To appear in Proceedings of SPAA-9 (June, 1997)

Using Speculative Retirement and Larger Instruction Windows to Narrow the

Performance Gap between Memory Consistency Models

*

Parthasarathy Ranganathan, Vijay S. Pai, and Sarita V. Adve

Department of Electrical and Computer Engineering
Rice University
Houston, Texas 77005
{parthas|vijaypailsarita}@rice.edu

Abstract

This paper studies techniques to improve the performance
of memory consistency models for shared-memory multi-
processors with ILP processors. The first part of this pa-
per extends earlier work by studying the impact of current
hardware optimizations to memory consistency implementa-
tions, hardware-controlled non-binding prefetching and spec-
ulative load execution, on the performance of the processor
consistency (PC) memory model. We find that the opti-
mized implementation of PC performs significantly better
than the best implementation of sequential consistency (SC)
in some cases because PC relaxes the store-to-load ordering
constraint of SC. Nevertheless, release consistency (RC) pro-
vides significant benefits over PC in some cases, because PC
suffers from the negative effects of premature store prefetches
and insufficient memory queue sizes.

The second part of the paper proposes and evaluates a
new technique, speculative retirement, to improve the per-
formance of SC. Speculative retirement alleviates the im-
pact of the store-to-load constraint of SC by allowing loads
and subsequent instructions to speculatively commit or re-
tire, even while a previous store is outstanding. Speculative
retirement needs additional hardware support (in the form of
a history buffer) to recover from possible consistency viola-
tions due to such speculative retires. With a 64 element his-
tory buffer, speculative retirement reduces the execution time
gap between SC and PC to within 11% for all our applica-
tions on our base architecture; a significant, though reduced,
gap still remains between SC and RC.

The third part of our paper evaluates the interactions of
the various techniques with larger instruction window sizes.
When increasing instruction window size, initially, the pre-
vious best implementations of all models generally improve
in performance due to increased load and store overlap. With
further increases, the performance of PC and RC stabilizes
while that of SC often degrades (due to negative effects of

*This work is supported in part by the National Science
Foundation under Grant No. CCR-9410457, CCR-9502500, and
CDA-9502791, and the Texas Advanced Technology Program under
Grant No. 003604016. Vijay S. Pai is also supported by a Fannie and
John Hertz Foundation Fellowship.

Copyright ©1997 by ACM, Inc. Permission to make digital or hard copies
of part or all of this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the first
page. Abstracting with credit is permitted. To copy otherwise, to republish,
to post on servers, or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Publications Dept, ACM Inc., fax +1
(212) 869-0481, or permissions@acm.org.

previous opltimizations), widening the gap between the mod-
els. At low base instruction window sizes, speculative retire-
ment is sometimes outperformed by an equivalent increase in
instruction window size (because the latter also provides load
overlap). However, beyond the point where RC stabilizes,
speculative retirement gives comparable or better benefit than
an equivalent instruction window increase, with possibly less
complexity.

1 Introduction

Shared-memory multiprocessors are being increasingly used
for a variety of applications. The performance of such sys-
tems, however, depends largely on their ability to toler-
ate memory latency. The memory consistency model of a
shared-memory system is a key attribute that determines
this ability by specifying the extent to which the system
can appear to overlap or reorder memory operations. In
previous-generation systems, memory consistency models
posed an essential tradeoff between programmability and
performance: the more intuitive models placed stronger con-
straints on system implementations. Of the models that are
most widely implemented in commercial systems, sequen-
tial consistency (SC) [12] (adopted by HP and MIPS pro-
cessors) is considered to provide the most intuitive program-
ming interface while release consistency (RC) [4] (variants
of which are adopted by DEC Alpha, IBM PowerPC, and
SPARC V9 RMO-based processors) has been shown to pro-
vide the highest performance [5, 27]. Processor consistency
(PC) [7, 4] (adopted by Intel processors) and total store or-
dering (TSO) [22] (adopted by SPARC processors) are two
other commonly implemented models, and fall between SC
and RC in performance [5].

The increased levels of instruction-level parallelism (ILP)
employed by current processors enable two hardware opti-
mizations to enhance the performance of consistency models
— hardware-controlled prefetching and speculative load exe-
cution [6]. These optimizations exploit ILP features such as
non-blocking loads, out-of-order scheduling, and speculative
execution. The optimizations have already appeared in sev-
eral commercial microprocessors (e.g. HP PA-8000 [8], Intel
Pentium Pro [9], MIPS R10000 [13]) and were conjectured to
equalize the performance of consistency models. However,
recent work has shown that while these optimizations sub-
stantially narrow the performance gap between SC and RC,
a significant gap remains for some of the applications consid-
ered [14]. This gap occurs because SC is less effective than
RC in hiding store latency with current processors. Two
key effects that result in this limitation are (i) the relatively

To appear in Proceedings of SPAA-9 (June, 1997)

small instruction windows of current processors typically do
not enable high-latency stores to be fully overlapped with
other instructions in the window, and (ii) the store-to-load
ordering requirement of SC is implemented by preventing a
load from committing or retiring from the instruction win-
dow until previous stores are complete. These conditions
imply that a high latency store can stop the flow of instruc-
tions through the processor’s instruction window. RC, on
the other hand, does not impose a constraint between stores
and following loads to data locations, allowing most memory
operations to retire from the instruction window even while
previous stores are incomplete.

This paper makes three contributions. For the evalua-
tions in all of the three parts, we run six applications on a
detailed execution-driven simulator of an ILP-based multi-
processor.

As our first contribution, we evaluate the impact of the
hardware prefetching and speculative load optimizations on
PC and TSO. For our base system, PC and TSO have iden-
tical implementations; we therefore use PC to refer to both
PC and TSO in the rest of the paper. PC differs from SC by
relaxing the store-to-load constraint, which was a primary
contributor to the performance difference between SC and
RC in the previous study [14]. Our results show that the
optimizations of hardware prefetching and speculative loads
significantly improve the performance of PC. Comparing SC
with PC, we find that PC gives 15% or more reduction in
execution time in two of our six applications. However, RC
still gives more than 15% reduction in execution time over
PC in two of our six applications. The remaining difference
between PC and RC occurs primarily due to the negative ef-
fects of premature store prefetches and insufficient memory
queue sizes.

