To appear in Proceedings of ISCA-24 (June, 1997)

The Interaction of Software Prefetching with
ILP Processors in Shared-Memory Systems *

Parthasarathy Ranganathan, Vijay S. Pai, Hazim Abdel-Shafi, Sarita V. Adve

Department of Electrical and Computer Engineering
Rice University
Houston, Texas 77005
{parthas|vijaypailshafil|sarita}@rice.edu

Abstract

Current microprocessors aggressively exploit instruction-
level parallelism (ILP) through techniques such as multiple
issue, dynamic scheduling, and non-blocking reads. Recent
work has shown that memory latency remains a significant
performance bottleneck for shared-memory multiprocessor
systems built of such processors.

This paper provides the first study of the effectiveness
of software-controlled non-binding prefetching in shared-
memory multiprocessors built of state-of-the-art 11.P-based
processors. We find that software prefetching results in sig-
nificant reductions in execution time (12% to 31%) for three
out of five applications on an ILP system. However, com-
pared to previous-generation systems, software prefetching
is significantly less effective in reducing the memory stall
component of execution time on an ILP system. Conse-
quently, even after adding software prefetching, memory
stall time accounts for over 30% of the total execution time
in four out of five applications on our ILP system.

This paper also investigates the interaction of software
prefetching with memory consistency models on [LP-based
multiprocessors. In particular, we seek to determine whether
software prefetching can equalize the performance of sequen-
tial consistency (SC) and release consistency (RC). We find
that even with software prefetching, for three out of five ap-
plications, RC provides a significant reduction in execution
time (15% to 40%) compared to SC.

1 Introduction

Shared-memory multiprocessors are increasingly built of
commodity microprocessors that exploit high levels of
instruction-level parallelism (ILP) with techniques such as
multiple issue, dynamic scheduling, and non-blocking reads.
Such ILP features have the potential for greatly improving
system performance. However, recent work has shown that

*This work is supported in part by the National Science
Foundation under Grant No. CCR-9410457, CCR-9502500, and
CDA-9502791, and the Texas Advanced Technology Program under
Grant No. 003604016. Vijay S. Pai is also supported by a Fannie and
John Hertz Foundation Fellowship.

Copyright ©1997 by ACM, Inc. Permission to make digital or hard copies
of part or all of this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the first
page. Abstracting with credit is permitted. To copy otherwise, to republish,
to post on servers, or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Publications Dept, ACM Inc., fax +1
(212) 869-0481, or permissions@acm.org.

while these features significantly improve the performance
of computation, memory system performance remains a key
bottleneck in multiprocessors [27].

To reduce memory stall time, many current processors
support software-controlled non-binding prefetching. With
this technique, the compiler or programmer schedules an
explicit prefetch instruction for a location that will be ac-
cessed by the processor at a later time, with the goal of
bringing the location into the processor’s cache before it is-
sues a demand memory access [4]. Previous studies have
shown that software-controlled non-binding prefetching can
eliminate a large fraction of memory stall time in shared-
memory multiprocessors [24, 33]. However, all such studies
used previous-generation processors with single-issue, static
scheduling, and blocking reads. Consequently, such stud-
ies do not account for the interactions between software
prefetching and the other latency-tolerating techniques al-
ready incorporated in ILP-based multiprocessors. An analy-
sis of these interactions is required to assess the effectiveness
of current software prefetching strategies for state-of-the-art
shared-memory multiprocessors.

Memory system performance also depends on the con-
sistency model of the system. Relaxed memory consistency
models such as release consistency (RC) can potentially tol-
erate more memory latency than the simple model of se-
quential consistency (SC), but mandate a more complex
programming model. Studies on previous-generation mul-
tiprocessors have shown that software prefetching can im-
prove the performance of both SC and RC [14]. Systems
with ILP processors, however, can incorporate hardware op-
timizations such as speculative reads and hardware prefetch-
ing from the instruction window to improve the performance
of SC [10]. A recent study has shown that such techniques
substantially narrow the performance gap between SC and
RC, but a significant gap remains for some applications [28].
Since software prefetching targets the same latencies as RC,
it is important to determine if software prefetching can elim-
inate the remaining gap between SC and RC on current mul-
tiprocessors, allowing the high performance of RC with the
simple programming model of SC.

This paper is the first study of software-controlled non-
binding prefetching in shared-memory multiprocessor sys-
tems using state-of-the-art ILP processors, and has two
goals:

(1) To understand how software prefetching interacts with
ILP in multiprocessors, and to identify its limitations.

(2) To understand if software prefetching can equalize the
performance of SC and RC.

To appear in Proceedings of ISCA-24 (June, 1997)

To achieve these goals, we study the impact of soft-
ware prefetching on five applications from the SPLASH
and SPLLASH-2 suites. We insert prefetches in the applica-
tions by hand, following the currently best known compiler
prefetching algorithm [23]. We run the applications on a de-
tailed execution-driven simulator modeling shared-memory
multiprocessors with state-of-the-art ILP processors.

For our first goal, we compare the performance benefits
of software prefetching on two multiprocessor systems re-
ferred to as Simple and ILP. These systems are identical in
every respect except that Simple uses previous-generation
processors while ILP uses state-of-the-art ILP processors.
For this part, we assume RC for both systems since RC has
been shown to have the best performance (compared to SC
or processor consistency) for these systems [9, 11, 28].

We find that for three out of our five applications, current
software prefetching methods achieve a significant reduction
in total execution time (12% to 31%) on ILP. However, even
after applying software prefetching, data memory stall time
constitutes a large fraction of the total execution time on
ILP. Specifically, four out of five applications spend more
than 30% of their time in data memory stalls. In contrast,
on Simple, four out of five applications see less than 17%
data memory stall time after applying software prefetching.
Overall, we find current software prefetching methods to be
significantly less effective in addressing memory stall time in
ILP than in Simple, leaving most of our applications largely
memory bound on ILP.

Compared to Simple, the two primary factors that con-
tribute to the reduced effectiveness of prefetching on ILP
are an increase in the number of late prefetches and an in-
crease in contention for various resources. These factors
occur because ILP speeds up computation and thus pro-
vides less work with which to overlap prefetch latency. Fur-
ther, the increased frequency of misses in ILP also leads to
increased resource contention. This in turn increases the
latency of individual misses and further increases the num-
ber of late prefetches. Several straightforward modifications
to the prefetching scheme to reduce late prefetches and re-
source contention did not show any appreciable benefits.

For our second goal, we compare the performance bene-
fits of prefetching on ILLP multiprocessors that implement SC
and RC. For SC, we consider a straightforward implementa-
tion as well as an optimized implementation incorporating
write buffering, speculative reads, and hardware prefetching
from the instruction window [9, 10, 28]. We find that even
with software prefetching, for three applications, RC pro-
vides significant reductions in execution time (15% to 40%)
compared to the most optimized version of SC. The effec-
tiveness of software prefetching in SC implementations is
limited for reasons similar to the RC system. These limita-
tions, however, have a larger impact on SC since SC exposes
write latencies, which are hidden by RC. Thus, we find that
software prefetching is unable to close the performance gap
between SC and RC for our applications.

The rest of the paper is organized as follows. Section 2
gives background information on the software prefetching al-
gorithm and the memory consistency implementations eval-
uated in this study. Section 3 presents our simulated archi-
tectures, performance metrics, simulation environment, and
applications. Section 4 discusses our results on the inter-
action of software prefetching with ILP on RC. Section 5
re-examines various assumptions of our prefetching scheme
and explores several modifications. Section 6 describes our
results on the interaction of software prefetching with con-
sistency models. Section 7 discusses related work. Section 8

concludes the paper.

2 Background

Sections 2.1 and 2.2 respectively describe the base software
prefetching algorithm and memory consistency implementa-
tions we use in this study.

2.1 Software Prefetching Algorithm

The best known software prefetch insertion algorithm im-
plemented in a compiler is by Mowry et al. [23, 24]. We
describe this algorithm below. Section 3.4 describes how we
use it to insert prefetches in our applications.

The algorithm is loop-based, and consists of an analysis
phase and a scheduling phase. The analysis phase identi-
fies the accesses that do not exhibit cache locality, and for
which prefetches need to be inserted. When determining lo-
cality, this phase assumes a cache size reduced by an appro-
priate fraction to account for conflict misses. The analysis
conservatively assumes that no locality is maintained across
synchronization.

The scheduling phase follows the analysis phase and uses
loop peeling, unrolling, and strip-mining to insert prefetches
only for the accesses that are expected to cause cache misses.
Accesses to the same cache line are grouped into equivalence
classes, and an exclusive prefetch is used to obtain owner-
ship along with the data for the line if at least one member
of the equivalence class is a write. The inner-most loop cor-
responding to an access is software pipelined to schedule a
prefetch a certain number of iterations ahead of the demand
access. The number of iterations is computed by the formula
[%], where L is the expected miss latency in cycles and W
is an estimate of the shortest possible path through an it-
eration in cycles. This number is referred to as the prefetch
distance, and is expected to represent the number of itera-
tions needed to completely overlap the latency of a prefetch.
In this paper, we also use the term prefetch distance to refer
to the number of instructions needed to overlap the prefetch
latency.

