
A Flexible and Efficient Application Programming Interface (API) for a
Customizable Proxy Cache

Vivek S. Pai, Alan L. Cox, Vijay S. Pai, and Willy Zwaenepoel
iMimic Networking, Inc.

2990 Richmond, Suite 144
Houston, TX 77098

Abstract

This paper describes the design, implementation, and per-
formance of a simple yet powerful Application Program-
ming Interface (API) for providing extended services in
a proxy cache. This API facilitates the development of
customized content adaptation, content management, and
specialized administration features. We have developed
several modules that exploit this API to perform various
tasks within the proxy, including a module to support the
Internet Content Adaptation Protocol (ICAP) without any
changes to the proxy core.

The API design parallels those of high-performance
servers, enabling its implementation to have minimal
overhead on a high-performance cache. At the same
time, it provides the infrastructure required to process
HTTP requests and responses at a high level, shield-
ing developers from low-level HTTP and socket details
and enabling modules that perform interesting tasks with-
out significant amounts of code. We have implemented
this API in the portable and high-performance iMimic
DataReactorTM proxy cache1. We show that implement-
ing the API imposes negligible performance overhead and
that realistic content-adaptation services achieve high per-
formance levels without substantially hindering a back-
ground benchmark load running at a high throughput
level.

1 Introduction

As the Internet has evolved, Web proxy caches have taken
on additional functions beyond caching Internet content
to reduce latency and conserve bandwidth. For instance,
proxy caches in schools and businesses often perform
content filtering, preventing users from accessing con-
tent deemed objectionable. Caches in content distribu-
tion networks (CDNs) may perform detailed access log-
ging for accounting purposes, pre-position popular items
in the cache, and prevent the eviction of certain items from
memory or disk storage. Support for these features has

1DataReactor is a trademark of iMimic Networking, Inc.

been added to caches developed in both academia and in-
dustry.

However, a proxy cache designer can not foresee all
possible uses for the proxy cache and thus cannot include
all features required by application implementers. While
some developers of major systems such as CDNs have
added their desired functionality to open-source caches,
these developers are then burdened by the sheer volume
of source code (over 60,000 lines in Squid-2.4 [18]). Ad-
ditionally, their changes will likely conflict with later up-
dates to the base proxy source, making it difficult to track
bug fixes and upgrades effectively. Consequently, such
ad hoc schemes erode the separation of concerns that un-
derlies sound software engineering. The application de-
veloper should not have to reason with the details of the
cache in order to add functionality. Instead, the developer
should be able to write in standard languages such as C
using standard libraries and system calls as appropriate
for the task at hand.

One approach to enable such value-added services is
to locate those functions on a separate server that com-
municates with the cache through a domain-specific pro-
tocol. The Internet Content Adaptation Protocol (ICAP)
adopts this approach, allowing caches to establish TCP
connections with servers that modify requests and re-
sponses to and from clients and origin servers [8]. On
each HTTP request and response that will be modified,
an ICAP-enabled proxy constructs a request which con-
sists of ICAP-specific headers followed by the complete
HTTP headers and body in chunked format. The proxy
then collects a response from the ICAP server providing
a complete set of modified HTTP headers and body. In
addition to the TCP/IP socket overhead for communicat-
ing with the external service, such a protocol also adds
overhead to parse the protocol headers and chunked data
transfer format and to encapsulate HTTP messages within
the protocol. Further, current implementations of ICAP
locate value-added services on a separate server machine,
even if the host CPU of the cache is not saturated.

An alternative approach is to use an application pro-
gramming interface (API) that allows user modules to be
directly loaded into the core of the cache and run ser-

vices either on the cache system or on a separate server
as desired. This paper presents an API that enables pro-
gramming of a proxy cache after deployment. This API
turns a previously monolithic proxy cache into a pro-
grammable component in a Web content delivery infras-
tructure, cleanly separating new functionality from the
cache’s core. At the same time, the API allows extremely
fast communication between the cache and the user mod-
ules without the need for TCP connections or a standard-
ized parsing scheme. Specifically, the API provides the
infrastructure to process HTTP requests and responses at a
high level, shielding developers from the low-level details
of socket programming, HTTP interactions, and buffer
management. This API can also be used to implement
the ICAP standard by creating a dynamically loaded mod-
ule that implements the TCP and parsing aspects of ICAP.
The API extends beyond the content adaptation features
of ICAP by providing interfaces for content management
and specialized administration.

Several technological trends have made single-box de-
ployment of API-enabled proxy servers more attractive.
Among these are more available processing power and
better OS support for high-performance servers. Proxy
software in general has improved in efficiency while mi-
croprocessor speeds have increased. Recent benchmarks
have shown that a 300 MHz 586-class processor is suffi-
cient to handle over 7Mbps of traffic, enough for multi-
ple T-1 lines [15]. Current microprocessors with two ar-
chitectural generations of improvement and a clock rate
that is 5-8 times higher will have significant free CPU for
other tasks. Proxy servers running on general-purpose op-
erating systems have met or exceeded the performance of
appliances running customized operating systems. As a
result, the proxy server has become a location that han-
dles HTTP traffic and has the capacity and flexibility to
support more than just caching.

Unlike some previously proposed schemes for extend-
ing server or proxy functionality, the API presented in this
paper uses an event-aware design to conform to the im-
plementation of high-performance proxy servers. By ex-
posing the event-driven interaction that normally occurs
within proxies, high performance implementations can
avoid the overhead of using threads or processes to handle
every proxy request. We believe that this performance-
conscious approach to API design allows higher scalabil-
ity than previous approaches, following research showing
the performance advantages of event-driven approaches to
server design in general [13].

We have implemented this API in the iMimic DataRe-
actor, a portable, high-performance proxy cache. We
show that implementing the API imposes negligible per-
formance overhead and allows modules to consume free
CPU cycles on the cache server. The modules them-
selves achieve high performance levels without substan-

tially hindering a background benchmark load running
at high throughput. While the API style is influenced
by event-driven server design, the API is not tied to the
architecture of any cache, and it can be deployed more
widely given systems that support standard libraries and
common operating system abstractions (e.g., threads, pro-
cesses, file descriptors, and polling).

The rest of this paper proceeds as follows. Section 2
describes the general architecture of the system and the
design of modules that access the API. Section 3 discusses
the API in more detail. Section 4 describes sample mod-
ules used with the API and discusses coding issues for
these modules. Section 5 provides a more detailed com-
parison of the API with ICAP. Section 6 describes the im-
plementation of the API in the iMimic DataReactor proxy
cache and presents its performance for some sample mod-
ules. Section 7 discusses related work, and Section 8 sum-
marizes the conclusions of this paper.