Our second contribution is a new optimization for
SC, speculative retirement, that targets the limitation due
to the store-to-load constraint of SC. Loads stalled only for
previous incomplete stores are allowed to speculatively com-
mit their values into the processor’s architectural state and
retire from the instruction window, freeing up space for later
instructions. This technique can potentially eliminate the
impact of the store-to-load constraint (potentially equaliz-
ing the performance of SC and PC), but at an additional
cost in hardware. Hardware is needed to detect possible
consistency violations due to speculatively retired loads and
to recover from such violations. The detection hardware is
the same as that used for the earlier optimization of spec-
ulative load execution. For recovery, we use a mechanism
similar to a history buffer that was originally proposed for
maintaining precise interrupts [21].

We study the performance benefits of speculative retire-
ment on our base architecture with up to 64 element history
buffers. We find that, for the two applications for which
there originally was a significant execution time gap between
SC and PC, speculative retirement reduces the gap from
15% to 5% in one application and from 24% to 11% in the
other application. Thus, speculative retirement reduces the
execution time gap between SC and PC to within 11% for all
our applications with our base architecture. A significant,
though much reduced, gap between SC and RC remains for
two of our six applications. These results indicate that for
our applications and architecture, with some hardware in-
vestment, the performance advantages offered by PC may
not justify its additional programming complexity.

An alternative to speculative retirement to improve the
performance of SC is to increase the instruction window size
of the processor. We use the term instruction window to re-

fer to the buffer that tracks all the in-flight instructions in
the system (including instructions that have completed but
have not yet committed). This may be different from the is-
sue window, which only tracks instructions that are not yet
issued to the functional units. Larger instruction windows
can potentially increase the overlap available to stores and
address the store latency responsible for the performance
difference between SC and relaxed models. We compare
the performance benefits of equal increases of instruction
window and history buffer sizes over our base architecture,
up to a doubling of the instruction window size. We find
that for the applications that initially showed a significant
performance gap between PC and SC, the two techniques
of speculative retirement and larger instruction window size
give comparable improvements. A larger instruction window
sometimes gives better improvements because it increases
overlap for both loads and stores while speculative retire-
ment only targets limited store overlap. However, specu-
lative retirement gives better improvements in some cases
because it suffers less from the negative impacts of prema-
ture store prefetching and speculative loads. From an imple-
mentation point of view, the speculative retirement scheme
appears less likely to impact cycle time or the number of
pipeline stages compared to an increase in the instruction
window size.

The third contribution of this paper is an evaluation of
the interaction of the various optimizations with much larger
instruction window sizes as may be found in future proces-
sors. We first evaluate the effect of large instruction win-
dow sizes on the best implementations of the various con-
sistency models, not including speculative retirement. We
find that as instruction window sizes increase, initially, these
implementations generally improve in performance due to
increased load and store overlap. However, with further in-
creases, the negative effects of premature store prefetching
and speculative loads in SC start to dominate for some appli-
cations, and the performance gap between the consistency
models for these applications increases. The performance
of PC and RC, however, stabilizes at some instruction win-
dow size for each application because of diminished potential
for load overlap beyond this point. SC, however, may still
be able to benefit from increased store overlap beyond this
point. We find that, beyond this point, speculative retire-
ment gives comparable or better benefits than an equivalent
increase in the instruction window size, with possibly less
complexity.

The remainder of this paper is organized as follows. Sec-
tion 2 gives background on current implementations of con-
sistency models. Section 3 describes the speculative retire-
ment technique. Section 4 describes our simulation environ-
ment. Section 5 discusses the performance and limitations
of previous implementations of SC, PC, and RC. Section 6
evaluates the performance of speculative retirement. Sec-
tion 7 evaluates the interaction of the various optimizations
with large instruction window sizes. Section 8 discusses pos-
sible future directions motivated by our results. Section 9
concludes the paper.

2 Background

This section gives background information about memory
consistency models, particularly focusing on implementa-
tions for multiprocessors built from ILP processors. We as-
sume state-of-the-art ILP processors that examine several
instructions at a time, issuing independent instructions in
parallel and potentially out of program order. Although in-

To appear in Proceedings of SPAA-9 (June, 1997)

structions may complete out of program order, they modify
the architectural state of the processor in program order to
maintain precise interrupts [21]. For this purpose, all in-
flight instructions are stored in an instruction window (also
referred to as the active list or reorder buffer) in program
order. Instructions leave the window (or retire) in program
order, and modify the architectural state of the processor
only when they retire.

The memory consistency model of a shared-memory sys-
tem is an architectural specification of the order in which
memory operations must appear to execute to the pro-
grammer. The most intuitive model, sequential consis-
tency (SC) [12], guarantees that all memory operations will
appear to execute one at a time and in program order. Pro-
cessor consistency (PC) [7, 4] relaxes some of the order-
ing requirements of sequential consistency. Specifically, with
PC, a load following a store (to a different location) in pro-
gram order may appear to be executed out of program order.
Release consistency (RC) [4] further relaxes ordering con-
straints, allowing arbitrary reordering of memory operations
(to different locations) except at synchronization points.

Straightforward implementations of the consistency
models can enforce their ordering constraints by prohibiting
a memory operation from entering the memory system un-
til all previous operations of its processor for which it must
appear to wait (as defined by the consistency model) have
completed'. However, ILP processors allow more aggres-
sive implementations by exploiting the observation that the
memory consistency model of a system only requires that
the system appear to execute memory operations according
to the specified constraints.

The technique of hardware prefetching from the instruc-
tion window [6] hides some memory latency by issuing non-
binding prefetches for instructions in the instruction win-
dow for which addresses are known, but which are blocked
for consistency constraints. Speculative load ezecution [6]
increases the benefits of prefetching by actually consuming
the values of locations prefetched into the cache, regardless
of consistency constraints. The technique requires on-chip
hardware support to detect any violations of ordering re-
quirements due to early consumption of values, and hard-
ware support to recover from such violations. A violation
is detected by monitoring for coherence requests and sec-
ondary cache replacements for cache lines accessed by out-
standing speculative loads. The mechanism for recovery is
similar to that used to recover from branch mispredictions or
exceptions. Both of the above techniques are implemented
in current systems with SC [8, 13] and PC [9].

Store buffering [5] is a technique that allows stores to
retire from the head of the instruction window even before
they complete. Store buffering is already implemented in
current implementations of PC and RC (the buffering logic
is responsible for maintaining any ordering between multi-
ple stores imposed by the consistency model). However, on
SC, the benefits of store buffering are unclear since the sys-
tem now blocks on the first load to reach the head of the
instruction window while stores are pending. Current com-
mercial systems support both implementations of SC — with
store buffering [8] and without store buffering [13]. In this
study, we analyze the benefits due to store buffering sep-
arately only for SC, and integrate store buffering with the

1A load operation is complete when the processor receives the
value for the load. A store operation is complete when all the proces-
sors in the system have seen the value of the store, usually indicated
by an acknowledgment from the directory or memory to the store’s
processor.

straightforward implementations of PC and RC.