The above core algorithm only handles affine accesses.
It is further extended to handle indirect accesses when the
indirection is through an affine reference. T'wo prefetches are
inserted for each indirect access. The first prefetch is used to
fetch the address of the indirect access, and the second uses
the address to prefetch the indirect access. Since the second
prefetch uses the value of the first, the first prefetch must
be scheduled before the second according to the prefetch
distance.

2.2 Memory Consistency Models

The memory consistency model of a system determines the
extent to which the system can appear to overlap or reorder
memory operations to hide memory latency.

Sequential consistency (SC) [18] guarantees that all
memory operations appear to execute in program order and
hence offers a simple and intuitive programming model. We
examine two implementations of sequential consistency —
SCplain and SCopt. SCplain is a naive implementation that
enforces memory ordering by stalling the issue of a memory
operation until the previous memory operation of that pro-
cessor has completed.

SCopt is a more aggressive implementation that improves
performance through three hardware techniques, hardware
prefetching of writes from the instruction window [10, 28],

To appear in Proceedings of ISCA-24 (June, 1997)

ILP Processor

Processor speed 300MHz
Maximum fetch/decode/retire rate 4
(instructions per cycle)
Instruction window
Functional units

64 entries

2 integer arithmetic
2 floating point

2 address generation
Simultaneous speculated branches 8

Maximum instructions in memory queue | 32

Network parameters

150MHz

64 bits

2 network cycles
Split transaction
128 bits at 100 MHz

Network speed
Network width

Flit delay (per hop)
Bus type

Bus width and speed

Cache parameters

Cache line size
L1 cache (on-chip)

64 bytes
Direct mapped, 16 KB

L1 request ports 2

L1 hit time 1 cycle

Number of L1 MSHRs 8

L2 cache (off-chip) 4-way associative, 64 KB
L2 request ports 1

L2 hit time 8 cycles, pipelined

Number of L2 MSHRs 8

Memory parameters

Memory access time
Memory transfer bandwidth
Memory interleaving

18 cycles (60 ns)
16 bytes/cycle
4-way

Figure 1: Default system parameters

speculative reads [10, 28], and write buffering [9]. The first
two techniques, hardware prefetching and speculative reads,
exploit the instruction-lookahead window and speculation
support available in ILP processors. The hardware prefetch-
ing technique issues a non-binding prefetch for a decoded
memory instruction in the instruction issue window once
the address of the instruction is computed. The effective-
ness of this technique is primarily constrained by the size of
the instruction window and the time for the address to be
computed. Speculative reads extend the benefits of hard-
ware prefetching by speculatively using the values of reads
brought into the cache, even while previous demand accesses
are incomplete. If a possible violation of memory ordering is
detected due to early use of such data, the system rolls back
the speculative load and all subsequent instructions. The
third optimization in SCopt, write buffering, allows writes
to retire from the instruction window as soon as they reach
the head of the window. Each write is buffered in the pro-
cessor’s memory queue, and is issued to the cache only af-
ter the previous write (by program order) has completed.
Write buffering allows multiple writes to be retired before
issue. A read following such writes, however, must wait for
these writes to complete before the read can retire from the
instruction window.

The release consistency model (RC) [12] allows more
overlap and reordering of memory operations than SC, al-
beit at the cost of greater programming complexity. RC
distinguishes between data and synchronization operations,
allowing data operations to be reordered with respect to
one another. We only study a straightforward implemen-
tation of RC. We do not consider a corresponding RCopt
implementation, as previous work has shown that hardware
prefetching and speculative reads do not significantly affect
the performance of RC for our applications [28], and RC
already implements a superset of the write buffering opti-
mization. Writes in RC retire from the instruction window
as soon as they reach the head, maintaining a memory queue
entry until issue to the cache; unlike SCplain and SCopt, RC
allows multiple writes to issue in parallel.

3 Methodology

This section describes the experimental methodology used
in this paper. Sections 3.1, 3.2, and 3.3 respectively de-
scribe the architectures modeled, our performance metrics,
and our simulation environment. Section 3.4 describes the
applications used in this study and the prefetches inserted
in these applications.

3.1 Simulated Architectures

The first part of this study compares two multiprocessor
systems — ILP and Simple. These systems are equivalent
in all respects except for the processor modeled. ILP uses
state-of-the-art high-performance processors while Simple
uses previous generation processors. We compare the ILP
and Simple systems not to propose any architectural trade-
off, but rather, to understand how software prefetching in-
teracts with ILP techniques. Therefore, the two systems
have identical clock rates, and include identical aggressive
memory and network systems suitable for ILP.

3.1.1 Processor Models

The ILP system uses state-of-the-art processors employing
ILP features such as multiple-issue, out-of-order execution,
speculative execution, non-blocking reads, and register re-
naming. Our implementation of the processor core resembles
the MIPS R10000 microarchitecture [22], but also includes
aggressive features from other architectures. Default param-
eters for the processor are listed in Figure 1. The Simple
system uses previous-generation statically-scheduled, single-
issue processors with blocking reads.

Simple processors rely on compilers to schedule instruc-
tions to hide functional unit latencies. In ILP processors, the
hardware instruction window can serve the same purpose.
Since we do not have access to a compiler that schedules
instructions according to our Simple architecture, we use
single-cycle functional unit latencies in both models for a
fair comparison of the two systems. To study the impact of
this assumption on ILP performance, we ran our simulations
with realistic functional unit latencies. We found that, ex-
cept on one application (Water), there was little impact on
ILP execution time because ILP processors successfully over-
lapped functional unit latencies. Our key findings continue
to hold even in Water.

Both processor models include support for software-
controlled non-binding prefetching, with both exclusive-
mode and shared-mode prefetches. Prefetch instructions re-
tire as soon as they reach the top of the instruction window,
but occupy a slot in the processor’s memory queue until they
are issued. Prefetches are not dropped even if resource con-
straints block their issue, and prefetched lines are brought
into the highest level of the memory hierarchy. These two
assumptions follow previous work [23], and are re-evaluated
in Section 5.

Both processor models support RC, using the SPARC V9
MEMBAR fence instructions to impose ordering at synchroniza-
tion points [32]. The ILP processor additionally supports the
two implementations of sequential consistency described in
Section 2.2 — SCplain and SCopt. As with software prefetch-
ing, we do not drop hardware prefetches in SCopt even if
their issue is blocked due to resource constraints. The SCopt
processor includes a speculative load buffer to monitor out-
standing speculative reads [10] and employs a mechanism
similar to that used in the MIPS R10000 [22] to recover
when possible consistency violations are detected.

To appear in Proceedings of ISCA-24 (June, 1997)

3.1.2 Memory Hierarchy and Multiprocessor Configura-
tion

We simulate a hardware cache-coherent, non-uniform mem-
ory access (CC-NUMA) shared-memory multiprocessor us-
ing an invalidation-based, three-state directory coherence
protocol. Each node in our simulated system includes a
processor, two levels of caches, and a portion of the global
shared-memory and directory. A split-transaction bus con-
nects the network interface, directory controller, and the
rest of the system node. The nodes are connected using a
two-dimensional mesh network. Figure 1 summarizes the
memory system parameters.

Both caches are non-blocking with 8 miss status holding
registers (MSHRs) [17] each. The MSHRs store information
about the misses and coalesce multiple requests to the same
cache line. In the event of a write request being received for
the same line as a pending read, the MSHR blocks the write
request and issues an ownership request only after the read
returns (we refer to such stalls as write-after-read stalls).
This implementation avoids complex races at the MSHRs
and directory that can arise from reordering in the network,
and resembles several current systems.

The 1.1 cache is dual-ported, allowing two accesses to be
handled simultaneously, and uses a write-allocate write-back
policy. We assume a write-back policy for the L1 cache since
previous work has shown that SC systems perform best with
write-back caches and because several recent systems sup-
port write-back L1 caches. The L2 cache is a fully pipelined,
write-allocate write-back cache. The L1 cache size is 16 KB
and the 1.2 cache size is 64 KB. These sizes are chosen
based on the input sizes of our applications (described in
Section 3.4), following the methodology described by Woo
et al. [34]. The primary working sets for our applications fit
in the L1 cache, while the secondary working sets do not fit
in the 1.2 cache.

The number of processors in our system varies by appli-
cation and is either 8 or 16 depending on the scalability of
the application, as summarized in Figure 3.

3.2 Performance Metrics

In addition to reporting execution times, we consider vari-
ous components of execution time to enable identification of
the performance bottlenecks in our systems. We divide the
execution time into three components — CPU, data mem-
ory, and synchronization. We use the following convention
to account for stall cycles [27, 28, 30]. All cycles where
the processor retires the maximum number of instructions
allowed by the architecture are considered busy time. Oth-
erwise, we charge the cycle to the stall time component of
the first instruction that could not be retired that cycle.
We group together the busy time and functional unit stall
time as CPU time. We subdivide the data memory stall
time into the time spent on L1 hits, L2 hits, local memory
accesses, and remote memory accesses, for both reads and
writes. Henceforth, we use the term memory stall time to
denote the data memory stall component of execution time.