2 Structure of the API

The underlying observation that shapes the structure of
the API is that a high-performance API should adopt
the lessons learned from the design of high-performance
server architectures. As a result, we use an event-driven
approach as the most basic interaction mechanism, expos-
ing this level directly to modules as well as using it to
construct support for additional communication models
based on processes or threads. By exposing the event-
driven structure directly to modules, the API can achieve
high scalability with minimal performance impact on the
proxy. This approach dispenses with multiple thread con-
texts or multiple processes, enabling the scalability gains
previously observed for server software [13]. The rest of
this section describes how the API integrates with HTTP
processing in the cache and how customization modules
are designed and invoked.

2.1 Integration with HTTP Handling

Figure 1 illustrates the flow of request and response con-
tent through the proxy. Clients send requests to the proxy,
either directly or via redirection through an L4/7 switch.
The proxy interprets the request and compares it with the
content it has stored locally. If a valid, cached copy of
the request is available locally, the proxy cache obtains
the content from its local storage system and returns it to
the client. Otherwise, the proxy must modify the HTTP
headers and contact the remote server to obtain the object
or revalidate a stale copy of the object fetched earlier. If
the object is cacheable, the proxy cache stores a copy of it
in order to satisfy future requests for the object.

These various interactions between the proxy, the

Client Proxy
Cache Server

Storage
System

Requests

Responses

Cache
Misses

New Content

Cached
Content

Cache
Hit ?

(a) Original proxy server

Client Proxy
Cache Server

Storage
System

Incoming
Request
Modification

Outgoing
Response
Modification

Outgoing
Request
Modification

Incoming
Response
Modification

Incoming
Response
Modification

(b) API-Enabled proxy server

Figure 1: Original and modified data transfer paths in a proxy server

client, and the server provide the basis for the primary
functions of the API. In particular, the API provides cus-
tomization modules with the ability to register callbacks,
special functions with defined inputs and outputs that are
invoked by the cache on events in the HTTP process-
ing flow. These callback points are the natural process-
ing points within an event-driven server; by exposing this
structure, the API implementation can support modules
with high scalability and low performance impact. Exam-
ples of such HTTP processing events include the comple-
tion of the request or response header, arrival of request
or response body content, logging the completion of the
request, and timer events.

As these interactions are common to all proxy servers,
all available proxy software should be able to provide the
hooks needed for implementing this API. A full imple-
mentation of this API is http-complete, in that it can sup-
port any behavior that can be implemented via HTTP re-
quests and responses; this level of completeness is neces-
sary to allow modules to perform content adaptation with-
out limits. In addition to these hooks, the API also pro-
vides other mechanisms to control policy/behavioral as-
pects of the cache not covered within the scope of HTTP
(e.g. prefetching content, request logging, server selection
in round-robin DNS).

Modules register a set of function pointers for various
events by providing a defined structure to the underlying
proxy core. This structure is shown in Figure 2, and con-
tains non-NULL entries for all of the callback functions
of interest to the module. The module may specify NULL
values for callback points for which it elects to receive no
notification. Note that the events corresponding to the re-
ceipt of request or response body data may be triggered
multiple times in an HTTP transaction (request-response
pair), allowing the module to start working on the received
data immediately without waiting or buffering.

The API tags each transaction with a unique identi-
fier that is passed to each callback as the first argument.
This allows the module to invoke multiple interactions

with the proxy for a single HTTP transaction while recog-
nizing which parts of the transaction have already taken
place. Additionally, the API allows the module to pass
back a special “opaque” value after completing each call-
back. This opaque value is not interpreted by the cache
itself, but is instead passed directly to the next API call-
back function for this transaction. The opaque value typ-
ically contains a pointer to a data structure in the mod-
ule specific to this transaction. The API invokes the
dfp opaquefree callback function when the transac-
tion is complete, allowing the module to clean up the un-
derlying structure as desired. The client IP address is also
an input to each HTTP-related callback, allowing for dif-
ferent decisions depending on the source.

If a module is no longer interested in event notifica-
tions for a particular transaction, it may return a special
response code recognized by the API. This allows mod-
ules to cease further effort on a transaction if, for exam-
ple, request or response headers indicate that the module’s
service is not applicable. Once a module returns that re-
sponse code, the API will not invoke any more callbacks
for that transaction, but will invoke callbacks for other
transactions.

2.2 Module Design

API modules are precompiled object files that are either
dynamically linked into the proxy or are spawned in a
separate address space. For security reasons, clients of
the proxy cannot install modules into the proxy. Modules
are trusted software components that must be installed by
an administrator with the authority to configure the cache.

Modules export a set of standard entry points that are
used by the proxy cache to invoke methods in the mod-
ule in response to certain events affiliated with HTTP pro-
cessing. The internal design of modules is not restricted;
they can spawn other programs, invoke interpreted code,
or call standard library and operating system APIs with-
out impediment. The latter are particularly useful, for ex-

typedef struct DR_FuncPtrs {
DR_InitFunc *dfp_init; // on module load
DR_ReconfigureFunc *dfp_reconfig; // on configuration change
DR_FiniFunc *dfp_fini; // on module unload
DR_ReqHeaderFunc *dfp_reqHeader; // when request header is complete
DR_ReqBodyFunc *dfp_reqBody; // on every piece of request body
DR_ReqOutFunc *dfp_reqOut; // before request goes to remote server
DR_DNSResolvFunc *dfp_dnsResolv; // when DNS resolution needed
DR_RespHeaderFunc *dfp_respHeader; // when response header is complete
DR_RespBodyFunc *dfp_respBody; // on each piece of response body
DR_RespReturnFunc *dfp_respReturn; // when response returned to client
DR_TransferLogFunc *dfp_logging; // logging entry after request done
DR_OpaqueFreeFunc *dfp_opaqueFree; // when each response completes
DR_TimerFunc *dfp_timer; // periodically called for maintenance
int dfp_timerFreq; // timer frequency in seconds

} DR_FuncPtrs;

Figure 2: Structure provided by modules to register callback functions for specified events.

ample, for communicating with other systems via TCP/IP
connections to provide services desired by the module.