3 A New Technique to Improve the Performance of SC

3.1 The Speculative Retirement Technique

Speculative retirement alleviates the impact of the store-to-
load ordering constraint in SC. With current SC implemen-
tations, when a completed load reaches the head of the in-
struction window, it must wait for all previous stores to
complete before it can retire or commit its value. Thus, a
high-latency store can block the flow of instructions through
the processor’s instruction window. Speculative retirement
allows completed loads at the head of the instruction win-
dow (and subsequent completed instructions) to specula-
tively retire and commit their values even while previous
stores are outstanding. Thus, instructions are never prohib-
ited from retiring from the instruction window solely due to
consistency constraints. If the processor later detects that
a speculatively retired load may have caused a consistency
violation, it activates a recovery mechanism to rollback to a
valid state before the offending load. Analogous to specula-
tive load execution, we expect speculative retirement to be
successful in most cases and rollbacks to be infrequent.

To be effective, a system with speculative retirement
should also use the earlier optimizations of hardware store
prefetching, speculative load execution, and store buffering;
this paper assumes that the earlier optimizations are used
whenever speculative retirement is used. An SC system with
speculative retirement appears similar to a PC system that
employs the earlier optimizations. There is still a difference
between the optimized SC and RC systems, however, since
SC with speculative retirement continues to impose ordering
between stores (similar to PC).

3.2 Implementation of Speculative Retirement

Analogous to speculative load execution [6], the implemen-
tation of speculative retirement consists of three parts — a
speculation mechanism that allows speculative retires past
an incomplete store, a detection mechanism that identifies
possible violations of memory ordering constraints, and a
recovery mechanism that allows the system to recover to a
valid state after a violation. We discuss one possible imple-
mentation of these mechanisms below.

Speculation mechanism. Speculative retirement is
initiated when the following two conditions are satisfied: i)
a load at the head of the instruction window has completed,
but cannot retire solely due to consistency constraints (a
previous store is incomplete) and ii) there are no free en-
tries in the instruction window (i.e., the flow of instructions
through the instruction window of the processor is stalled
due to the instruction at the head of the window). Once
speculative retirement is initiated, a subsequent instruction
following the load is speculatively retired when the instruc-
tion is complete and at the head of the instruction window
and the instruction window is full; stores are an exception
since they are retired as soon as they reach the top of the
instruction window as before. We use a structure similar to
a history buffer [21] to store information about the instruc-
tions that are speculatively retired®. For recovery from a
possible violation later, the history buffer also stores the pre-
vious value and the old logical-to-physical register mapping

2An alternative, but potentially more complex, implementation
could checkpoint the state of the processor when speculative retire-
ment is initiated.

To appear in Proceedings of SPAA-9 (June, 1997)

(assuming register renaming similar to the MIPS R10000) of
the destination register of the speculatively retired instruc-
tion. An entry is removed from the history buffer when all
previous stores have completed.

In contrast to a traditional history buffer where the his-
tory buffer entries are used to retire all instructions [21],
the speculative retirement implementation uses the history
buffer only to store state needed to recover from possible
consistency violations. The history buffer entries are used
only when instructions are stalled at the head of the instruc-
tion window solely due to consistency requirements (i.e.,
whenever the flow of instructions is stopped due to a high
latency store operation). Additionally, stores and branches
are not added to the history buffer, as these instructions
have no destination register and do not change the state of
the processor.

This implementation adds a small amount of area for
the history buffer. For a 64-bit processor, each entry in the
history buffer needs about 18 bytes of information (8 bytes
for the program counter, 8 bytes for the old value of the
destination register, and 2 bytes for the register mapping
information), requiring about 1 KB of storage for a 64-entry
history buffer. The history buffer may also require addi-
tional register ports to read the previous values of destina-
tion registers. Alternatively, an implementation can exploit
the observation that the history buffer is activated only when
there is a long latency store and the instruction window is
full. Thus the history buffer can share ports already used
by functional units, just as some processor designs already
have functional units sharing ports with each other [2].

Detection mechanism. The detection mechanism to
identify possible violations of ordering constraints with spec-
ulative retirement is identical to that used with speculative
load execution, involving monitoring of coherence requests
and secondary cache replacements for cache lines accessed
by outstanding speculative loads [6, 14].

Recovery mechanism. If the violating load is in the
instruction window (i.e., it has not been speculatively retired
yet), recovery proceeds as for speculative load execution, us-
ing the processor’s exception recovery or branch mispredic-
tion logic. If the violating load has already retired, then the
recovery mechanism uses the history buffer to restore the
processor’s architectural state to a valid state. Specifically,
the history buffer entries must be processed in reverse order,
using the history information to restore the previous values
of the registers used and the previous mappings for registers
(assuming register renaming similar to the MIPS R10000).
This is similar to the processing needed when history buffers
are used to support precise exceptions [21].

4 Simulation Methodology

The following subsections respectively describe the simu-
lated architectures, the simulation methodology and envi-
ronment, the performance metrics, and the applications used
in this work. These are similar to those used in several pre-
vious studies [14, 16, 18].

4.1 Simulated Architectures

Memory System and Network. We simulate a hard-
ware cache-coherent shared-memory multiprocessor with a
full-mapped, invalidation-based, three-state directory coher-
ence protocol. The processing nodes are connected by a
two-dimensional mesh network. Each processing node con-
sists of a processor, two levels of cache, and a part of the

ILP Processor
Processor speed 300MHz
Maximum fetch/retire rate 4
(instructions per cycle)
Instruction issue window
Functional units

64 entries

2 integer arithmetic
2 floating point

2 address generation
Branch speculation depth 8

Memory queue size 64 entries
Network parameters
Network speed 150MHz

Network width 64 bits

Flit delay (per hop) 2 network cycles
Cache parameters

64 bytes

Direct mapped, 16 K

Cache line size
L1 cache (on-chip)

L1 request ports 2

L1 hit time 1 cycle

Number of L1 MSHRSs 8

L2 cache (off-chip) 4-way associative, 64 K
L2 request ports 1

L2 hit time

8 cycles, pipelined
Number of .2 MSHRSs 8
Memory parameters
Memory access time 18 cycles (60 ns)
Memory transfer bandwidth | 16 bytes/cycle
Memory interleaving 4-way

Figure 1: System parameters.

main memory and directory. In our cache hierarchy, the first
level cache is dual-ported, write-back, and write-allocate.
The second-level cache is pipelined, write-back, and write-
allocate. Both levels are non-blocking with eight Miss Status
Holding Registers (MSHRs) [11].

