods are useful for providing insight into the relationship between

the microbenchmarks and system-level throughput. Table 2 reports the correlation coefficient between each

microbenchmark and the system-level throughput for each workload, calculated using MATLAB’scor-

rcoef. Entries near 0 suggest that the microbenchmark listed in that row of the table is of little value as a

performance predictor for the service and workload specified in that column, while entries near±1 suggest

that the microbenchmark is a valuable performance predictor.

As the table shows, the performance of the web server has a close relationship to the performance of

the NIC on the TCP send test and on the UDP 3-way test with maximum-sized frames. The similarity

17

to the TCP send test is intuitive, as the major function of a web server is to send responses over TCP

connections. Figure 2 shows that NASA and CS have over 70% of their HTTP responses greater than the

size of a single maximum-sized segment, while less than 50% of the World Cup data responses exceed

a single segment. As a result, the World Cup workload has fewer sequences of maximum-sized frames

between HTTP requests and thus has less correlation to TCP send. The similarity to the UDP 3-way test

with maximum-sized frames follows the observation that thebenchmark results of Figure 9 degrade from

left to right, just as the NICs are arranged by application-level performance. This relationship indicates that

the resource contention of simultaneous send and receive impacts performance even for web servers that

have their data bitrates dominated by send. Furthermore, the performance of the NIC on the UDP send

and receive tests with minimum-sized frames corresponds more closely to application performance than the

performance of the NIC on the UDP send and receive tests with maximum-sized frames. This indicates

that the performance of unidirectional streams of small frames, such as acknowledgments, is an important

element of application performance. Finally, the TCP connection tests are not nearly as matched to web

server performance as would be expected. Ultimately, this is because the NICs are able to handle almost

ten times the connection rate required for the web application. Only the World Cup web workload sees a

noticeable correlation with the UDP receive of maximal frames; this workload has smaller response sizes

than the other tests and thus sees a greater fraction of data traffic from HTTP requests. This result suggests

that HTTP requests may behave more similarly to large framesthan small frames.

Table 2 also shows that the performance of the software router is most closely related to the performance

of the NIC on the UDP 3-way send tests with both minimum-sizedand maximum-sized frames. Again,

the similarity of these tests to the application is intuitive, as the router must be able to handle bidirectional

streams of all frame sizes. The UDP send test with maximum-sized frames appears to have a strong negative

correlation with the software router, but this is simply a numerical fluke; all of the NICs are within 0.5% of

each other and their variations coincidentally correspondnegatively to the differences in the software router.

The software router’s performance is also reasonably matched with the NIC’s performance on the UDP

send and receive tests with minimum-sized frames. This reiterates the point that the per-frame overhead

of minimum-sized frames is difficult to handle at high frame rates and can have a profound impact on

performance. Finally, the TCP connection tests are surprisingly similar to the performance of the software

router, despite the fact that the router does not initiate orreceive any connections. However, these tests

consist of small connection-establishment and shutdown frames, similar to the bidirectional small frame

traffic of the software router.

18

Overall, the results of the microbenchmark tests show that the micro-level behaviors that are most rele-

vant to the performance of both web servers and software routers are the 3-way tests, with both maximum-

sized and minimum-sized frames having significant impact. These results indicate that resource contention

between different flows in a router or among HTTP responses, HTTP requests, and acknowledgments in

a web server has a first-order impact on system-level performance. Additionally, the ability of the net-

work interface to send or receive small frames is of much greater significance in shaping its comparative

system-level performance than its ability to send or receive large frames.

6 Conclusions

The network interface card used in a network server can dramatically impact its application-level perfor-

mance. Simply changing the Gigabit Ethernet NIC in a networkserver can increase the throughput of a web

server by as much as 60% and increase the throughput of a software router by as much as 150%. This paper

promotes microbenchmarking of network interfaces as a toolto isolate the low-level behaviors that shape

their impact on application-level performance.

A suite of ten lightweight microbenchmarks isolates key aspects of network interface performance that

relate well to application-level performance. These benchmarks have minimal dependence on the operating

system, allowing the device driver and NIC itself to be tested. The benchmarks isolate the ability of a net-

work interface to send and receive small and large UDP datagrams, to handle bidirectional UDP traffic, and

to handle TCP flows and connections. The microbenchmark results show that all NICs tested can achieve

near wire-speed in sending large frames, but that the performance of NICs varies greatly when process-

ing bidirectional streams of large frames (up to 73% performance difference between NICs), bidirectional

streams of small frames (up to a factor of seven performance difference), or unidirectional streams of small

frames (up to a factor of five performance difference). Although each test has too few data points (only six

interfaces) to provide a strong statistical correlation, the throughputs achieved by both the web server and

the software router correspond closely to the microbenchmarks related to handling bidirectional flows and

small frames.