Multiple modules can be active, and modules can be
dynamically loaded and unloaded. Cascading multiple
modules allows developers to combine services such as
content filtering with image transcoding for a wireless
business environment or site monitoring and content-
preloading for a content delivery network. The ability
to dynamically load and unload modules allows policies
such as deactivating content filtering outside of normal
work hours while still using image transcoding. The mod-
ule programmer or deployer must specify the order of in-
vocation for multiple modules so that data arrives as ex-
pected and interactions remain sensible.

2.3 Execution Models

The API supports modules executing in several formats,
including processes, threads, and callbacks. The mod-
ule sees the same interfaces in all cases, but the under-
lying implementations may differ. Since all of the models
present the same interface, module developers are free to
change the model used as the performance or flexibility
needs of their modules change.

Processes – The most flexible model for an API module
is to use a (Unix) process. In this manner, all module pro-
cessing takes place in a separate address space from the
proxy core, and the module is at liberty to use any operat-
ing system interfaces, run other programs, communicate
across the network, perform disk operations, or under-
take other slow or resource-intensive operations. A pro-
cess may be single-threaded or multi-threaded. Using the
process model enables the trivial use of multiprocessors

and, with appropriately written modules, the ability to har-
ness clusters of machines in a network. The flexibility of
the process model implies more overhead in the operating
system, including extra memory for storing the process
state and more CPU overhead when the OS-supplied in-
terprocess communication mechanisms are invoked to ex-
change information between the proxy core and the mod-
ule. However, these communication costs are relatively
minor for modules that perform significant processing.

Threads – Threads provide a higher-performance alterna-
tive to processes. In this model, the module spawns mul-
tiple threads in the proxy’s address space. Each thread
requires less overhead than a full process and the use of
shared memory allows higher performance communica-
tion between the module and the proxy cache. Like the
process model, threads can also trivially take advantage
of multiprocessors. However, since the threads share the
address space with the proxy cache, they must be careful
not to corrupt memory or invoke system calls that affect
the state of the proxy itself.

Callbacks – Callbacks are the lowest overhead mecha-
nism for content adaptation, since the module is directly
linked into the proxy cache’s address space and invoked
by the proxy cache state machine. As a result, callback
overhead is comparable to a single function call. Since
callbacks are performed synchronously in the proxy, the
module’s routines should not perform any blocking opera-
tion such as opening files, waiting on network operations,
or synchronously loading data from disk. Nevertheless,
callbacks may invoke nonblocking network socket oper-
ations and use polling functions provided by the API to
determine when data is available for them. Modules that
fit these criteria may use callbacks for the highest perfor-

Requested URL
Request header line 1;
Request header line 2;
[. . .]
Request header line N;
<blank terminating line>

Optional request ‘‘body’’
used in POST requests
for forms, etc.

Request Format

Header block −
special first line
followed with more
detail about the
request/response

Body data

Response Format

Response status code
Response header line 1;
Response header line 2;
[. . .]
Response header line N;
<blank terminating line>

Actual response ‘‘body’’
containing HTML file,
image binary data, etc.

Figure 3: Structure of HTTP requests and responses

mance. Modules using callbacks should also be careful to
avoid corrupting memory or performing stray pointer ac-
cesses, since corrupting memory can affect the running of
the proxy cache.

3 API Functions

This section describes the functions provided by the API.
This section does not aim to be a full manual, but rather
describes the reasons for specific functions and the types
of tasks supported by the API.

3.1 Content Adaptation Functions

The content adaptation functions allow modules to inspect
and modify requests and replies as they pass through the
proxy cache. Since any portion of the transfer can be in-
spected and modified by the modules, the API provides a
powerful mechanism to use the proxy cache in a variety
of applications. For example, the proxy cache can be used
as a component of a Content Distribution Network (CDN)
by developing a module that inspects the user’s requested
URL and rewrites it or redirects it based on geographic in-
formation. In mobile environments where end users may
have lower-resolution displays, an API module could re-
duce image resolution to save transmission bandwidth and
computation/display time on low-power devices. Such
modular solutions would consist of far less code and bet-
ter defined interactions than modifications to open-source
code.

As explained in Section 2, the mechanisms for the API
are closely integrated with the processing of requests and
responses in the HTTP protocol. In the HTTP proto-
col, requests and responses have a well-defined structure,
shown in Figure 3. Each consists of a header block with a
special request/response line followed by a variable num-
ber of header lines, and then a variable-length data block.

The content adaptation interfaces allow modules to
specify entry points that are called when the proxy han-
dles the various portions of the requests and responses.
Some of the entry points are called only when a particular
portion is complete (e.g., when all of the response headers
have been received), while others are called multiple times
(e.g., as each piece of body data is received on a cache
miss). For example, a module could provide routines that
examine and modify the first line of each request and the
full contents of each response that pass through the proxy.

The API includes header processing routines that al-
low searching for particular HTTP headers, adding new
headers, deleting existing headers, and declaring that the
current set of headers is completed and may be sent on.
These routines provide a simple and flexible interface for
the module to customize the HTTP-level behavior of the
request, in isolation or in conjunction with transformation
of the content body. This approach also insulates the mod-
ules from the details of the HTTP protocol, shifting the
burden of providing infrastructure onto the proxy. Table 1
lists the routines provided for header and body manipula-
tion.

The cache may also store modified content, allowing
it to be served without requiring adaptation processing
on future requests. This can be accomplished by regis-
tering interest in the arrival of the response header, and
modifying the cache control header appropriately, causing
the proxy cache to store the modified content if it would
not be stored by default. When content adaptation is per-
formed based on features of the client’s request, the mod-
ule can use the HTTP Vary header to indicate multiple
variant responses cached for the same URL.

3.2 Content Management Functions

The API’s content management features allow modules
to perform finer-grained control over cache content than
a proxy cache normally provides. These routines are ap-

Header
Processing

DR HeaderDelete
DR HeaderFind
DR HeaderAdd
DR HeaderDone

Modules can examine and modify the multiple re-
quest/response header lines as they arrive from the
client/server, or as they are sent out from the proxy.

Body
Modification

DR RespBodyInject Modules change the content body during notifica-
tions by changing return values, or at other times
using this explicit call.

Table 1: Content adaptation functions

propriate for environments where the default content man-
agement behaviors of the proxy cache must be modified or
augmented with information from other sources. The rou-
tines in this area fall into three broad categories: content
freshness modification and eviction, content preloading,
and content querying. The related functions are shown in
Table 2.