When there is a store or exclusive prefetch request to
a line that has a load pending, the MSHR logic stalls the
later request and issues an ownership request only when the
load reply returns, as in many current system implementa-
tions. We refer to such stalls as write-after-read stalls. The
alternative, allowing this ownership request to overlap with
the previous read request, increases the complexity at the
directory controller and at the MSHRs, since both compo-
nents would need to handle potential reordering of requests
in the network. In addition to preventing overlap of the store
ownership request with load latency, our implementation of
write-after-read stalls also blocks a cache port, possibly pre-
venting later requests from issuing to the cache.

Figure 1 gives our default memory system parameters.
We have chosen smaller cache sizes than commercial sys-
tems, commensurate with our application input sizes (Sec-
tion 4.4) and following the working-set evaluations of Woo
et al. [25]. Our secondary caches are chosen such that sec-
ondary working sets of our applications do not fit in cache;
we choose primary cache sizes such that fixed-size primary
working sets in our applications fit in cache.

Base Processor Model. To exploit instruction-level
parallelism, our default processor model employs widely
used techniques like multiple instruction issue, dynamic
(out-of-order) scheduling, register renaming, speculative ex-
ecution, and non-blocking loads. The processor microar-
chitecture is most closely based on the MIPS R10000 de-
sign [13]. The processor includes a memory queue, which
is used for issuing memory operations and for maintaining
consistency constraints.

Figure 1 gives the processor parameters used in our sim-
ulations. These parameters were chosen to model next-
generation aggressive processors. The default latencies for
the various execution units approximate those for the Ultra-

SPARC [23].

To appear in Proceedings of SPAA-9 (June, 1997)

Application Input Size Processors
Erlebacher 64 by 64 by 64 cube, block 8 16

FFT 65536 points 16

LU 256 by 256 matrix, block 8 8

MP3D 50000 particles 8

Radix 1024 radix, 512K keys, max 512K | 8

Water 343 molecules 16

Figure 2: Application parameters.

Processor Variations. We model variations on the
base processor model that implement different consistency
models (SC, PC, and RC). For each of these consistency
models, the processor can support a straightforward im-
plementation, an optimized implementation that supports
hardware prefetching and speculative load execution, or an
optimized implementation that also supports speculative re-
tirement (on SC systems only). As discussed in Section 2,
the processor supports a separate implementation with store
buffering only for SC; store buffering is already integrated
in the straightforward implementations of PC and RC.

We implement hardware prefetching and speculative load
execution as discussed in Section 2. We force a rollback
when the system observes a coherence request or a secondary
cache replacement for a cache line accessed by an outstand-
ing speculative load. We do not rollback on primary cache
replacements since those lines will still remain visible to ex-
ternal coherence. The mechanism used to restart execution
on a rollback is similar to, but more optimistic than, that
used in the MIPS R10000 [13]. As in the MIPS R10000,
we require a violating speculative load to reach the head of
the instruction window before activating a recovery; how-
ever, we optimistically assume a zero cycle recovery penalty
(the number of cycles that are taken to flush subsequent in-
structions from the instruction window). Our results show
that, on our base system (with 64-element instruction win-
dow sizes), the number of rollbacks is very small, and thus
the rollback penalty does not significantly impact the per-
formance of the optimized models. However, in our studies
with larger instruction windows (Section 7), this assump-
tion gives an upper bound on the performance of speculative
loads. Speculative retirement is implemented as discussed
in Section 3 sharing features of speculative load execution.

In our implementations, speculative loads and retired but
incomplete stores, are maintained in the memory queue until
their consistency constraints are met. We use a memory
queue size larger than those found on current processors to
account for the increased stress on memory queue resources.
An alternative implementation could keep speculative loads
and outstanding stores in a separate buffer to reduce the
pressure on mMemory queue resources.

4.2 Simulation Methodology and Environment

We use RSIM (the Rice Simulator for ILP Multipro-
cessors), a detailed execution-driven simulator that models
both the processor pipelines and the memory subsystem, in-
cluding contention at various resources [15]. RSIM uses ap-
plication executables rather than traces so that interactions
between the processors during the simulation can affect the
course of the simulation.

The applications are compiled with a version of SPARC
V9 gcc modified to eliminate branch delay slots and re-
stricted to 32 bit code, optimized with -02 -funrollloop.

To speed up the simulation, we assume all instructions
hit in the instruction cache (with 1 cycle hit time) and pri-
vate (i.e., non-shared) variables also hit in the data cache.
These assumptions are widely used by previous work.

4.3 Performance Metrics

We divide execution time into its various components,
namely CPU time and stall time due to data loads, data
stores (henceforth referred to as just loads and stores respec-
tively), and synchronization. We follow the convention of
several previous studies with ILP processors [19, 14, 16, 18]
to assign busy and stall time. We count a cycle as part of
busy time if we can retire the maximum number of instruc-
tions possible in that cycle (four in our system). Otherwise,
we charge that cycle to the stall time component correspond-
ing to the first instruction that could not retire that cycle.

4.4 Applications

We use six applications in this study — Radix, FFT and
LU from the SPLASH-2 suite [25]; Water and MP3D from
the SPLASH suite [20]; and Erlebacher, obtained from the
Rice parallel Fortran compiler group [1]. These applications
were slightly modified from their original distributions as
discussed in our previous work [14, 16, 18]. Both LU and
FFT include loop transformations and procedure inlining
optimizations in order to better exploit non-blocking loads
in ILP processors (similar to those discussed in [16]).

Figure 2 gives the input sizes and system sizes used
for the various applications. Because our simulation times
are much higher than those seen in studies using direct-
execution or trace-driven simulation, we were restricted to
using problem sizes one size smaller than generally recom-
mended for LU and Water. The system sizes are chosen
for various applications depending on the scalability of the
application. Since the recommended problem size for LU
and Water are for configurations with up to 64 processors,
and we run these applications on much smaller configura-
tions, we do not expect the decreased input sizes with these
applications to qualitatively affect our results.

5 Performance of Current Consistency Implementations

This section discusses the impact of the hardware
prefetching, speculative load execution, and store buffer-
ing optimizations on the performance differences between
SC, PC, and RC, with the base architecture described in
Section 4. The results for PC and for the impact of store
buffering with SC are presented for the first time. The other
results appeared in our previous study [14] and are presented
here for comparison with PC and the store buffering opti-
mization, and also to provide necessary background for the
following sections.