We divide prefetches into various categories, as summa-
rized in Figure 2. These categories are useful, in which a
prefetched line arrives on time and is used by a demand
access; late, in which a prefetched line arrives after the de-
mand access; early, in which the prefetched line is replaced
or invalidated before use, or is never used; and unnecessary,
in which the line being prefetched is already present in ei-

ther the cache or the MSHRs. We describe prefetches that

| Category || Description
Useful Arrives on time; used by demand access
Late Arrives after demand access
(i.e. latency only partially hidden)

Early Replaced or invalidated before use (or unused)
Unnecessary || Hits in cache or MSHR

Figure 2: Classification of prefetches
Application Input Size Processors
LU 256 by 256 matrix, block 8 8
FFT 65536 points 16
MP3D 50000 particles 8
Water 512 molecules 16
Radix 1024 radix, 512K keys, max 512K | 8

Figure 3: Applications, input sizes, and system sizes

result in the replacement of a line needed by a demand ac-
cess as damaging; all prefetch types other than unnecessary
prefetches can also be damaging.

3.3 Simulation Environment

We wuse the Rice Simulator for ILP Multiprocessors
(RSIM) [26] to model the Simple and ILP systems described
in the previous sections. RSIM models the processors, mem-
ory system, and interconnection network in detail, includ-
ing contention at all resources. Specifically, unlike current
direct-execution simulators, we accurately model the details
of the processor pipelines. Our simulator is execution-driven
(as opposed to trace-driven) and hence allows the interac-
tions between processors during the simulation to affect the
course of the simulation. To speed up our simulations, we
assume that all instructions hit in the instruction cache and
that all private variables hit in the data cache. However, we
do model contention due to private data accesses at various
processor and cache resources.

3.4 Applications and Prefetching Methodology

We use five applications in this study — Radix, LU, and FFT
from the SPLASH-2 suite [34], and Water and Mp3d from
the SPLLASH suite [31]. Since we do not have a compiler that
implements software-prefetching for C programs, we insert
prefetches by hand, following the algorithm by Mowry et al.
(Section 2.1) for all applications except Water. Prefetching
for Water is described further below.

We assume a default prefetch distance of 200 instructions
to model the representative latency seen in the system. In
Section 5, we vary the prefetch distance to study the im-
pact of this assumption. To account for conflict misses, our
locality analysis assumes a cache size equivalent to a frac-
tion of the L1 cache. We choose a fraction that minimizes
the number of unnecessary prefetches for all our applica-
tions. We perform loop transformations as required by the
prefetching algorithm. Whenever loop-unrolling was used
in the prefetch version of an application, we also used it for
the base application, as loop-unrolling improves the perfor-
mance of ILP. In addition, since our focus is on the prefetch
algorithm and not on a particular compiler implementation,
we assume aggressive compiler techniques (e.g., procedure
inlining, symbolic loop-bound analysis) to perform locality
analysis. For RC, since write latency is already hidden, we
do not issue exclusive prefetches for cache lines that are
only written; however, we use exclusive prefetches for reads
of lines that will also be written. For SC, we additionally
issue exclusive prefetches for cache lines that are only writ-
ten, since SC can expose write latency. We next describe
each application and the prefetches inserted.

To appear in Proceedings of ISCA-24 (June, 1997)

We study two versions of LU. The first, LUorig, is the
original SPLLASH-2 application enhanced by using flags in-
stead of barriers for better load balance. The second ver-
sion, LUopt, additionally uses loop-interchange transfor-
mations to move read misses closer to each other. This in-
creases the number of read misses that overlap with each
other, better exploiting the support for non-blocking reads
in ILP [27]. LUopt achieves higher performance than LUorig
on ILP without prefetching, but is outperformed by LUorig
with the addition of prefetching. We therefore report the re-
sults of both versions in Section 4; subsequent sections use
only LUorig. Prefetching in LU covers all loop nests in the
application. The writes in these loop nests follow reads to
the same locations, so we insert exclusive prefetches for such
read accesses.

We consider two versions of FFT, FFTorig and
FFTopt. Analogous to LUopt, FFTopt clusters read misses
(in the transpose phase) to increase overlap. We only report
results for FFTopt because it outperforms FFTorig on the
ILP system, both with and without prefetching. Prefetching
is used for all read accesses expected to miss; some of these
are exclusive prefetches. In the transpose phase, there are
write misses for which there are no previous reads in the
same phase; these writes are prefetched in the SC version.

In Mp3d, all reads to particles are prefetched. These
particles are used to generate addresses for cells, which are
prefetched using the method for indirect accesses described
in Section 2.1. All prefetches are exclusive. Some cell
accesses cannot be prefetched because their addresses are
known only immediately before their demand accesses.

In Radix, prefetches are inserted for all reads that are
expected to miss and whose addresses are known sufficiently
before the demand access. Exclusive prefetches are used in
the prefix-sum phase of this application. The key sort or
“permutation” phase consists of writes to lines that are not
previously read in the same phase. These writes cannot be
prefetched for SC because their addresses are not known
early enough before the demand access.

Water is the only application for which we do not
strictly follow the algorithm in Section 2.1. The algo-
rithm assumes no locality across synchronization, and thus
does not schedule prefetches across synchronization accesses.
However, since locks in Water do not have much contention
and the critical sections are too small to schedule prefetches,
we move prefetches corresponding to accesses within a crit-
ical section to before the critical section. This allows these
prefetches to overlap with the lock acquire of the criti-
cal section, improving the benefits of prefetching. We is-
sue exclusive prefetches in the UPDATE FORCES procedure to
prefetch the force data structures before entering the as-
sociated critical sections. We also prefetch molecule dis-
placements. These prefetches occur within loops with large
bodies, and consequently see prefetch distances much larger
than the default 200 instructions in the other applications.

The input sizes for our applications are summarized in
Figure 3. These are greater than or equal to the sizes used
in the SPLASH and SPLLASH-2 distributions for all appli-
cations except LU. In the case of LU, owing to higher simu-
lation times with our detailed simulator, we use a problem
size one step smaller than recommended, but also scale down
the number of processors appropriately. We use 16 proces-
sors for applications that scaled well (FFT and Water) and
8 processors otherwise (LU, Mp3d, and Radix). Data lay-
outs for these applications for LU, FFT, and Radix follow
the recommendations of the SPLLASH-2 distribution; data
layouts for Mp3d and Water aim to maximize locality.

4 Interaction of Software Prefetching with ILP

This section evaluates how software prefetching interacts
with ILP techniques in shared-memory multiprocessors by
comparing its impact on the ILP system with that on the
Simple system. This section uses RC for both ILP and
Simple, since RC has been shown to provide better per-
formance than SC for both types of systems [9, 11, 28].

Figures 4 and 5 present the key results from our exper-
iments. Throughout Figure 4, +PF indicates the addition
of software prefetching. Figure 4(a) shows the execution
times for each application on Simple and ILP, both with
and without software prefetching. The execution times are
normalized to the time for the application on Simple with-
out prefetching, and are divided into three components —
CPU, memory stall, and synchronization stall time. Fig-
ure 4(b) magnifies the memory region of Figure 4(a), pro-
viding a more detailed characterization of memory latency.
Fach bar showing memory stall time is separated into read
and write components by a horizontal dividing line. With
RC, no significant write component time is seen in any ap-
plication (however, contention caused by writes can impact
read time). Read and write stall times are further divided
into time spent stalled on .1 cache hits, .2 cache hits, misses
to local memory, and misses to remote memory. Figure 4(c)
shows the prefetches issued to the L1 cache, and divides
them into the categories useful, late, early, and unnecessary
according to the definitions in Section 3.2. The total number
of prefetches are normalized to the number in Simple.

Figure 5 summarizes the key statistics from Figure 4.
The first two rows show the reductions in overall execution
time and memory stall time due to software prefetching in
both ILP and Simple. The third row shows the percentage of
time an ILP or Simple execution is stalled for memory with
software prefetching. The last row shows the percentage of
prefetches that are late in ILP and Simple. For LU, Figure 5
reports only LUorig since LLUorig with software prefetching
performs better than LUopt with software prefetching for
both Simple and ILP.

4.1 Overall Results

As shown in the first row of Figure 5, software prefetch-
ing achieves an overall reduction in execution time in ILP
similar to or greater than that in Simple for three out of
five applications (LU, Water, and Radix). The reductions
for ILP are significant (12% to 31%) for three applications
(LU, Mp3d, and Water). However, focusing on the mem-
ory stall time (the execution time component specifically
targeted by prefetching), we find that software prefetching
is less effective in reducing memory stalls on ILP than on
Simple. Specifically, for our applications, prefetching re-
duces the absolute memory stall time by an average of 34%
in ILP compared to 56% in Simple. The net effect is that
even after prefetching is applied to ILP, memory stall time
constitutes more than 30% of the total execution time for
all applications except Water, and more than 40% of the
time for three applications. In contrast, in Simple, all ap-
plications except Mp3d see less than 17% memory stall time.
Thus, for our applications, the ILP system remains memory-
bound even with software prefetching.