Server accelerators and surrogates in content distribu-
tion networks benefit from finer-grained control over con-
tent validation to improve response time, reduce server
load, or provide improved information freshness. In par-
ticular, surrogates normally achieve the maximum benefit
when the origin servers set large expiration times to re-
duce the frequency of revalidation. However, the proxy
may not see the most recent content if the underlying con-
tent changes during this time. When an external event
(such as a breaking news item) occurs that voids the expi-
ration information, the content management routines can
update the proxies by invalidating cached content and
fetching the newest information. The content manage-
ment routines thus allow programmed, automatic con-
trol for exceptional situations while still using the regu-
lar mechanisms of the proxy cache under normal circum-
stances.

The content management routines also allow program-
matic and dynamic preloading of objects into the cache, in
addition to the content prepositioning support that already
exists in many proxy caches. Preloading modules may be
coupled to information sources outside of the proxy rather
than just based on timer information. For example, a ser-
vice provider running a network of caches could create a
custom module to inject documents into caches as their
popularity increases in other parts of the network.

Finally, the content management controls can also be
used to provide “premium” services to portions of cached
content. For example, the content management controls
can be used to periodically query the cache and refresh the
pages of premium customers, changing their cache evic-
tion behavior.

Even though these functions change the material stored
in the cache, the API introduces no security issues be-
cause its functions are invoked directly from trusted mod-
ules running on the same machine. However, the mod-

ules themselves may need to implement a security policy,
especially if they take commands from external sources.
The modules may use standard library functions to pro-
vide the mechanisms for this security; the API need not
provide mechanisms since none of the encryption or au-
thentication required is specific to the proxy cache envi-
ronment.

3.3 Customized Administration

The API provides notifications that can be used to aug-
ment the administrative and monitoring interfaces typi-
cally available in proxy caches through Web-based tools,
command-line monitoring, and SNMP. The event notifi-
cation for logging allows the proxy to extract real-time
information and manipulate it in a convenient manner in
order to feed external consumers of this information. For
example, content distribution networks and web hosting
facilities may use real-time log monitoring to provide up-
to-date information to customers about traffic patterns and
popularity on hosted web sites, or to notice high rates of
“page not found” errors and dynamically create pages to
redirect users to the appropriate page. While all of this
information can be obtained in off-line post-processing of
access logs, the API allows deployers to implement cus-
tom modules that meet their specific needs for realtime
analysis and action.

The administrative interfaces of the API can also be
used to monitor networks of proxies, and to combine
this information with other sources in Network Opera-
tion Centers (NOCs). For example, if a company is run-
ning a network of proxies and notices an unusually low
request rate at one such proxy, this information can be
combined with other information to help diagnose con-
gested links or overloaded systems beyond the company’s
control. Since the proxy is functioning normally, one iso-
lated measurement provides less reliable information than
programmatic and comparative measurement of different
systems.

3.4 Utility Functions

Table 3 describes utility functions provided by the API.
The DR FDPoll family of functions allow callback-

Naming &
Identification

DR ObjIDMake
DR ObjIDRef
DR ObjIDUnref

Modules use internal identifiers for content man-
agement functions rather than requiring full URLs
in all calls. These functions are used to cre-
ate/destroy the identifiers

Existence &
Lifetime
Handling

DR ObjQuery
DR ObjFetch
DR ObjValidate
DR ObjExpirationSet
DR ObjDelete

For querying the existence/property of objects and
loading, refreshing, and deleting them as needed

Cache
Injection

DR ObjInject
DR ObjInjectStart
DR ObjInjectBody
DR ObjInjectDone

Objects can be manually added into the proxy
without having the proxy initiate a fetch from a re-
mote server. The object can be injected all at once,
or in pieces.

Data
Reading

DR ObjRead
DR ObjReadStart
DR ObjReadPart
DR ObjReadDone

Objects in the cache can be loaded into memory
allocated by the module without being requested
by the client. The object can be read all at once or
in pieces.

Table 2: Content management functions

External
Communication

DR FDPollReadNotify
DR FDPollReadClear
DR FDPollWriteNotify
DR FDPollWriteClear
DR FDPollClose

Modules may communicate externally using sock-
ets, even when using the callback mechanism. In
this case, they use asynchronous operations and
use these functions to have the main proxy notify
them of events on their sockets.

Custom
Logging

DR StringFromStatus
DR StringFromLogCode
DR StringFromLogTimeout
DR StringFromLogHier

These functions provide the standard text strings
used for the extended log format.

Configuration DR ConfigOptionFind User modules invoke this function to extract infor-
mation from the cache configuration file.

Table 3: Utility functions

based modules to use nonblocking socket operations.
These functions allow external communication without
blocking and without requiring modules to implement
their own event management infrastructure; instead, such
modules can simply utilize the underlying event mech-
anisms of the OS and host proxy. In particular, the
ReadNotify and WriteNotify calls register func-
tions that should be invoked when an event (either data
available to read or space available to be written, re-
spectively) takes place on a given file descriptor. The
ReadClear and WriteClear functions indicate that
the previously registered function should no longer be
called, and the Close function indicates that the file de-
scriptor in question has been closed and all currently reg-
istered notifications should be deregistered. All of these
functions can be implemented using poll, select,
kevent, /dev/poll, or other OS-specific mecha-
nisms; their only requirement is that the underlying OS
support the notion of file descriptors and some form of

event notification, which are common to all standard sys-
tems.

The custom logging functions provide canonical names
for the codes passed by the proxy to module functions for
log notifications. DR ConfigOptionFind allows the
user module to extract desired information from the cache
configuration files.

4 Sample Modules

To experiment with the API, both from a functional as-
pect as well as from a performance perspective, we devel-
oped some modules that use various aspects of the inter-
face, including a module that implements ICAP. We were
pleased with the simplicity of module development and
the compactness of the code necessary to implement vari-
ous features. Initial development and testing of each mod-
ule required from a few hours to a few days. More detail
about each module’s behavior and implementation is pro-

Module Name Total Code Semicolons # API
Lines Lines call sites

Ad Remover 175 115 51 4
Dynamic Compressor 387 280 126 11
Image Transcoder (

�
helper) 391

�
166 309

�
118 148

�
54 10

Text Injector (
�

helper) 473
�

56 367
�

32 170
�

8 12
Content Manager 675 556 289 56
ICAP client 1024 719 321 15

Table 4: Code required to implement sample services

vided below. Table 4 summarizes information about the
code size needed for each module. Since the modules are
freed from the task of implementing basic HTTP mech-
anisms, none of them are particularly large. The “Total
Lines” count includes headers and comments, the “Code
Lines” count removes all blank lines and comments, and
the “Semicolons” count gives a better feeling for the num-
ber of actual C statements involved. All modules use the
callback interface, with some spawning separate helper
processes under their control.