Figure 3 summarizes our results. Plain represents a
straightforward implementation of each consistency model,
+SL adds hardware prefetching and speculative loads to the
Plain system”, and +SB adds store buffering to the +SL sys-
tem. For each application, we show the execution times of
the SC+SL, SC+SL+SB, PCplain, PC+SL, RCplain, and RC+SL
systems, normalized to the time for the SC+SL system®. Each
execution time bar is further subdivided into four compo-
nents — CPU, load stall time, store stall time, and synchro-
nization stall time. We do not show the times for SCplain

3We do not show benefits of hardware prefetching and speculative
loads separately for brevity. The benefits of only hardware prefetching
for SC and RC appear in [14]. For PC, hardware prefetching helps
most applications; speculative loads finds further benefits for most
applications.

4Some numbers in Figure 3 differ from those in [14] because of the
loop transformations in FFT and LU discussed in Section 4, and a
difference in cache sizes.

To appear in Proceedings of SPAA-9 (June, 1997)

4ot Synch
3L Store l

120+ Load

CPU

1201

100.0
100 +
1004-100.0

98.0 . 3
97.2 91.0 96.
801
of I
201+

«
3

Y
3

3
Normalized execution time

Normalized execution time

3

1209

AOI I

Synch

Store
Load

CcPU

Store
Load
CPU

886 884 887

1601 156.6 Synch l

Normalized execution time

0 SC+SL_SC+SL_PCplain PC+SL RCplain RC+SL 0 SC+SL SC+SL PCplain PC+SL RCplain RC+SL 0 SC+SL SC+SL PCplain PC+SL RCplain RC+SL
+SB +SB. +SB
Erlebacher FFT LU
160+
10011000 gg3 Synch 150.4 Synch 1255 Synch

1401+
120+
10011000 083

3
Normalized execution time

Normalized execution time

S 3
Nos o
S & 3

CPU
801 |
| I |
20}
204+

0 0

801 :

Store
Load

CPU

Store
1201 Load .

CPU
| 1000 99,0 99.0
100 I 92.4 915

soll .I.

Normalized execution time

SC+SL SC+SL PCplain PC+SL RCplain RC+SL
+S

Mp3d

SC+SL SC+SL PCplain PC+SL RCplain RC+SL

SC+SL_SCYSL PCplain PCFSL RCplain RCYSL
+SB

Radix Water

Figure 3: Evaluation of current optimized consistency implementations.

because our previous study showed that SC+SL performs sig-
nificantly better than SCplain for our applications.

Section 5.1 summarizes our overall results. Section 5.2
describes the factors that contribute to the performance dif-
ference between SC, PC, and RC, and Section 5.3 identifies
the factors that determine the performance of individual ap-
plications.

5.1 Overall Results

The best SC and PC implementations for all applications
are SC+SL+SB and PC+SL respectively. Although hardware
prefetching, speculative loads, and store buffering optimiza-
tions result in significant benefits for SC [14] and PC, the
more relaxed models continue to achieve significantly higher
performance compared to the less relaxed models. In the
case of PC, the optimizations are necessary for PC to out-
perform the best SC. The optimizations do not have much
impact on the performance of RC. For each pair of mod-
els, the following lists the applications for which the relaxed
model offers 15% or more reduction in execution time com-
pared to the best implementation of the stronger model (the
parenthetical number is the actual reduction in execution
time offered by the relaxed model):

SC vs. PC: FFT (15%), Radix (24%).
PC vs. RC: Radix (18%), Mp3d (23%).
SC vs. RC: FFT (18%), Mp3d (30%), Radix (37%).

5.2 Factors Contributing to Performance Differences

The difference in the performance of the various consistency
implementations arises primarily due to a difference in data
memory stall time. The difference between PCplain and the
other systems arises because PCplain prevents the overlap
and reordering of two loads, two stores, and a load followed
by a store in program order. In contrast, the other imple-
mentations allow such overlap and reordering with either de-
mand or prefetch accesses. This gives other systems a signif-
icant advantage over PCplain except in the case of Mp3d. In
Mp3d, PCplain slightly outperforms the best SC system due

to the negative effects of premature prefetches associated
with the optimized implementations of Mp3d (discussed be-
low). We next discuss six factors that affect the performance
differences between implementations other than PCplain.

Limited instruction window size. With current in-
struction window sizes (64 instructions for our processor), it
may not be possible to overlap the entire latency of a mem-
ory instruction with other instructions in the window, unless
there are other equally high latency memory instructions in
the instruction window. Loads that are not completely over-
lapped are handled similarly in all implementations; how-
ever, the manner in which stores that reach the head of the
instruction window are handled can lead to differences be-
tween the consistency implementations. In SC+SL, stores are
retired from the instruction window only when they com-
plete. Therefore, in SC+SL, incomplete stores can block the
flow of instructions through the instruction window. Addi-
tionally, stores retire only one at a time in SC+SL. SC+SL+SB,
in contrast, can retire (possibly multiple) stores from the in-
struction window even while they are incomplete, buffering
them in the memory queue. A subsequent completed load,
however, cannot retire until previous stores complete. PC
systems are more aggressive since they allow stores, as well
as subsequent completed loads, to retire while the stores are
incomplete. Stores in PC lead to stall time only when the
memory queue is full due to previous incomplete (but re-
tired) stores. Finally, RC systems are the most aggressive
since they not only retire incomplete stores, but also issue
multiple demand stores in parallel, and thus do not need to
buffer incomplete stores in the memory queue after issue.

Thus, the limited instruction window size can have a
negative impact on all our implementations, but the im-
pact increases from the RC systems to PC+SL to SC+SL+SB
to SC+SL.

Limited memory queue size. If the memory queue
is full, then the issue of subsequent demand or prefetch re-
quests 1s delayed. This can potentially cause the instruction
window to fill. The memory queue full time depends on (i)
the rate at which memory instructions arrive in the queue
(arrival rate), and (ii) the time a given memory instruc-
tion occupies the queue (occupancy). The arrival rate is

To appear in Proceedings of SPAA-9 (June, 1997)

typically higher for the more relaxed models because these
models have fewer constraints on retirement and so instruc-
tions enter and leave the instruction window (and hence the
memory queue) at a higher rate. On the other hand, the
occupancy decreases with the more relaxed models. Specif-
ically, a load occupies a memory queue entry only until the
load and all previous acquires complete for RC, until all pre-
vious loads complete for PC, and until all previous loads and
stores complete for SC. A store occupies a memory queue
entry only until it is issued to the cache in RC, and until
all previous stores complete in PC and SC. The net effect
of the differing arrival rates and occupancies for our appli-
cations is that the memory queue fill time is high for some
applications with PC+SL and negligible for all applications
with SC and RC.