The reasons for the reduced effectiveness of software
prefetching on memory stall time in ILP and its resulting
impact on total execution time are identified in the follow-
ing subsections.

To appear in Proceedings of ISCA-24 (June, 1997)

] g 4ot = Unnec |
= < Remote s
= Synch 3 3s.8 S 100} Early
S o] 20 s E L g . s —_ e
S cPU o 1 = Useful
= =3 — (=3 -
2 sof- 770 = 8 80
2 S Writes ©
= £ =1 Reads S 60
8 ool g L 201 = -
s 3]
E aol- N = 15 12.7 g 40 -
5
2 27z g o . S B
20~ [| S I 2 =20
s
° Simple Simple iLP P ° Simple Simpl D)) P
imple Simple
+PF +PF P! TR +PE +PF +PF
LUorig LUorig LUorig
2 =B — e Unnec Ml
=3 < 40 Remote S
= Synch 3 36.5 el S 100} Early
= 1001 g0 mShory £) °%% 8 - Gem
E=} 87.5 cPU =4 L1 = Useful
= S ol S 8ot
g eof = =
5] 2 a5 Writes)
= | 5 207 Reads S 601 mm
g oo £ =
= = 1 g
< I+ 15.5 N |
E 4ol sas N st T 40
S 30.0 s 104 E
E 10 S o0l
20 1— =2 =
s
° Simple Simple = P ° Simple _Simpl TS s ° Sme e
imple Simple
+PF +PF P = +PE +PF +PF
LUopt LUopt LUopt
] = = Unnec M
= < Remote s
= Synch 8 | = | Early
S oot 100.0 mSyeh o L =0 28.4 Local g 100 o
S 883 cPU 3 1 = Usetal
=1 S a5t S a0l
g =0l = D
= S o} Writes o
Reads o -
B ool] e 165 160 S eo
s 2 5T <
g b a1s a1s 8 = 40
S S 101 15
201 s L 2 20t
o - - o R ©
Simple Simple = LR Simple Simple)) simp ILP
+PF +PF TPE +PE +PF +PF
FFT FFT FET
[-o) = 83.3 = 1201 Ul]
2 esi = nnec
£ 1000 Syneh 8 s} Remote s Early
=S 1001 Memory £ 7 L2 S 100+ e
S cPU 3 [= - Usetal
3 779 2 610 59.6 £
2 sof- = - 3 8ot —
£ S oo s1.3 Writes 1] [l
) 6.0 £ o
E=1) 50 +— Reads o
2 eof s6.8 2 - = eol
= £ - 2
= 8 sof =
I3 — E] L < a0 +
E 40 & s
= £ S
20— =2 = 20
° ° s ILP
Simple Simple ILP ILP Simple Simple =) = imp
+PF +PF P! gl +PE +PF +PF
Mp3d Mp3d Mp3d
2 B *T € Unnec M
£ 1 Synch S Remote S 100} Early
100 1— 200 = o
= Memory = 20.2 L2 b= Late Ml
S cPU T o} L1 = Useful
= S 18.0 (=] |
S el 807 =2 g eo
= S | Writes 1]
3 £ 15 Reads S 60
g o1 £ =
= aze 2 = —
10 S -
E 4ol 36.3 R T 40
5 = £
= £ S
201~ S st 4.2 2 20}
o0 Bl
o o - ot—
Simple Simple =) P Simple Simple =) =) Simp ILP
+PF +PF —PE +PE +PF +PF
Water Water Water
2 106.5 =2 T Remote = Unnec M
E 100.0 Synch g oL 40.0 oS S 100 mmm mmm EAY
= 1001 Memory £ i 3 Late
=3 cPU L 34.5 1 = [. Useful
=1 3 =]
S 80 1— = | [}
% 2 =0 26.2 Writes ©
= 60.6 60.0 o 251 Reads =
g o1 £ =
= = 201 g
s 5] 16.0 =
E ot LA
= 5 10} =)
201 S =
s
o - - o :
Simple Simple [P Simple Simple s s Simp ILP
+PF +PF P PR +PFE +PF +PF
Radix Radix Radix
(a) Execution time components (b) Memory stall time (c) Prefetch characterization

Figure 4: Impact of software prefetching on Simple and ILP performance

Performance Metric LU FFT Mp3d Water Radix
ILP Simple [ILP Simple | ILP Simple | ILP Simple | ILP Simple
% execution time reduced 31 23 2 13 12 22 24 19 1 -7
% memory stall time reduced 57 65 9 53 14 27 77 96 14 39
% memory stall time remaining 31 17 41 15 91 78 12 1 58 15
% prefetches that are late 37 7 23 16 4 1 4 0 5 0

Figure 5: Effectiveness of software prefetching

To appear in Proceedings of ISCA-24 (June, 1997)

| Factor

| LUorig | LUopt | FFT | Mp3d | Water | Radix |

Late prefetches

Resource contention

v
v

v
v

Speculative prefetches

Overlapped accesses

i

Early prefetches

V

V

Figure 6: Factors shaping the effectiveness of software prefetching for ILP

4.2 Memory Stall Time Reduction

We first identify three factors that make software prefetch-
ing less successful in reducing memory stall time in ILP than
in Simple. We then identify two factors that enable ILP to
achieve benefits in memory stall time reduction not avail-
able in Simple. Figure 6 summarizes these factors and the
applications affected by each factor. Our focus here is on
the difference between Simple and ILP, so we do not discuss
issues that are common to both systems.

Increased late prefetches. Figures 4(c) and 5 show
that the number of prefetches that are too late to com-
pletely hide the miss latency increases in all our applications
when moving from Simple to ILP. One reason for this in-
crease is that multiple-issue and dynamic scheduling speed
up computation in ILP, decreasing the computation time
with which each prefetch is overlapped. In addition, Simple
stalls on any read misses that are not prefetched or that
incur a late prefetch, thereby allowing other outstanding
prefetches to complete. ILP does not provide similar leeway,
as it does not immediately stall the processor on misses. The
above reasons also lead to an increased frequency of memory
accesses in the ILP case, which in turn increases contention
for system resources. As a result, misses have longer latency
in ILP, further increasing the number of late prefetches.

Our results also show that optimizations to cluster read
misses for the ILP system (described in Section 3.4) can re-
duce the effectiveness of software prefetching. In the absence
of prefetching, LUopt provides a 13% reduction in execu-
tion time compared to LUorig for ILP. With prefetching,
however, LUopt sees 10% more execution time than L.Uo-
rig. The clustering optimization used in LUopt decreases
the amount of computation between successive misses. As
a result, prefetches require a greater number of iterations in
order to completely overlap the expected miss latency. How-
ever, the loops in LUopt do not have enough iterations to
accommodate the needed prefetch distance, so the prefetches
in LUopt are unable to successfully hide their targeted la-
tencies.

Increased resource contention. Even without
prefetching, ILP processors stress system resources more
than Simple. These resources include processor functional
units, cache ports, cache MSHRs, the memory bus, the
memory and directory banks, and the network. Resource
contention is less in Simple because Simple processors stall
on read misses, allowing resources used by previous writes
and prefetches to free up during these stalls.

Resource contention can result in an increase in each of
the components of memory latency, and can be further exac-
erbated by prefetching. For prefetched accesses, an increase
in latency after the 1.1 cache access can either be successfully
overlapped by prefetching or appear as late prefetches, de-
scribed above. However, prefetching cannot target increased
latencies incurred at or before the 1.1 cache access. We focus
on this type of resource contention next.

We recognize contention for resources at or before the
L1 cache access in our applications by observing the pres-

ence of exposed L1 read hit time, as this time is otherwise
hidden in both Simple and ILP. Additionally, the presence
of an exposed 1.2 read hit component in ILP also generally
indicates resource contention, since ILP techniques usually
hide 1.2 read hit latencies otherwise. We identify the sources
of these types of resource contention by examining MSHR
occupancy at the caches and functional unit utilization (not
shown here for lack of space).

In our applications, resource contention before the L1
cache particularly limits the ILP performance of LUopt,
FFT, and Radix. These applications see significant MSHR
saturation, caused by overlapped reads in LUopt and FFT
and by writes in Radix. When the MSHRs of a cache satu-
rate, subsequent misses stall at the cache ports, eventually
blocking even cache hits. This effect is particularly large in
FFT and Radix, as evidenced by a significant L.1 read hit
component. As discussed above, such a component cannot
be targeted by software prefetching, and is actually exac-
erbated by the greater frequency of requests with prefetch-
ing. Additionally, for FFT, software prefetching with ILP
also sees a shortage of ALUs and address generation units
needed to calculate addresses for both prefetch and demand
accesses.