Ad Remover – Ad images are modified by dynamically
rewriting their URLs and leaving the original HTML un-
modified. On each client request, the module uses a call-
back to compare the URL to a known list of ad server
URL patterns. Matching URLs are rewritten to point
to a cacheable blank image, leading to cache hits in the
proxy for all replaced ads. To account for both explicitly-
addressed and transparent proxies, the module constructs
the full URL from the first line of the request and the
Host header line of the request header. On modified re-
quests, the Host header must be rewritten as well, utiliz-
ing the DR Header � functions. Other uses for this mod-
ule could include replacing original ads with preferred
ads.

Dynamic Compressor – This module invokes the zlib
library from callbacks to compress data from origin
servers and then caches the compressed version. Clients
use less bandwidth and the proxy avoids compressing ev-
ery request by serving the modified content on future
cache hits. This module checks the request method and
Accept-Encoding header to ensure that only GET re-
quests from browsers that accept compressed content are
considered. The response header is used to ensure that
only full responses (status code 200) of potentially com-
pressible types (non-images) are compressed. The header
is also checked to ensure that the response is not already
being served in compressed form and is not an object with
multiple variants (since one of those variants may already
be in compressed form). Using the DR Header � func-
tions, the outbound response must be modified to remove
the original Content-length header and to insert a

Vary header to indicate that multiple versions of the ob-
ject may now exist.

Image Transcoder – All JPEG and GIF images are con-
verted to grayscale using the netpbm and ijpeg pack-
ages. Since this task may be time-consuming, it is per-
formed in a separate helper process. The module buffers
the image until it is fully received, at which point it sends
the data to the helper for transcoding. The helper returns
the transcoded image, or the original data if transcod-
ing fails. The module kills and restarts the helper if the
transcoding library fails, and also limits the number of
images waiting for transcoding if the helper can not sat-
isfy the incoming rate of images. The module uses the
DR FDPoll � functions to communicate with the helpers,
the DR Header � functions to modify the response, and
the DR RespBodyInject function to inject content
into an active connection.

Text Injector – The main module scans the response to
find the end of the HTML head tag, and then calls out
to a helper process to determine what text should be in-
serted into the page. The helper process currently only
responds with a text line containing the client IP ad-
dress, but since it operates asynchronously, it could con-
ceivably produce targeted information that takes longer
to generate. The module passes data back to the client
as it scans the HTML, so very little delay is intro-
duced. For reasons similar to the case of the Image
Transcoder module, the DR FDPoll � , DR Header � ,
and DR RespBodyInject functions are all invoked.

Content Manager – This demonstration module accepts
local telnet connections on the machine and presents
an interface to the DR Obj � content management func-
tions. The administrator can query URLs, force remote
fetches, revalidate objects, and delete objects. Object con-
tents can also be displayed, and dummy object data can be
forced into the cache. The module uses the DR FDPoll �

family of functions to perform all processing in callback
style even while waiting on data from network connec-
tions.

ICAP Client – This module implements the ICAP 1.0
draft for interaction with external servers that provide

value-added services [8]. The module must encapsulate
HTTP requests and responses in ICAP requests, send
those requests to ICAP servers, retrieve and parse re-
sponses, and send forth either the original HTTP message
or the modified message provided by the ICAP server. All
of this processing can be implemented through callbacks
with the assistance of the polling functions for network
event notification. Implementing ICAP as a module rather
than an integrated part of the proxy core is particularly ap-
propriate as ICAP specifications continue to evolve.

5 Comparison with ICAP

This section discusses key points of comparison between
our API and the Internet Content Adaptation Protocol
(ICAP) draft specification [8]. We do not seek to under-
take a detailed quantitative performance comparison since
the ICAP standard and implementations are still evolv-
ing. We instead focus on differences in functionality and
mechanism.

Functionality. ICAP provides services for content-
adaptation, while the API additionally provides services
for content-management and customized administration.
As a result, ICAP provides a useful component for con-
tent delivery, but cannot enable the more detailed manage-
ment infrastructure for a content delivery network with-
out changes to the underlying cache architecture. In con-
trast, the API provides services to push, query, invali-
date, or modify data while it is in the cache, and also
provides features for real-time monitoring and integration
with statistics. Some of these features may even inform
content-adaptation; for example, real-time monitoring can
potentially provide additional information beyond cook-
ies alone (e.g., frequency of connections from a client IP
address or authenticated user) that may lead to different
transcoding behavior or object freshness policy.

Additionally, the polling functions of Section 3.4 en-
capsulate the low-level details of concurrency manage-
ment. These polling functions enable the API modules
to efficiently use the underlying OS and cache features
for socket I/O to a variety of network services (including
external ICAP servers) while avoiding the programming
difficulty of implementing such an event notification state
machine directly.

Mechanism. The primary differences in content adap-
tation mechanism between ICAP and the API stem from
the communication methods used. ICAP invokes all com-
munication by having the cache initiate contact with the
service through a TCP/IP socket. In contrast, the API
allows the cache to directly invoke functions registered
to provide a service. While current ICAP implementa-
tions locate the value-added services on a separate server,
the API allows for the use of either a separate server

or a cache-integrated module. The latter is particularly
valuable as processor speeds continue to accelerate faster
than all other parts of the system, enabling substantial ad-
ditional services beyond caching without saturating the
CPU. The API is also sufficiently flexible to implement
ICAP as a module rather than part of the proxy core.

ICAP allows servers to statically inform proxies that
HTTP data for certain file extensions should not be passed
to them, that others should be sent for previewing, and that
others should be always sent in their entirety. For those
HTTP requests and responses that must be previewed, an
ICAP-enabled proxy constructs a preview message con-
sisting of ICAP-specific headers followed by the com-
plete HTTP headers and some arbitrary amount of the
HTTP body. The ICAP server then indicates whether
or not the proxy should continue sending body data for
modification. If so, or if the file extension indicates that
this request should always be sent rather than previewed,
the proxy must send the entire set of HTTP headers and
body. The server will then respond either with an in-
dication that no modifications will take place or with a
complete set of modified HTTP headers and body. The
primary goal of previewing is to allow the service to act
upon a message by reading the HTTP headers, but ICAP
requires the proxy to construct ICAP headers and en-
capsulate the HTTP headers on a preview, after which it
must parse a response from the ICAP server. In contrast,
the API allows for more direct header examination with
DR HeaderFind, requiring no higher-level ICAP wrap-
per headers.