Early store prefetches. Store prefetching does not
result in reduced latency if the prefetched line is either in-
validated, replaced, or downgraded to read-only state be-
fore the corresponding demand access. Such prefetches are
called early prefetches. Such prefetches may actually de-
grade performance if they invalidate a line that is yet to
be used by the remote processor, as may be possible in the
presence of false sharing, races, or if the prefetch occurred
before the synchronization corresponding to the data access.
Early prefetches may also degrade performance if they re-
place a line that will be used before the demand access. Fi-
nally, early prefetches may increase system contention, hin-
dering other more useful accesses. These negative effects
of early prefetches are present in all implementations with
store prefetching, but have the largest impact with the SC
implementations since SC stalls retirement at an incomplete
store (with SC+SL) or at the first load following an incom-
plete store (with SC+SL+SB).

Early prefetches can occur when the prefetch is issued
sufficiently in advance of the demand access. Thus, a larger
instruction window size (for SC and PC) and a larger mem-
ory queue size (for PC) can further increase the number of
early prefetches. Additionally, the exposed latency due to
an early prefetch can increase the time between subsequent
prefetches and their corresponding demand accesses, thus
increasing the probability that other prefetches are also in-
validated, replaced, or downgraded before their use.

Early speculative loads. Speculative loads in the +SL
implementations may also degrade performance if they re-
sult in rollbacks, in cases analogous to early store prefetch-
ing. With our implementation, a rollback is triggered when
the offending load reaches the head of the instruction win-
dow; therefore, the work lost due to rollback can increase
with a larger instruction window size and may be signif-
icant. Further, the number of rollbacks can also increase
with larger instruction window sizes, as such window sizes
allow speculative loads to issue earlier.

Stronger memory models can see more rollbacks than
more relaxed models, as loads must wait longer before being
considered non-speculative. Specifically, loads in SC must
wait for all previous loads and stores to complete and loads
in PC must wait for all previous loads, whereas loads in RC
must only wait for previous acquires to complete.

Write-after-read stalls. As described in Section 4,
if a cache sees a store request to a line for which it has a
load request outstanding, the store request is stalled leading
to potential cache stalls. Such write-after-read stalls are
not usually seen with Plain implementations, as the stores
following loads to the same line generally depend on the
values of those loads and are thus not issued in Plain until
the loads complete. In the +SL implementations, however,

store prefetches are issued even while the values of the stores
are unknown, leading to possible performance degradations
due to write-after-read stalls. Again, a delay in stores hurts
the SC implementations the most.

Application characteristics. The extent to which the
above factors influence performance is greatly determined
by application characteristics. In our experiments, a key
aspect is whether misses occur together with other indepen-
dent memory misses of similar or higher latency within the
space of an instruction window. We call misses that occur
together in an instruction window as clustered misses. La-
tencies of clustered misses are overlapped with each other,
mitigating part of the negative influence of the limited in-
struction window and memory queue sizes. Clustered loads
impact all our implementations in a similar manner since
loads are similarly handled by all implementations. Clus-
tered stores, however, have a greater impact on stronger
models than on more relaxed models, and so can narrow
the performance gap between the models. A store clustered
with a load is more effective at closing this gap; two stores
clustered with each other only partly address the gap since
the latency of one of the stores is still seen.

5.3 Application-Specific Analysis

This section identifies the dominant factors from Section 5.2
responsible for the performance differences among the vari-
ous implementations for a specific application.

FFT, Radix, and Mp3d are the applications that see the
most disparity in performance among the different consis-
tency models. In FFT and Mp3d, stores are not clustered
with other independent misses of similar latency. Therefore,
these applications exhibit the negative effects of limited in-
struction window size (primarily for SC) and limited mem-
ory queue size (for PC). Further, for Mp3d, the versions
that employ store prefetches see a performance degradation
due to write-after-read stalls and due to early prefetches oc-
curring from high false sharing and races. Finally, certain
phases of both Radix and Mp3d have stores with addresses
dependent on the values of previous loads. This serializes
store prefetches behind loads, aggravating the impact of lim-
ited instruction window and memory queue sizes.

Erlebacher, LU, and Water see less than 10% perfor-
mance difference between the different consistency models.
In Erlebacher, stores are clustered with other stores, result-
ing in a lower performance gap among the different models.
Write-after-read stalls incurred by SC and PC, however, re-
sult in a slight performance degradation in these models
compared to RCplain.

In LU, most L1 store misses are L2 hits (caused by L1
conflicts). These L2 hits are often clustered with remote load
misses, narrowing the gap between the consistency models.
These stores show write-after-read stalls, but usually the of-
fending loads are also 1.2 hits and the stores have enough
time to overlap behind other remote load misses. Neverthe-
less, PC performs a little better than SC because there are
a few remote store misses that PC is able to overlap better
than SC. Note that LU is the only application for which the
addition of store buffering to SC (SC+SL+SB system) gives
more than 5% improvement in execution time. This im-
provement occurs for two reasons. First, store prefetching
is often successful, so a large part of the store latency in
the SC+SL case is due to the limited rate of retirement of
stores; the SC+SL+SB system can retire stores at the peak
rate. Second, even in cases where store prefetching is not
successful, a large part of the store latency is from L2 hits; a

To appear in Proceedings of SPAA-9 (June, 1997)

large fraction of this L2 hit latency can be overlapped before
the next load comes to the head of the instruction window
and stalls for the store.

Water has small critical sections, where data loads and
the lock acquire are overlapped in the systems with specula-
tive loads. This is the only application where RCplain per-
forms slightly worse than the optimized implementations of
the other models, as RCplain stalls data loads until the ac-
quire completes. Store prefetches in Water experience write-
after-read stalls and little clustering; the remaining store la-
tency hinders the performance of the SC implementations in
the +SL versions. However, the differences between the con-
sistency models are small, as Water spends the least time in
data memory stalls among our applications.

In all of the above applications, the effect of early specu-
lative loads was negligible, as there were very few rollbacks.

6 Evaluation of Speculative Retirement

The previous section showed that with current instruction
window sizes, the store-to-load ordering constraint of SC can
significantly affect performance. This section evaluates the
benefits achieved by the speculative retirement technique of
Section 3, which potentially alleviates the impact of this
store-to-load ordering constraint.