Water stands as an exception to the above trends, as soft-
ware prefetching actually relieves some resource contention
in this application. Water sees resource contention for the
processor’s memory queue due to lock releases. Each release
is marked with a release memory fence, using a SPARC V9
memory barrier. This fence prevents the issue of all subse-
quent writes until all previous reads and writes complete.
As a result, later writes can fill up the memory queue if ear-
lier accesses do not complete quickly enough. If the memory
queue fills up, subsequent accesses (including cache hits and
private accesses) are prevented from entering the memory
queue or being processed in any fashion. Since prefetch-
ing can cause accesses before the release memory fence to
complete more quickly, this source of resource contention is
actually reduced by software prefetching.

Speculative prefetches. In ILP, prefetch instructions
can be speculatively issued past a mispredicted branch.
Speculative prefetches can potentially hurt performance by
bringing unnecessary lines into the cache. Among our ap-
plications, only Mp3d experiences a significant number of
speculative prefetches, with 11% more total prefetches in
ILP than in Simple. However, most of the speculated
prefetches are to lines also prefetched on the correct path,
and the correct prefetches either coalesce with the specula-
tive prefetches or hit because of them. Thus, speculative
prefetches do not impact performance in our applications.

Overlapped accesses. In ILP, accesses that are diffi-
cult to prefetch may be overlapped because of non-blocking
reads and dynamic scheduling. Thus, overall, prefetch-
ing may appear more effective in ILP than in Simple, as
prefetching in ILP only needs to target those accesses that
are not already overlapped by ILP. We see the benefit of
overlapped accesses in LUorig and LUopt. In particular, the
fraction of remote latency overlapped in these applications

To appear in Proceedings of ISCA-24 (June, 1997)

is much smaller in ILP than in Simple for the reasons dis-
cussed above. Nevertheless, the fraction of overall memory
stall time reduced in these applications is similar in both
systems. In these applications, the lines to be prefetched
suffer from repeated 1.1 cache conflicts; thus, prefetches can
be replaced from the 1.1 cache before their corresponding de-
mand accesses. In Simple, each of these conflicting accesses
must incur at least an L2 access time penalty. In contrast,
non-blocking reads and dynamic scheduling allow the ILP
system to effectively overlap the latencies of these conflict-
ing accesses, thereby removing a limitation to prefetching
experienced by Simple.

Fewer early prefetches. In most of our applications,
the number of early prefetches drops in ILP. This reduc-
tion occurs because the ILP system allows less time between
a prefetch and its subsequent demand access, decreasing
the likelihood of an intervening replacement or invalidation.
Early prefetches can hinder demand accesses by replacing
or invalidating needed data from the same or other caches
without providing any benefits in latency reduction. Thus,
the reductions in early prefetches seen in ILP can potentially
help improve prefetching effectiveness for these applications.
However, in our applications, such benefits are offset by an
increase in late prefetches with ILP.

4.3 Impact on Total Execution Time

Despite its reduced effectiveness in addressing memory stall
time, software prefetching achieves significant execution
time reductions with ILP for three of our applications (see
Figure 5) for several reasons.

Increased weight of memory stall time. ILP fea-
tures like multiple issue and dynamic scheduling provide
greater improvements for computation time than for the
memory stall time on all our applications [27]. As a re-
sult, memory stall time contributes far more to execution
time in ILP than in Simple. Thus, even a smaller fraction of
memory stall time reduced in ILP can lead to a reduction in
overall execution time similar to or greater than that seen
in Simple.

Reduced prefetch overhead. For all of our applica-
tions, the ILP system sees less instruction overhead from
prefetching (as a percentage of total execution time) than
the Simple system. This is because dynamic scheduling and
multiple issue allow many of the additional instructions asso-
ciated with software prefetching to overlap with other com-
putation or memory accesses.

Effect on synchronization stall time. Prefetching
can also impact the synchronization component of execu-
tion time. The impact of prefetching with ILP on synchro-
nization time varies among our applications, with both pos-
itive and negative interactions. However, the synchroniza-
tion component contributes little to ILP execution time in
all of our applications except Water. In Water, there is a
negative interaction because prefetching increases synchro-
nization acquire latency in ILP due to increased contention
in the memory system. Thus, synchronization time expands
to fill a large part of the reduction in memory stall time with
prefetching in the ILP system.

5 Re-examining Assumptions of the Prefetching Scheme

The previous section shows that late prefetching and re-
source contention are the two key limitations to the effec-
tiveness of prefetching on ILP. This section re-examines sev-
eral assumptions in our prefetching scheme, with the goal of

reducing late prefetches and resource contention in ILP.

5.1 Reducing Late Prefetches

Increasing the prefetch distance. A straightforward
way to reduce the number of late prefetches is to increase
the prefetch distance. We varied the prefetch distance from
our default of 200 instructions to 400 and 800 instructions.
Figure 7 shows the results for LU, FFT, Mp3d, and Radix
(we henceforth only focus on LUorig since it gives better per-
formance with prefetching). We do not apply this technique
to Water because, in this application, prefetches either oc-
cur within loops where one iteration already has more than
800 instructions, or occur within control statements where
prefetching before the branch can lead to an excessive num-
ber of prefetches of lines that are not used by the processor.
In Figure 7, PF, PF2, and PF4 refer to prefetching distances
of 200, 400, and 800 instructions respectively. Figure 7(a)
shows the execution times for each version normalized to
ILP without prefetching, and Figure 7(b) characterizes the
types of prefetches seen in each version. The variation in
the total number of prefetches in the three versions is due
to speculative prefetching (Section 4.2).

As Figure 7 shows, the PF2 and PF4 versions reduce the
number of late prefetches in all applications. However, there
is no significant improvement in execution time in any of the
applications. On the contrary, increased prefetch distances
have a negative impact on some applications.

There are three reasons why increased prefetch distances
do not improve performance for our applications. First,
in Mp3d and Radix, the decrease in late prefetches occurs
at the expense of an increase in early prefetches. Many
prefetches arrive at the cache much before the demand ac-
cess. These are vulnerable to cache replacements or inval-
idations for a longer time, as also observed in studies of
previous-generation multiprocessors [33]. In Mp3d, these
early prefetches hurt performance because they prematurely
invalidate other processors’ cache lines (due to false and
true sharing). In Radix, most early prefetches are replaced
prefetches that do not adversely affect other processors.

Second, on applications that are resource-bound, larger
prefetch distances further stress system resources by keep-
ing more prefetches outstanding at a time. Our detailed
statistics show that the resultant MSHR saturation exposes
additional L1 hit latencies (LU, FFT, and Radix) and L2
hit latencies (LU and Radix), which offset the performance
benefits due to reducing late prefetches.

Third, in FFT, some loops containing late prefetches do
not have an adequate amount of computation to increase
the prefetch distance sufficiently in order to reduce late
prefetches.

Latency-sensitive prefetching. When the prefetch
distance is increased in LU, Mp3d, and Radix, early
prefetches increase primarily because the algorithm makes
the approximation that all misses incur a common latency.
In NUMA multiprocessors, however, remote memory laten-
cies are significantly larger than local memory latencies.
Consequently, it may be beneficial to perform a form of
latency-sensitive prefetching for such systems. The prefetch-
ing algorithm can be modified to determine the prefetch
distance for each access based on the predicted latency of
the access (e.g., by using information about the data lay-
out). Such an approach has been discussed in other studies
for software and hardware prefetching [8, 13, 21]. Our ap-
plications, however, did not show much benefit with this
modification.

To appear in Proceedings of ISCA-24 (June, 1997)

100.0

I 68.7 68.6 68.7
40 I I I

ILP

Synch Synch
Me%\ury 100.0 99.2 100.0 100'OMer¥mryI
cPU cPU

Normalized execution time
P
3

Normalized execution time
P
3

1P
+PF

P
+PF2

LU

P
+PF4

ILP ILP

+PF

P
+PF2

FFT

P
+PF4

Normalized execution time

(a) Execution time

= Unnec M = Unnec Ml
=3 Early = Earl
S 1001 mmm Wl wm aem g 100 L
= Useful = Useful
8 so £ 8o
= 60 l | = 60
=3 =3
D D
N N
‘s 40 =
E E
2 20 2 20
ol o
ILP L, L, ILP ILP e
+PF +PF2 +PF4 +PF +PF2 +PF4
LU FFT

Normalized prefetch count

1053 2
- h h
w00t 1220 97.0 oy S 100f 1000 991 980 966 Moyl
875 cPU s cPU
0 3 80
Q
£
60 © 0
-
[
N
40 g 40
£
0 S
ot ol
P P IP P P P IP P
+PF +PF2 +PF4 +PF +PF2 +PF4
Mp3d Radix
components
Unnec k=4 unnec
Early 5 100 Early
100 Y m 38 — — — o W
. Useful = | Useful
S 80 B ==
80 =
— ©
60] S oo
- D
N
40 = 40
E
20 2 =20
o od
ILP ILP_ ILP ILP ILP ILP
+PF +PF2 +PF4 +PF +PF2 +PF4
Mp3d Radix

(b) Prefetch characterization

Figure 7: Effect of increasing the prefetch distance

It was difficult to apply latency-sensitive prefetching to
LU since different dynamic instances of the same memory
instruction in LU can reference both local and remote mem-
ory. For Mp3d and Radix, we assumed a prefetch distance of
100 instructions for loops with only local prefetches and the
best observed distance (from PF, PF2, and PF4) for loops with
remote prefetches. Both Mp3d and Radix achieve negligible
improvements (less than 1%). In Radix, there is a signifi-
cant reduction in the number of early prefetches; however,
the demand latencies overlapped by these prefetches con-
tribute only a small part of the total execution time. In
Mp3d, the high false and true sharing makes late prefetches
preferable to early prefetches.