Services should also have an easy mechanism to decide
that they have no further interest in an HTTP message.
ICAP provides no mechanism to continue past the pre-
view and then stop adaptation before seeing the full body.
The API allows the service to dynamically turn off inter-
est in further callbacks for a transaction at any point in the
headers or body. This difference could affect the text in-
jector module of Section 4, since the text injection process
might finish at any arbitrary point in the body.

In short, while ICAP can provide a variety of useful
content-adaptation features, the API presented here ex-
poses an interface that provides a superset of these func-
tions while also enabling low-overhead coordination with
service modules (including ICAP itself).

6 Implementation and Performance

In this section, we describe the implementation of the
API in the iMimic DataReactor proxy cache and con-
duct a series of experiments to understand various perfor-
mance scenarios related to the API. We measure the im-
pact of adding API support into the DataReactor, the var-
ious costs of API features, and the performance of some

of the sample modules that use the API.

6.1 The iMimic DataReactor Proxy Cache

Evaluating the impact of the API is heavily dependent
on the quality of the underlying platform. A slow proxy
will mask the overhead of the API, while a fast one will
more easily expose the additional latency resulting from
the API. The iMimic DataReactor Proxy Cache is a com-
mercial high-performance proxy cache. It supports the
standard caching modes (forward, reverse, transparent)
and is portable, with versions for the x86, Alpha, and
Sparc architectures and the FreeBSD, Linux, and Solaris
operating systems. It has performed well in the vendor-
neutral Proxy Cache-Offs, setting records in performance,
latency, and price/performance [15, 16, 17].

We test forward-proxy (client-side) cache performance
using the Web Polygraph benchmark program running a
modified version of the Polymix-3 workload [16]. We
use this test and workload because it has the highest num-
ber of independently-measured entries of any web proxy
benchmark, and it heavily stresses proxy server perfor-
mance. For the sake of time, we shorten our performance
tests to use a 2 hour load plateau instead of four hours,
and fill the disks only once before all tests rather than be-
fore each test. These changes shorten the load phase of
the Polygraph test to roughly 6 hours instead of 10.5, and
avoiding a separate fill phase reduces the length of each
test by an additional 10-14 hours. The primary perfor-
mance impact is a 3–4% higher hit ratio than an official
test because of a smaller working set and data set. We call
this modified test PMix-3.

Polygraph stresses various aspects of proxy perfor-
mance, particularly in network and disk-related areas. It
uses per-connection and per-packet delays between the
proxy and simulated remote servers to cause cache misses
to have a high response time. Likewise, it generates data
sets and working sets that far exceed physical memory,
causing heavy disk access. Polygraph stresses connection
management by scaling the number of simulated clients
and servers with the request rate.

The test system runs FreeBSD 4.4 and includes a 1400
MHz Athlon, 2 GB of memory, a Netgear GA-620 Gigabit
Ethernet NIC, and five 36 GByte 10000 RPM SCSI disks.
All tests use a target request rate of 1450 �

���������	�
�
���������� . This

throughput compares favorably with other high-end com-
mercial proxy servers and is over a factor of ten higher
than what free software has demonstrated [16]. At this
rate, the proxy is managing over 16000 simultaneous con-
nections and 3600 client IP addresses. Given the fixed re-
quest rate, this test demonstrates any latency differences
in the various test scenarios. (Polygraph also shows some
run-to-run randomness in the offered workload, leading to
additional minor variations.)

6.2 API Implementation Overhead

To understand the performance overhead of implement-
ing the API in the DataReactor, we start with a stan-
dard DataReactor platform, incrementally add features,
and test the result. Overheads from implementing the
API result in increased hit and miss response times, since
throughput is kept constant. Table 5 lists the results for
these tests.

The various columns of Table 5 are as follows: “Base-
line” is the standard DataReactor software without API
support. “API-Enabled” is the same software with API
support, but without any modules loaded. “Empty Call-
back” adds a module with all notifications specified, but
with no work done in any of them. “Add Headers” adds
extra headers to all inbound/outbound paths on the proxy,
so four extra headers will be introduced on each transac-
tion. “Body

�
Headers” additionally copies the response

body of each reply and overwrites the response body with
this copy.

The “API-Enabled” test shows that implementing the
API adds virtually no overhead on cache hits and only
a small overhead on cache misses. Actually installing a
module causes a slight slowdown on hits and misses due
to the extra calls needed. Due to the extremely small hit
times, this effect appears as a 5% increase on hit time. On
cache misses, where most of the time is spent waiting on
the remote server, the overhead is less than one-tenth of
one percent. These low overheads confirm the premise
that an explicitly event-aware API design can enable an
extensible proxy with minimal performance impact.

We also observe that using the features of the API, such
as adding headers or modifying the body, generates low
overhead. Adding headers introduces some extra delay on
misses, but even modifying the full body does not gen-
erate any significant spike in response times. The hit
times for “Body

�
Headers” show a 6% increase over

the “Empty Callback”, which translates into a cumulative
11.5% increase versus the baseline. However, in absolute
terms, the increase is less than 2.5ms, or less than 1% of
the overall response time.

6.3 Performance Methodology

We construct several tests to assess the performance of
some of our content-adaptation modules, both on their
own and in terms of their impact on the overall system.
However, we cannot rely solely on Pmix-3 to generate
the load, since this workload does not generate realistic
content for the objects in its test. Without realistic con-
tent, measuring the performance of some of our content
adaptation modules would be meaningless. For exam-
ple, the Image Transcoder module would fail to perform
any transcoding, and would return the images unmodified.

Baseline API Empty Add Body
�

Enabled Callback Headers Headers

Throughput (reqs/sec) 1452.87 1452.75 1452.89 1452.62 1452.84
Response time (ms) 1248.99 1248.95 1251.25 1251.98 1250.14
Miss time (ms) 2742.53 2743.18 2744.33 2745.07 2746.98
Hit time (ms) 19.82 19.86 20.87 20.85 22.10
Hit ratio (%) 57.81 57.81 57.76 57.74 57.85

Table 5: Performance tests to determine overhead of implementing API

Baseline Ad Images Images Max Trans Compress Compress
Remover 25 Trans/s Max Trans nice 19 75 obj/s 95 obj/s

Throughput (reqs/s) 1452.87 1452.72 1452.65 1452.73 1452.68 1452.73 1452.88
Response time (ms) 1248.99 1248.87 1256.60 1277.76 1250.69 1252.24 1258.34
Miss time (ms) 2742.53 2743.55 2753.47 2778.09 2744.60 2745.63 2752.63
Hit time (ms) 19.82 20.42 23.21 43.30 20.15 23.44 28.69
Hit ratio (%) 57.81 57.81 57.74 57.80 57.78 57.81 57.78

Table 6: Background Pmix-3 benchmark performance when run simultaneously with content adaptation
modules

Since transcoding is a more CPU-intensive process than
rejecting non-image objects, the real performance impact
of the transcoder could not be measured.