6.1 Performance Benefits of Speculative Retirement

Figure 4 summarizes the benefits of speculative retirement.
The graph for an application shows the performance of the
best implementations of SC (SC+SL+SB), PC (PC+SL), and
RC for that application (from Section 5). In RC, the best
implementation is RCplain for all applications except Water,
where it is RC+SL. Henceforth, the best implementation of
RC for an application is referred to as RCbest. Figure 4 addi-
tionally includes three implementations of SC with specula-
tive retirement (labeled +SR), and, for comparison, three ver-
sions of SC+SL+SB with larger instruction windows (labeled
+IW). In the implementations of speculative retirement, the
number below each column represents the size of the history
buffer used in that implementation. Similarly, each of the
three +IW implementations is labeled with a number indi-
cating the increase in the instruction window size for that
version. We study the performance benefits of increases in
the history buffer size and equivalent increases in the in-
struction window size up to a doubling of the instruction
window size of the base system (64 elements). The mem-
ory queue in each of the +SR and +IW implementations is
increased by an amount equal to the history buffer size or
the increase in instruction window size over the base case,
respectively.

Focusing on the two applications where the difference
between SC and PC was significant in Section 5 (FFT and
Radix), we find that speculative retirement is able to yield
significant benefits in both cases. Specifically, speculative
retirement reduces execution time up to 11% for FFT and
up to 14% for Radix. With the addition of speculative re-
tirement to SC, the execution time reduction provided by
PC relative to SC drops from 15% to 5% in FFT and from
24% to 11% in Radix.

For the other applications, the performance potential of
speculative retirement is limited, as PC provides little re-
duction in execution time relative to SC even without spec-
ulative retirement. In these applications, speculative retire-
ment provides some gains; however, these gains depend on
the history buffer size and application characteristics. All

of these applications see nearly as much benefit from a 16-
element history buffer as from a 64-element history buffer.
In Mp3d, the implementation with a 16-element history
buffer actually outperforms the more aggressive speculative
retirement implementations by stopping instruction process-
ing before too many early prefetches or early speculative
loads are issued.

6.2 Comparison with Increase of Instruction Window Size

A potential alternative to speculative retirement to improve
the effectiveness of SC is to simply increase the size of the
processor instruction window. In this way, store prefetches
can issue earlier and are also more likely to have other op-
erations available to them for clustering. The results of Fig-
ure 4 show that, for the history buffer and instruction win-
dow sizes we consider, similar performance can be achieved
through either of these types of hardware support for most
of our applications; however, some cases do see differences
between these two techniques.

Increasing the instruction window size outperforms a
similar sized history buffer implementation of speculative
retirement in some cases (especially LU and Water) because
the former provides increased overlap for both loads and
stores, while the latter only targets limitations due to store
latency.

On the other hand, a history buffer implementation
of speculative retirement can outperform an equivalent in-
crease in the instruction window in three ways. First, the
history buffer used in speculative retirement does not need
to include stores and branches; this allows more instruc-
tions to be brought into the instruction window and may
allow better overlap in certain types of code, such as the
permutation phase of Radix. Second, in cases where early
prefetches hurt performance, speculative retirement is more
likely to restrain prefetches from issuing too early, as it will
not bring in new memory instructions when a load miss is
pending at the head of the instruction window. This benefit
is seen in LU when comparing 16 and 32-element history
buffer sizes to similar instruction window increases. Finally,
recoveries in speculative retirement can be enacted as soon
as they are detected. In contrast, the common implemen-
tation of recoveries in speculative load execution marks an
exception on the violating load and waits for the marked
load to reach the head of the instruction window before en-
acting the rollback [26]. Although the penalties associated
with such waiting are not inherently high in our base pro-
cessor, the impact of such waiting will increase with larger
instruction windows.

As speculative retirement and increased instruction win-
dows achieve similar performance, depending largely on ap-
plication characteristics, the choice of one technique over the
other depends largely on implementation issues. We discuss
two important implementation issues: storage and complex-
ity. Both topics are discussed in the context of a system
similar to the MIPS R10000 or DEC Alpha 21264, which
use a unified physical register file for architectural state and
renaming registers [10, 26].

The storage requirements corresponding to each element
of the instruction window and a history buffer are nearly
identical. In both cases, each element (whether of the
instruction window or the history buffer) must include a
logical-to-physical register mapping for the destination reg-
ister. In the case of the instruction window, new registers
must be added to the physical register file in order to enable
the use of the new instruction window entries. Similarly,

To appear in Proceedings of SPAA-9 (June, 1997)

2 Synch
= Store
= 1100.0 99.1 98.8 L
§ 100 92.8 o L 931 925 925 By .
3
2 8ot
@
-
8
N 60f
[
E
S 4t
201
0 SCTSCPCTSL Rebest SR SR TSR W AW FW
SB 16 32 64 16 32 64
Erlebacher
2 Synch
= Store
= 100.0 102.3 101.9 .
S 100 - 975 959) Load
2 R LS =8 9.2 CPU
3
2 8ot
@
-
8
N 60f
[
E
S 4wt
201
0 SETSCPCTSL Rebest SR SR TSR W AW FW
SB 16 32 64 16 32 64
LU
2 Synch
= Store
§ 1001000 9.0 o 9.6 gy3 Load .
3 860 T 870
£ 8o 76.4
]
B 62.8
N 60f
[
E
S 4wt
201
0 SETSCPCTSL Rebest SR SR TSR W AW FW
SB 16 32 64 16 32 64
Radix

2 Synch
= Store
g oo g’ 90.8 &0 N
3 852 g5 g L 8 887 887 g5g
Q .
2 8ot
@
-
8
N 60{
[
E
S 4wt
201
0 SCTSCPCTSL Rebest TSR TSR SR W AW AW
SB 16 32 64 16 32 64
FFT
2 Synch
= Store
100.0
S 1001 96.5 975 96.3 . Load .
£ 91.0 93.2 93.9 95.5 cPU
3
2 8ot
) 70.1
-
8
N 60{
[
E
S 4wt
201
0 SCTSCPCTSL Rebest TSR TSR SR W W AW
SB 16 32 64 16 32 64
Mp3d
2 Synch
= Store
| 100.0 99.8 991 986 L
§ 100 933 925 945 gz5 R .
2
¢ wl 80.7
g C I B |
£ e} [| I
g |
S 4wt
201
0 SCTSCPCTSL Rebest TSR TSR SR W W AW
SB 16 32 64 16 32 64

Water

Figure 4: Effectiveness of speculative retirement.

each element of the history buffer must have a data field
equivalent to the register size in order to hold the previ-
ous register value. Additionally, instruction window entries
would need flags to mark whether or not the instruction has
completed; however, this is a minor investment.