Outer-loop prefetching. Figure 7(b) shows that FFT
continues to see a significant number of late prefetches even
in the PF4 version (20% of the total number of prefetches).
The prefetching algorithm described in Section 2.1 adds
prefetching at the innermost level of the loop nest that
causes cache misses. However, the transpose phase of FFT
uses a blocked algorithm, and the inner loop of the transpose
does not have enough computation or iterations to accom-
modate a larger prefetching distance. In this case, the outer
loop could potentially be software pipelined to prefetch fur-
ther in advance. Thus, we insert prefetches for a block that
will be accessed in a later iteration, rather than for later
lines of the same block in the current iteration'. We im-
plemented this form of outer-loop prefetching in FFT. How-
ever, we observed a 16% slowdown for two reasons. First,
the addition of outer-loop prefetching increases the num-
ber of prefetches outstanding at a time, further increasing
the resource contention in the system (evidenced by a 13%
increase in MSHR saturation). Second, adding outer-loop
prefetching introduces inter-block cache conflicts.

5.2 Reducing Resource Contention

Although the base architecture used in Section 4 is ag-
gressive in processor, network, and memory system re-
sources, some applications still observe reduced benefits

McIntosh has simultaneously developed a similar algorithm for a
High Performance Fortran compiler [20].

from prefetching on ILP due to increased resource con-
tention. We next re-examine two assumptions in our
prefetch strategy that can affect resource contention with
ILP.

L2 prefetching. The prefetch strategy used in Section 4
prefetched data into the L1 cache. Prefetching only to the 1.2
cache can potentially reduce contention in two ways. First,
1.2 prefetching allows the prefetching algorithm to use the
larger L2 cache size in its locality analysis, possibly result-
ing in fewer prefetches and consequently less contention for
address generation units and cache ports. Second, bypass-
ing the 1.1 cache can potentially reduce resource contention
at the 1.1 cache. However, subsequent demand accesses now
see the L2 cache latency, instead of the L1 cache latency.
With ILP processors, such L2 cache latencies can be over-
lapped by non-blocking reads and dynamic scheduling, and
thus may not hinder performance.

We find that, for all our applications, the execution time
with L2 prefetching is within 1% of the execution time with
L1 prefetching. L2 prefetching does not see any perfor-
mance degradation because ILP techniques are successful
in overlapping most of the 1.2 cache latencies. However, 1.2
prefetching provides no significant benefits, as the use of the
L2 cache size in locality analysis does not reduce the number
of prefetches for our applications and input sizes.

Prefetch drop strategy. Following previous work, our
base prefetch strategy does not drop prefetches even when
resource constraints block their issue [23]. We examined an
alternate strategy that drops prefetches when the L1 cache
MSHRs are saturated. Our results show less than 2% dif-
ference in execution time on all our applications. Drop-
ping prefetches does not give greater performance improve-
ments because any advantages in reducing resource con-
tention are offset by greater latencies seen by subsequent
demand misses, as in studies with previous-generation pro-
cessors [23].

5.3 Summary and Implications

The results of this section show that straightforward modifi-
cations to the prefetching algorithm to reduce late prefetches
do not necessarily translate to more effective prefetching in

To appear in Proceedings of ISCA-24 (June, 1997)

our applications because of increased early prefetches, in-
adequate computation, and/or increased stress on system
resources. Additionally, alternate prefetch strategies that
target 1.1 resource contention, like 1.2 prefetching and a sim-
ple prefetch drop strategy, do not significantly impact the
performance of prefetching for our applications.

These results show that further techniques are needed
to alleviate the effects of late prefetches and resource con-
tention. Latency-reducing techniques such as producer-
initiated communication primitives [1, 15, 29] appear
promising. A recent study with simple processors has shown
that such primitives can interact positively with software
prefetching to reduce the effects of both late prefetches and
resource contention [1].

6 Interaction of Prefetching with Consistency Models on
ILP Systems

This section evaluates the performance benefits of software
prefetching with sequential consistency on ILP multiproces-
sors and also determines if software prefetching can equalize
the performance of sequential consistency (SC) and release
consistency (RC). We examine two implementations of se-
quential consistency — SCplain and SCopt — representing the
straightforward and aggressive implementations of SC re-
spectively, and the straightforward implementation of RC,
as described in Section 2.2. Figure 8 summarizes the results
for this section and is analogous to Figures 4(a) and 4(b).

6.1 Overall Results

We find that the performance benefits of software prefetch-
ing vary widely across the consistency implementations. The
benefits seen on SCplain are consistently higher than those
seen on RC. Consequently, software prefetching reduces the
gap between SCplain and RC for all our applications. Nev-
ertheless, RC with software prefetching still shows a sub-
stantial reduction in execution time relative to SCplain with
software prefetching, ranging from 24% to 65% for our ap-
plications.

On SCopt, the addition of software prefetching leads to
significant improvements for LU and Water, and small or
no improvements for the other three applications; these are
comparable to the improvements due to prefetching on RC.
Software prefetching significantly decreases the performance
gap between SCopt and RC only in LU. RC with software
prefetching continues to give significant reductions in execu-
tion time compared to SCopt with software prefetching on
FFT, Mp3d, and Radix (15%, 35% and 40% respectively).

The addition of software prefetching thus does not en-
tirely eliminate the performance advantages of RC. The fol-
lowing sections respectively analyze the reasons for the re-
maining memory stall time in SC systems after adding soft-
ware prefetching and the reasons for the remaining perfor-
mance difference between SC and RC.

6.2 Memory Stall Time Reduction in SC Systems

Without software prefetching, the SC implementations see
larger memory stall time than RC due to consistency con-
straints [28]. Software prefetching can address much of this
additional time and thus can lead to larger reductions in
memory stall time than in RC. However, even after adding
software prefetching, a significant amount of memory stall
time still remains with SC in all our applications except
Water (an average of over 58% of total execution time for

10

SCplain and over 43% for SCopt). We next discuss three
reasons for the remaining memory stall time in SC systems,
focusing on the differences between SC and RC with soft-
ware prefetching.

Limitations of software prefetching. As in RC,
much of the remaining memory stall time in SC is due to
the limitations of prefetching stemming from late and early
prefetches or resource contention. However, the impact of
these limitations is higher on SCplain and SCopt, since they
see these effects on writes as well as reads (RC hides the la-
tency of writes). SCplain sees an even higher impact of
these limitations since it does not overlap any part of the
read latency (unlike SCopt and RC). Additionally, in SC,
downgraded prefetches (exclusive prefetches transitioned to
shared-state by an external coherence action before the de-
mand access) can further reduce the benefits of prefetching
for write accesses.

One or more of the above effects is seen with all our
applications in the SC systems. The effect of late prefetches
is seen in all applications. The effect of early prefetches
is seen in Mp3d (caused by true and false sharing) and LU
(caused by conflicts at the L1 and L2 caches). Only FFT sees
significant resource contention, evidenced through MSHR
saturation. In contrast to RC, Radix does not see resource
contention in SC since the writes in the key permutation
phase are no longer overlapped, and so do not saturate the
MSHRs.

Consistency-related delays. SC with software
prefetching also experiences memory stall time owing to the
constraints of the consistency implementation.

In SCplain, demand accesses cannot be issued before
reaching the head of the memory queue. Consequently, SC-
plain without software prefetching sees a significant amount
of consistency-related read and write hit latency (2% to 17%
of execution time). These latencies are not targeted by soft-
ware prefetching.

In SCopt, write buffering prevents write stall times from
being directly exposed to the processor. However, read op-
erations in SCopt cannot retire from the instruction window
until all previous writes have completed. Thus, unlike RC,
reads can result in stall time if previous writes were not
successfully prefetched.

Unamenable accesses. Finally, a significant portion of
the memory stall time can still remain because of memory
accesses that are not amenable to prefetching. In Mp3d and
Radix, addresses of some high-latency memory accesses are
determined very close to their use, preventing the prefetch-
ing algorithm from issuing prefetches for these accesses. The
SC systems expose the latency of both read and write oper-
ations that are unamenable to prefetching; RC, on the other
hand, generally sees only read latencies.

6.3 Comparison of RC and SC

Comparing RC and SCplain, RC with software prefetching
achieves lower execution time than SCplain with software
prefetching by hiding the latency of write misses (whether
late, early, or unprefetched), and by avoiding consistency-
related delays. One or more of these components is sub-
stantial in the SCplain executions of all our applications.
As a result, the gap in execution time between RC and SC-
plain RC remains significant, ranging from 24% to 65% for
our applications.