For the image transcoding and dynamic compression
tests, we extend the Polygraph simulation testbed with a
non-Polygraph client and server to generate requests and
serve real objects as responses. The new server also gen-
erates only non-cacheable responses so that the modules
must be invoked on each response. The content adapta-
tion modules identify responses from the “real” server and
only consider those responses as candidates for transcod-
ing. While this approach generates some extra load on the
module versus screening out all Polygraph client requests
early, we feel our approach will yield more conservative
performance numbers. We also continue running a Pmix-
3 test against the same proxy at the same time, and keep
the Pmix-3 request rate the same as in the earlier tests for
an accurate comparison.

6.4 Module Performance

Table 6 shows the performance effects of the various con-
tent adaptation modules. The “Baseline” column shows
our baseline performance with no API support. The “Ad
Remover” column shows the performance of the Ad Re-
mover module examining Polygraph traffic. The next
three columns show proxy performance when the image
transcoder is running in different scenarios. The final
columns show the Dynamic Compressor serving a certain
rate of compressed objects.

The Ad Remover tests show virtually no degradation in
performance. This result is not surprising, because most

of this module’s work consists of inspecting request head-
ers, which is computationally cheap. This module only
rewrites headers on matching URLs, and this workload
does not have any URL matches.

The Image Transcoder tests show how this module can
affect the overall performance of the proxy, but also how a
simple change can eliminate almost all of its negative im-
pact. Since all transcoding is performed in a helper pro-
cess, we show several scenarios for this module to gain a
better understanding of how it behaves. On an idle ma-
chine, the transcoder can process JPEGs of size 8 KBytes
at a rate of roughly 110 per second. During the load
plateau of Pmix-3, most of the CPU is utilized serving reg-
ular traffic, and less time is available to the transcoder. At
this point, if we run the transcode client in infinite-demand
mode, we achieve an average of 30 transcodes/sec, with a
range of 20-38. When this occurs, the proxy CPU has no
idle time. Transcoding at 25 reqs/sec shows an 11ms in-
crease in miss time and a 3ms increase in hit time. When
the client runs in infinite-demand mode, miss times in-
crease by 36ms while hit times rise by 23ms.

The transcoder’s negative side effects on Pmix-3 traffic
suggest that the proxy and helper are competing for the
CPU. This competition can be almost completely elim-
inated by changing the process scheduling priority (the
“nice” value) of the helper to 19, giving it the lowest pri-
ority of the system. With this change, the helper runs only
when the CPU is idle. For the infinite-demand workload,
queues between the proxy and the helper process never
become overly long since further requests are delayed un-
til earlier responses complete. As a result, the transcoder
processes all requests made to it and the system is work-

conserving. Since the system is work-conserving and the
CPU has idle time available, the priority change for the
helper process only affects the scheduling of the helper
but does not otherwise affect its throughput. With this
simple change, the Pmix-3 performance numbers return
to values only slightly worse than the base proxy.

On an idle machine, the dynamic compressor module
can satisfy approximately 400 compressions per second
with the input data as an 8 KByte text file of C source
code. When run in combination with Pmix-3, the dynamic
compressor is shown with two different workloads: com-
pressing 75 objects per second and 95 objects per second.
The system supports the lighter compression workload
with very little impact on the hit or miss response time
of the background Pmix-3 traffic. The heavier compres-
sion workload leads to about 10 ms increase in both miss
and hit time relative to the baseline performance; how-
ever, even this still leads to less than 1% degradation of
mean response time. No substantially higher rate is pos-
sible because the CPU is saturated when the Pmix-3 load
plateau occurs simultaneously with 95 compressions per
second.

These performance results show that the API can en-
able content-adaptation services to consume spare CPU
cycles on the proxy cache without interfering substan-
tially with the performance observed by transactions for
unmodified content.

7 Related Work

Sections 1 and 5 discuss the Internet Content Adaptation
Protocol (ICAP) and compare it with the API presented
here. This section discusses other related work.

The event-aware nature of our API is clearly motivated
by previous research on event-driven servers [3, 19], par-
ticularly by work showing their scalability benefits versus
traditional multi-threaded or multi-process servers [13].
Through the use of dynamic loading of modules cou-
pled with an event-driven proxy core, our implementa-
tion achieves performance comparable to adding existing
states into a event-driven server.

The TransSend/TACC proxy [6] performs content
adaptation using a system akin to Unix pipes, where
thread-based modules receive a stream of bytes from the
main proxy. In comparing the relevant section of that
work, we find differences in architecture and coverage.
By exposing an event-aware API, modules can choose
to avoid the overhead of threads or processes, yield-
ing higher scalability. In terms of coverage, since our
API is specifically designed for caching proxy servers,
it contains content management and utility functions not
present in other APIs.

Commercial proxy caches by Inktomi and Novell have

previously announced APIs. No public documentation of
functionality or performance is available for the Inktomi
API. The Novell Filter Framework provides a content
adaptation system for Novell Border Manager and Vol-
era Excelerator [12]. Filter modules are supported using
only a callback model. Additionally, the system appears
to be tightly integrated with the operating system kernel
because standard libraries for memory management such
as malloc are not available; instead, all memory allo-
cation and management must take place through kernel-
style memory chains. Filter Framework was never fully
implemented, and has now been discontinued.

Many academic studies and commercial products have
been based on modifying the source code of the Harvest
cache and its successors such as Squid [3, 18]. However,
if these source code changes are not integrated into the
public releases of the proxy, the groups maintaining the
modified proxy must track the public releases to incorpo-
rate bug fixes, performance improvements, and new fea-
tures. In contrast, changes to an API-enabled proxy server
only affect modules if the API specification changes.

Research in content adaptation has often shown the
difficulty in modifying proxy behavior. For example,
Chi et al. describe a proxy server that modifies Squid to
compress incoming data objects, but keeps the original
content-length header intact [4]. That work tests the proxy
with a modified client that ignores the content-length
header. In an API-based solution, deleting or changing
headers is a simple task since the API provides the needed
infrastructure.