The microbenchmark results indicate directions for profitable future investigation. Some studies and

experimental implementations have proposed offloading TCPsegmentation of large data regions to the net-

work interface to reduce CPU utilization [3, 10]. The results of Section 4.1 indicate that given sufficient CPU

resources, the existing TCP stack can already saturate the Gigabit Ethernet links of most network interfaces

for large frames. Since CPU speeds continue to increase faster than all other system components, it does

19

not seem profitable to focus solely on reducing the CPU utilization required to send large frames. Instead,

new techniques should focus on offloading processing that will enable more efficient management of small

frames and simultaneous send and receive streams. Techniques to reduce the per-frame overheads of com-

munication between the host and the network interface (e.g., driver invocation, interrupts, memory-mapped

I/O, and DMA initiation) will likely yield greater benefits for small frames. Techniques to reduce resource

contention such as parallelizing the firmware of a programmable network interface (as in ACE Optimized)

or carefully provisioning memory bandwidth on the NIC will likely yield greater benefits for bidirectional

flows.

Although this work correlates NIC performance back to applications, it does not directly integrate NIC

performance into a formal system-performance vector akin to those previously described by Saavedra and

Smith or Seltzer et al. [15, 16]. These vector-based methodologies have been used to analyze scientific or

operating-system-intensive codes in terms of microbenchmark-like segments. Although complicated by in-

teractions with operating system and network stack implementation details, integration of NIC performance

into such a vector-based methodology should enable faster analysis and performance correlation for other

network-based workloads.

References

[1] M. Allman, V. Paxson, and W. Stevens. TCP Congestion Control. IETF RFC 2581, April 1999.

[2] G. Banga, J. C. Mogul, and P. Druschel. A scalable and explicit event delivery mechanism for UNIX.
In Proceedings of the USENIX 1999 Annual Technical Conference, pages 253–265, June 1999.

[3] H. Bilic, Y. Birk, I. Chirashnya, and Z. Machulsky. Deferred Segmentation for Wire-Speed Trans-
mission of Large TCP Frames over Standard GbE Networks. InHot Interconnects IX, pages 81–85,
August 2001.

[4] A. B. Brown and M. I. Seltzer. Operating System Benchmarking in the Wake oflmbench: A Case
Study of the Performance of NetBSD on the Intel x86 Architecture. In Proceedings of the ACM
SIGMETRICS Conference on Measurement and Modeling of Computer Systems, pages 214–224, June
1997.

[5] Information Networks Division, Hewlett-Packard Company. Netperf: A Network Performance Bench-
mark, February 1995. Revision 2.0.

[6] H. Kim, V. S. Pai, and S. Rixner. Exploiting Task-level Concurrency in a Programmable Network
Interface. InProceedings of the ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, pages 61–72, June 2003.

[7] K. Kleinpaste, P. Steenkiste, and B. Zill. Software Support for Outboard Buffering and Checksumming.
In Proceedings of the ACM SIGCOMM ’95 Conference on Applications, Technologies, Architectures,
and Protocols for Computer Communication, pages 87–98, August 1995.

[8] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek. The Click Modular Router.ACM
Transactions on Computer Systems, 18(3):263–297, August 2000.

[9] L. McVoy and C. Staelin. lmbench: Portable Tools for Performance Analysis. InProceedings of the
1996 USENIX Technical Conference, pages 279–295, January 1996.

20

[10] Microsoft Corporation. Windows Network Task Offload. In Microsoft Windows Platform Develop-
ment, December 2001.

[11] E. M. Nahum, T. Barzilai, and D. Kandlur. Performance Issues in WWW Servers.IEEE/ACM Trans-
actions on Networking, 10(2):2–11, February 2002.

[12] V. S. Pai, P. Druschel, and W. Zwaenepoel. Flash: An Efficient and Portable Web Server. InProceed-
ings of the USENIX 1999 Annual Technical Conference, pages 199–212, June 1999.

[13] V. S. Pai, P. Druschel, and W. Zwaenepoel. I/O-Lite: A Unified I/O Buffering and Caching System.
In Proceedings of the Third USENIX Symposium on Operating Systems Design and Implementation,
pages 15–28, February 1999.

[14] J. Poskanzer.thttpd - tiny/turbo/throttling HTTP server. Acme Labs, February 2000. Unix manual
page.

[15] R. H. Saavedra and A. J. Smith. Analysis of Benchmark Characteristics and Benchmark Performance
Prediction.ACM Transactions on Computer Systems, 14(4):344–384, November 1996.

[16] M. Seltzer, D. Krinsky, K. Smith, and X. Zhang. The Case for Application-Specific Benchmarking. In
Proceedings of the 1999 Workshop on Hot Topics in Operating Systems (HotOS VII), pages 102–107,
March 1999.

21