Comparing RC and SCopt, RC with software prefetch-
ing achieves lower execution time than SCopt with software
prefetching if reads in SCopt experience stall time waiting

To appear in Proceedings of ISCA-24 (June, 1997)

23 = [70.1
£ g ol Remote
£ Synch 53 []
S joof- 1g2° Mooy il € o N Lo
S cpPU LS sof— [
2 e = ¢
g 712 g »r writes
64.4 Sd 40.5
B eof 60.1 S Lol s7.6 Reads
i~ = 351 29.9
=] a3.s ars g sof-
E 4ol =5 251
= £ 201 . 155
i i1 BN
e I
o - - o
SCplain SCplain ScCopt SCopt RC RC SCplain SCplain SCopt SCopt RC RC
+PF +PF +PF +PF +PF +PF
LU LU
@ = 74.0
= s 754 Remote
£ Synch 53 |
E ol %0 mEYSy Bl £ toss M
S cPU < gi I L1
3 sol- 79.0 S sa.8
g S ol Writes
= £ a5 Reads
8 oo s5.2 s5.2 £ a0
4 7.6 a7.2 B =L 28.8 28.2
E o T s
S g T 1s.8 18.2
201~ 2 5B ||
e I
o - - o
SCplain SCplain ScCopt SCopt RC RC SCplain SCplain SCopt SCopt RC RC
+PF +PF +PF +PF +PF +PF
FFT FFT
=3 = o5} 93.1
= < - Remote
£ Synch S 90
S joof- 193° memory Il £ 2F tess M
S cPU L sop— 73.4 [m
2 3 75|
3 sol- 79,1 = o= 2.2
g 5 es5{— S. 60.1 Writes
> sss 643 SR Reads
= el & 55—
2 £ so1— 43.6
‘s e B ofF 37.6
E .o} a16 2 2F
=2 £ 251
20}
201 2 F
101
°r
o - - o
SCplain SCplain SCopt SCopt RC RC SCplain SCplain SCopt SCopt RC RC
+PF +P +PF IPFE YPF +PF
Mp3d Mp3d
@ =
z = | 54.7 Remote
£ Synch S ss []
S 100}~ 1020 MM < o
S [S] < 1
= S asi{—
3 sof- = -
% S 40 Writes
2z 63.4 61.0 63.4 £ ssi— Reads
8 eof— 2 ol
=
= a8.6 as.1 B 2 23.8
E 4ol =S 20 =T 17.8
= £ a1s{—
20— 2 10} T —— 6.5 .
s - .
o - - o
SCplain SCplain ScCopt SCopt RC RC SCplain SCplain SCopt SCopt RC RC
+PF +PF +PF TPFE +PF +PF
Water Water
@ = 84.0
2 8 sesi- Remote
£ Synch 51 - 77.0 []
= 100{— 1880 o5.5 Memony < 2 og
S cPU L o L1
=l S est1—
2 sof- = o1
g 5 & Writes
= £ o= Reads
k5 60 1— 56.7 55.5 1= as 1+— 40.8
= B8 2F T e
E ol 2 BE
5 33.6 33.3 s -
=2 £ 2 N — 10.2
20 1— = —
=2 i1s =] ||
10—
=
o - - o
SCplain SCplain SCopt SCopt RC RC SCplain SCplain SCopt SCopt RC RC
+PF +PF +PF IPFE YPF +PF
Radix Radix

(a) Execution time components

(b) Memory stall time components

Figure 8: Effect of software prefetching on consistency models

for previous write latencies (due to ineffective prefetching
or unprefetched accesses). FFT, Mp3d, and Radix see this
effect. Consequently, RC with software prefetching shows
significantly lower execution times than SCopt with soft-
ware prefetching for these applications (15%, 35% and 40%
respectively). LU and Water have comparable performance
with RC with software prefetching and SCopt with software
prefetching.

Additionally, as mentioned in Section 4.3, software
prefetching can contribute either positively or negatively to
the synchronization component of execution time. However,
memory stall time dominates the execution times of most of
our applications, and subsequently determines the perfor-
mance difference between SC and RC.

Thus, our results indicate that software prefetching is
unable to close the gap between SC and RC. Write latencies
that prefetching is unable to hide remain the most impor-
tant reason for this performance gap. Our results also show
that software prefetching alone does not obviate the need

11

for hardware optimizations to SC, since SCopt continues to
significantly outperform SCplain for all applications, even
with the addition of software prefetching.

7 Related Work

To the best of our knowledge, there have not been any pre-
vious evaluations of either hardware or software controlled
non-binding prefetching for state-of-the-art ILP multipro-
Cessors.

Gornish evaluated binding prefetching for both single-
issue and multiple-issue statically-scheduled multiprocessors
with non-blocking reads [13]. The binding prefetches rely on
software cache-coherence and require complete cache flushes
before and after each parallel loop. Processor pipelines and
functional-unit contention are not modeled. This work inte-
grates hardware and software prefetching support, dynam-
ically adapting hardware prefetching distance according to
the latency of each reference. The study finds that soft-

To appear in Proceedings of ISCA-24 (June, 1997)

ware prefetching provides execution time improvements on
their multiple-issue system similar to or greater than those
seen with their single-issue system, but does not analyze the
interaction of ILP features with prefetching.

Three recent studies on prefetching in uniprocessors ex-
amine state-of-the-art uniprocessors with multiple issue, dy-
namic scheduling, and non-blocking reads. Luk and Mowry
proposed software prefetching algorithms for pointer-based
data structures and evaluated their algorithms for an ILP
processor similar to the MIPS R10000 [19]. Bennett
and Flynn compared stream buffers (a form of hardware-
controlled prefetching), hardware stride-based prefetching,
and victim caches for state-of-the-art ILP processors [2].
They found that stream buffers and stride-based prefetch-
ing do not have much impact on most SPEC92 programs,
as these techniques stress bus bandwidth. In another study,
Bennett and Flynn proposed a prediction cache that dynam-
ically adapts between stream buffer and victim cache func-
tionality based on program miss patterns [3]. The predic-
tion cache dynamically adjusts the stream buffer prefetching
distance based on the late prefetch pattern of the program.
Although all of the above studies use aggressive [LLP unipro-
cessors, they do not focus on the impact of ILP on prefetch-
ing, and so do not relate the results of their studies to the
ILP features of the processor.

Other previous studies on prefetching with ILP unipro-
cessors examine statically-scheduled processors. Chen et
al. investigated the use of software-controlled prefetching
on statically-scheduled multiple-issue uniprocessors for non-
numeric applications [6]. This work seems to allow only
one outstanding read (but several outstanding prefetches).
Further, they assume a small read latency of 10 cycles.
Their results show prefetching to be effective with multi-
ple issue uniprocessors. Chen and Baer compared the per-
formance of non-blocking reads and hardware prefetching
on a statically-scheduled single-issue uniprocessor [5]. They
found that their hardware prefetching scheme generally per-
formed better than non-blocking reads and is less sensitive
to memory latency. They also studied the combination of
non-blocking reads and hardware prefetching for two appli-
cations and found it to perform better than either technique
alone. Farkas et al. studied the impact of non-blocking reads
and stream buffers with statically-scheduled multiple-issue
uniprocessors [7]. They assumed a small miss latency of
16 cycles. They found that both non-blocking reads and
stream buffers improve performance; the best performance
is achieved when both are combined.

In the context of previous-generation systems, several
studies have proposed algorithms for software-controlled
non-binding prefetching [4, 16, 23, 24, 25]. Of these,
Mowry et al. developed the most sophisticated algorithm
and compiler implementation, with a comprehensive evalu-
ation for both uniprocessors and shared-memory multipro-
cessors [23, 24, 25]. This algorithm is described in Sec-
tion 2.1. Tullsen and Eggers evaluated software-controlled
non-binding prefetching on a bus-based system [33]. They
characterized bandwidth needs of their applications, and
found that the benefits of prefetching degrade as bandwidth
needs increase. They also found that increasing the prefetch
distance can reduce late prefetches but can also increase
early prefetches, and thus does not significantly improve
performance. We found this to be true for our ILP-based
system as well (Section 5.1).

Gupta et al. evaluated the interaction between software-
controlled prefetching and straightforward implementations
of consistency models for systems with simple proces-

12

sors [14]. They found that prefetching significantly improved
the performance of both SC and RC. However, for two out
of their three applications, a significant performance gap re-
mained between SC and RC even after adding prefetching.

8 Conclusions

Shared-memory multiprocessors are being increasingly built
from commodity microprocessors that aggressively exploit
instruction-level parallelism. This paper provides the first
study of the effectiveness of software-controlled non-binding
prefetching in multiprocessor systems built of state-of-the-
art ILP processors. We compared two multiprocessors sys-
tems — ILP and Simple — that are equivalent in every re-
spect except that the former uses state-of-the-art ILP pro-
cessors while the latter uses previous-generation processors
(with single issue, static scheduling, and blocking reads). We
found that while software prefetching resulted in substantial
reductions in execution time (12% to 31%) for three out of
five applications on the ILP system, it is significantly less
effective in reducing the data memory stall time on the ILP
system than on the Simple system. Even after the addition
of software prefetching, memory stall time constituted more
than 30% of the execution time for four out of five applica-
tions on the ILP system. In contrast, on the Simple system,
memory stall time constituted less than 17% of the execu-
tion time for four out of five applications. Thus, software
prefetching does not significantly change the memory-bound
nature of most of our applications on the ILP system.