The ad insertion proxy developed by Gupta and Baehr
uses special header lines that provide information about
what parts of an HTML document are ads that can
be replaced by the proxy in cooperation with the ori-
gin server [7]. Their non-caching proxy was developed
specifically for this purpose. The same system could be
developed with an API-enabled proxy with much less ef-
fort, as the ad replacement module could use the same
special headers to communicate with cooperating servers
without modifying the infrastructure for managing other
HTTP headers.

Various researchers have examined the issue of content
management, often to address the limitations of the HTTP
protocol’s handling of object expiration/staleness or to
take advantage of regional proxies. The PoliSquid server
develops a domain-specific language to allow customiza-
tion of object expiration behavior [1]. The Adaptive
Web Caching project uses proxies in overlapped multicast
groups to push content and perform other optimizations
related to object placement [5]. Likewise, the approach
proposed by Rabinovich et al. uses routing/distance in-
formation to determine when proxies should contact
neighbors versus when they should request objects di-
rectly [14]. In all of these cases, a content-management

API would reduce development work of the customizers
and would allow them to focus on their policies and im-
provements rather than the underlying mechanism.

Researchers and companies have also examined mecha-
nisms for extending proxy server functionality using Java.
The Active Cache project associates with each cacheable
document a Java applet that is invoked when a proxy ac-
cesses the document [2]. Likewise, the JProxyma proxy
uses Java plug-ins for performing content adaptation [9].
We believe that the API we propose can enable either ap-
proach; in particular, the use of helper processes in sample
modules such as the transcoder shows that extended ser-
vices can effectively launch external programs for their
API interactions.

Component-based software architectures are rapidly
gaining popularity in various domains of the computer in-
dustry. For instance, the applications in office productivity
suites, such as Microsoft Office or the public-domain Kof-
fice, all follow the component-based paradigm, exporting
a set of APIs to other applications [10, 11]. The reason for
this growing popularity is identical to the one that caused
us to develop an API for proxy caches: providing the abil-
ity to control an application without having to modify it.

8 Conclusions

The need for Web proxy caches to provide a wide-ranging
and growing set of services motivates systems that al-
low development of customization modules while shield-
ing developers from the details of the underlying cache.
This paper describes an Application Programming Inter-
face (API) for proxy caches that allows them to become
programmable components in sophisticated content de-
livery infrastructures. Using this API, functionality can
be added to the proxy cache after it is deployed, without
needing third-party source code modifications that may
be difficult to maintain or needing external servers to run
these services even if the cache CPU is not fully utilized.
The API supports content adaptation, content manage-
ment, and customized administration, and can be used
to implement the ICAP Internet draft. We have demon-
strated the power and ease of use of the API with some ex-
amples that show interesting tasks being performed with
small amounts of code.

Although the API is independent of any particular
proxy cache core, we have discussed the implementation
and performance of the API in the iMimic DataReactor
proxy cache. Because the API design follows the event-
driven structure of a typical proxy, implementing the API
has no significant effect on the performance of the proxy
cache. Further, our results show two realistic content-
adaptation services achieving high performance levels
without substantially hindering a background benchmark

load run at a high throughput level. This allows such
services to consume free CPU cycles on the cache sys-
tem itself, an increasingly available commodity as pro-
cessor speeds accelerate faster than other portions of the
system and as small-scale multiprocessors become more
common.

References

[1] J. Barnes and R. Pandey. Providing Dynamic and
Customizable Caching Policies. In Proceedings of
the Second USENIX Symposium on Internet Tech-
nologies and Systems (USITS 99), Oct. 1999.

[2] P. Cao, J. Zhang, and K. Beach. Active cache:
Caching dynamic contents on the web. In Pro-
ceedings of IFIP International Conference on Dis-
tributed Systems Platforms and Open Distributed
Processing (Middleware ’98), pages 373–388, 1998.

[3] A. Chankhunthod, P. Danzig, C. Neerdaels,
M. Schwartz, and K. Worrell. A hierarchical inter-
net object cache. In Proceedings of the 1996 Usenix
Technical Conference, Jan. 1996.

[4] C. Chi, J. Deng, and Y. Lim. Compression proxy
server: Design and implementation. In Proceedings
of the Second USENIX Symposium on Internet Tech-
nologies and Systems (USITS 99), Oct. 1999.

[5] S. Floyd, V. Jacobson, and L. Zhang. Adaptive web
caching. In Proceedings of the Second International
Web Caching Workshop (WCW ’97), 1997.

[6] A. Fox, S. D. Gribble, Y. Chawathe, E. A. Brewer,
and P. Gauthier. Cluster-based scalable network ser-
vices. In Proceedings of the Sixteenth ACM Sym-
posium on Operating System Principles, San Malo,
France, Oct. 1997.

[7] A. Gupta and G. Baehr. Ad insertion at proxies to
improve cache hit rates. In Proceedings of the 4th
International Web Caching Workshop, Apr. 1999.

[8] ICAP Protocol Group. ICAP: the Internet Content
Adaptation Protocol. Internet draft, June 2001.

[9] Intellectronix LLC. Jproxyma.
http://www.intellectronix.com/jpro/aboutjpro.htm.

[10] KOffice Project. Koffice.
http://www.koffice.org/.

[11] Microsoft Corporation. Microsoft Office.
http://www.microsoft.com/office/.

[12] Novell Developer Kit. Filter Framework, Jan. 2001.

[13] V. S. Pai, P. Druschel, and W. Zwaenepoel. Flash:
An efficient and portable web server. In USENIX
Annual Technical Conference, pages 199–212, June
1999.

[14] M. Rabinovich, J. Chase, and S. Gadde. Not all hits
are created equal: Cooperative proxy caching over
a wide area network. In Proceedings of the Third
International Web Caching Workshop (WCW ’98),
June 1998.

[15] A. Rousskov, M. Weaver, and D. Wessels. The
fourth cache-off. Raw data and independent analy-
sis at http://www.measurement-factory.com/results/,
Dec. 2001.

[16] A. Rousskov and D. Wessels. The third cache-
off. Raw data and independent analysis at
http://www.measurement-factory.com/results/, Oct.
2000.

[17] A. Rousskov, D. Wessels, and G. Chisholm. The
second IRCache web cache-off. Raw data and inde-
pendent analysis at http://cacheoff.ircache.net/, Feb.
2000.

[18] D. Wessels et al. The Squid Web Proxy Cache.
http://www.squid-cache.org.

[19] Zeus Technology Limited. Zeus Web Server.
http://www.zeus.co.uk.