The key factors that limit the effectiveness of soft-
ware prefetching on the ILP system are an increase in late
prefetches and an increase in contention at various resources.
Our results thus motivate modifications to prefetching algo-
rithms so that they are more sensitive to resource use and to
variations in expected latency for different accesses. Several
straightforward enhancements to the prefetching scheme,
however, did not show any improvements. An alternative
technique to improve memory system performance is the use
of latency-reducing (rather than tolerating) techniques. For
example, producer-initiated communication primitives may
be able to reduce latency and resource contention, while in-
teracting positively with prefetching.

This paper also examines whether software prefetching
can equalize the performance of sequential consistency (SC)
and release consistency (RC) on ILP multiprocessors. We
found that although software prefetching reduces the gap be-
tween the straightforward implementations of SC and RC,
a significant gap remained between these implementations
(ranging from 24% to 65% for our applications). Comparing
an optimized hardware implementation of SC to a straight-
forward implementation of RC, we found that a significant
gap remains for three out of five applications (15% to 40%).
Write latencies that prefetching does not effectively hide re-
main the most important reason for the performance gap
between SC and RC. Thus, future efforts to provide SC pro-
grammability with RC performance need to more effectively
address the limitations that write latencies impose on SC.

9 Acknowledgments

We would like to thank Kathi Fletcher, Nat McIntosh,
Shubu Mukherjee, Ram Rajamony, and Willy Zwaenepoel
for valuable feedback on earlier drafts of this paper.

To appear in Proceedings of ISCA-24 (June, 1997)

References

(1]

(2]

(6]

(10]

(11]

(12]

(13]

(14]

(18]

(16]

H. Abdel-Shafi, J. Hall, S. V. Adve, and V. S. Adve. An Eval-
uation of Fine-Grain Producer-Initiated Communication in
Cache-Coherent Multiprocessors. In Proceedings of the 3rd
International Symposium on High-Performance Computer
Architecture, 1997.

J. E. Bennett and M. J. Flynn. Latency Tolerance for
Dynamic Processors. Stanford University, CSL-TR-96-687,
1996.

J. E. Bennett and M. J. Flynn. Reducing Cache Miss Rates
Using Prediction Caches. Stanford University, CSL-TR-96-
707, 1996.

D. Callahan, K. Kennedy, and A. Porterfield. Software
Prefetching. In Proceedings of the 4th International Confer-
ence on Architectural Support for Programming Languages
and Operating Systems, 1991.

T.-F. Chen and J.-L. Baer. Reducing Memory Latency via
Non-Blocking and Prefetching Caches. In Proceedings of the
5th International Conference on Architectural Support for
Programming Languages and Operating Systems, 1992.

W.Y. Chen et al. Data Access Microarchitectures for Super-
scalar Processors with Compiler-Assisted Data Prefetching.
In Proceedings of the 24th Annual International Symposisum
on Microarchitecture, 1991.

K. Farkas, N. Jouppi, and P. Chow. How Useful are Non-
Blocking Loads, Stream Buffers and Speculative Execution
in Multiple Issue Processors? In Proceedings of the 1st In-
ternational Conference on High-Performance Computer Ar-
chitecture, 1995.

K. Fletcher. Compiler-hardware cooperation in prefetching
for shared-memory multiprocessors. Ph.D. Thesis Proposal,
Rice University, September 1995.

K. Gharachorloo, A. Gupta, and J. Hennessy. Performance
Evaluation of Memory Consistency Models for Shared-
Memory Multiprocessors. In Proceedings of the 4th Inerna-
tional Conference on Architectural Support for Programming
Languages and Operating Systems, 1991.

K. Gharachorloo, A. Gupta, and J. Hennessy. Two Tech-
niques to Enhance the Performance of Memory Consistency
Models. In Proceedings of the International Conference on
Parallel Processing, 1991.

K. Gharachorloo, A. Gupta, and J. Hennessy. Hiding Mem-
ory Latency Using Dynamic Scheduling in Shared-Memory
Multiprocessors. In Proceedings of the 19th Annual Interna-
tional Symposium on Computer Architecture, 1992.

K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons,
A. Gupta, and J. Hennessy. Memory Consistency and Event
Ordering in Scalable Shared-Memory Multiprocessors. In
Proceedings of the 17th Annual International Symposium on
Computer Architecture, 1990.

E. H. Gornish. Adaptive and Integrated Data Cache
Prefetching for Shared-Memory Multiprocessors. PhD the-
sis, University of Illinois at Urbana-Champaign, 1995.

A. Gupta, J. Hennessy, K. Gharachorloo, T. Mowry, and W .-
D. Weber. Comparative Evaluation of Latency Reducing and
Tolerating Techniques. In Proceedings of the 18th Annual
International Symposium on Computer Architecture, 1991.

M. D. Hill, J. R. Larus, S. K. Reinhardt, and D. A. Wood.
Cooperative Shared Memory: Software and Hardware Sup-
port for Scalable Multiprocessors. In Proceedings of the 5th
International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, 1992.

A. C. Klaiber and H. M. Levy. An Architecture for Software-
Controlled Data Prefetching. In Proceedings of the 18th An-
nual International Symposium on Computer Architecture,
1991.

13

(17]

(18]

(19]

(20]

(21]

(22]
(23]

(24]

(25]

26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

D. Kroft. Lockup-Free Instruction Fetch /Prefetch Cache Or-
ganization. In Proceedings of the 8th International Sympo-
sium on Computer Architecture, 1981.

L. Lamport. How to Make a Multiprocessor Computer that
Correctly Executes Multiprocess Programs. IEEE Trans. on
Computers, C-28(9):690-691, 1979.

C.-K. Luk and T. C. Mowry. Compiler-Based Prefetching
for Recursive Data Structures. In Proceedings of the 7th
International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, 1996.

N. McIntosh.
February 1997.

N. McIntosh, K. Fletcher, K. Cooper, and K. Kennedy. Com-
piler Techniques for Software Prefetching on Cache-Coherent
Shared-Memory Multiprocessors. Center for Research on
Parallel Computation, Rice University, CRPC-TR96675-S,
1997.

MIPS Technologies, Inc.
Manual, Version 1.1, 1996.

Private communication. Rice University,

R10000 Microprocessor User’s

T. Mowry. Tolerating Latency through Software-Controlled
Data Prefetching. PhD thesis, Stanford University, 1994.

T. Mowry and A. Gupta. Tolerating Latency Through
Software-Controlled Prefetching in Shared-Memory Multi-
processors. Journal of Parallel and Distributed Computing,
12(2):87-1086, 1991.

T. C. Mowry, M. S. Lam, and A. Gupta. Design and Evalua-
tion of a Compiler Algorithm for Prefetching. In Proceedings
of the 5th International Conference on Architectural Support
for Programming Languages and Operating Systems, 1992.

V. S. Pai, P. Ranganathan, and S. V. Adve. RSIM: An
Execution-Driven Simulator for ILP-Based Shared-Memory
Multiprocessors and Uniprocessors. In Proceedings of the 3rd
Workshop on Computer Architecture FEducation, 1997.

V. S. Pai, P. Ranganathan, and S. V. Adve. The Impact
of Instruction Level Parallelism on Multiprocessor Perfor-
mance and Simulation Methodology. In Proceedings of the
3rd International Symposium on High Performance Com-
puter Architecture, 1997.

V. S. Pai, P. Ranganathan, S. V. Adve, and T. Harton.
An Evaluation of Memory Consistency Models for Shared-
Memory Systems with ILP Processors. In Proceedings of the
7th International Conference on Architectural Support for
Programmaing Languages and Operating Systems, 1996.

D. Poulsen. Memory Latency Reduction via Data Prefetch-
ing and Data Forwarding in Shared-Memory Multipro-
cessors. PhD thesis, University of Illinois at Urbana-
Champaign, 1994.

M. Rosenblum, E. Bugnion, S. A. Herrod, E. Witchel, and
A. Gupta. The Impact of Architectural Trends on Operat-
ing System Performance. In Proceedings of the 15th ACM
Symposium on Operating Systems Principles, 1995.

J. P. Singh, W.-D. Weber, and A. Gupta. SPLASH: Stanford
Parallel Applications for Shared-Memory. Computer Archi-
tecture News, 20(1):5-44, 1992.

Sparc International. The SPARC Architecture Manual, Ver-
sion 9, 1993.

D. Tullsen and S. Eggers. Effective Cache Prefetching on
Bus-Based Multiprocessors. ACM Transactions on Com-
puter Systems, 13(1):57-88, 1995.

S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta.
The SPLASH-2 Programs: Characterization and Method-

ological Considerations. In Proceedings of the 22nd Annual
International Symposium on Computer Architecture, 1995.