The complexity of the two systems, however, is differ-
ent. Specifically, the history buffer implementation needs
ports into the register file in order to retrieve the previous
values of registers, while a larger instruction window needs
more registers in the physical register file. The history buffer
can share already-existing ports with other functional units,
as the history buffer is only used during periods of specu-
lative retirement and the processor does not always retire
instructions at peak rate. Such port-sharing should be pos-
sible without affecting the critical path; some processor de-
signs already have register ports shared among functional
units [2]. On the other hand, with an increased instruction
window, new registers must be added to the physical register
file, potentially affecting register-file access time [3]. How-
ever, it may be possible to move this increase in register file
access time off the critical path by pipelining register file
access [24] or clustering the register file [17]. Nevertheless,
such changes in register file access time will affect perfor-
mance at all times, including the uniprocessor case, whereas
any degradations caused by port-sharing in speculative re-
tirement will only affect performance during periods when
the history buffer is active.

7 Impact of Larger Instruction Window Sizes on Consis-
tency Implementations

This section examines the interaction between various
optimizations for consistency models with larger instruction
window sizes that may be supported by future processors.
Section 7.1 examines the previous best implementations of
consistency models with larger window sizes. Section 7.2
examines the use of speculative retirement with larger in-
struction window sizes.

7.1 Earlier Optimizations with Large Instruction Windows

Figure 5 summarizes the results for this section. The graph
for each application shows three curves representing the best
previous implementation of SC, PC, and RC (not including
speculative retirement) for each application from Section 5.
Each curve plots the execution time as a function of the
instruction window size. All execution times are shown nor-
malized to the performance of SC with a 64-element instruc-
tion window for the application. As in Section 6, all the
systems in this section have as many entries in the memory
queue as the number of elements in the instruction window.

Our results show that the performance benefits of in-
creasing the instruction window size vary across the differ-
ent consistency models. Overall, comparing the different
consistency implementations, we find that the performance
gap between SC and the more relaxed models drops at first,
but then changes only marginally or increases for most ap-
plications. Thus, increasing instruction-window size alone
is not sufficient to equalize the performance of consistency

To appear in Proceedings of SPAA-9 (June, 1997)

[

3
08 08 08 \\v/
[})) B i -
£ £ £ -
= = =
Sos6 Sos6 Sos6
1= i=] i=]
2 2 2
S04 S04 goa
< < <
w sc w sc w sc
02M . pc 02M . pc 02M . pc
RC RC RC
% 200 400 600 800 1000 1200 % 200 400 600 800 1000 1200 % 200 400 600 800 1000 1200
Instruction window size Instruction window size Instruction window size
Erlebacher FFT LU
25 - 1
12
2 08
@ 1 @
£ £ £
= = =
15 08 06
=] i=] i=]
= =P =
g1 S Q0.4
< < <
a o4 a
— sc oal|— SC
05 02l|--- PC 2l--- PC
RC RC
% 200 400 600 800 1000 1200 % 200 400 600 800 1000 1200 % 200 400 600 800 1000 1200

Instruction window size

Mp3d

Instruction window size

Radix

Instruction window size
Water

Figure 5: Effect of varying the instruction window size.

models. To determine the reason for this effect, we discuss
the behavior of each model with larger instruction window
sizes below.

With SC, increasing the size of the instruction window
initially leads to significant reductions in execution time in
all applications except Mp3d. However, in most of our ap-
plications, after a particular value of the instruction win-
dow size, the negative impact of early store prefetches and
speculative loads (see Section 5) becomes more pronounced,
actually leading to a degradation in execution time relative
to smaller window sizes.

In the PC and RC systems, increasing the instruction
window size initially leads to a reduction in execution time
for most applications. However, unlike the SC case, the
negative effects of larger instruction windows are not seen
in most applications; instead, execution time mostly stabi-
lizes after a particular instruction window size. PC and RC
systems are not negatively impacted to the same extent as
SC because these implementations either do not have the
negative effects, or are less likely to experience negative ef-
fects, or are more resilient to these negative effects when
they do occur. For example, RCplain does not issue spec-
ulative loads or store prefetches, therefore avoiding early
prefetching and rollbacks; PC+SL and RC+SL are less likely to
rollback on speculative loads, as the ordering constraints in
these systems are less strict; and RC+SL can pipeline demand
store misses for accesses that experience early prefetches.

Mp3d and Radix do not follow the general trend for PC.
In Mp3d, the initial doubling of instruction window size
leads to a performance loss, as the larger instruction win-
dow increases true and false sharing, consequently leading to
more rollbacks and early prefetches; these early prefetches
can further lead to more early prefetches, as discussed in
Section 5. As the instruction window size increases, early
prefetches increase further; however, the number of rollbacks
actually decreases as the memory queue fills up with stores
that were prefetched early, preventing loads from issuing
too early. Consequently, performance then improves slightly
with larger instruction window sizes. In Radix, the greater

10

potential for prefetching provided by the larger instruction
window and the PC model, combined with false-sharing in
the application, leads to long sequences of early prefetches
as discussed in Section 5.

7.2 Speculative Retirement with Large Instruction Win-
dows

Figure 5 shows that for each application, after a certain
instruction window size, the RC implementation sees either
no further improvements or only marginal further reduction
in execution time. We refer to this instruction window size
as the RC-knee. This point is the maximum desirable in-
struction window size for RC designs, as further additions
to the instruction window increase complexity without sig-
nificantly reducing execution time. The RC-knee also rep-
resents the instruction window size that gives the maximum
load overlap (either as a result of application limitations
or resource contention); this observation holds regardless of
consistency model, as successful speculative loads in SC and
PC are handled like loads in RC.

Although load overlap is exhausted, some applications
continue to see a significant performance difference between
SC and RC at the RC-knee because of limitations of stores
for SC. Hardware techniques to better address store latency
could provide SC with additional improvements. Again, we
have the alternative of using speculative retirement or in-
creasing instruction window size. At the window sizes of
Section 6, increasing instruction window size gave better
performance in some cases because of increased load overlap.
However, the processor has already exhausted load overlap
at the RC knee; therefore, speculative retirement should be
a better choice at this point, since it gives the additional
benefits of not holding elements for stores and branches,
potentially fewer early prefetches, and faster rollbacks in
case of violations (as described in Section 6.2). The impact
of faster rollbacks is particularly expected to become more
important as instruction window size increases. Addition-
ally, the increases in register-file size mandated by further
increases in the instruction window are likely to elongate

To appear in Proceedings of SPAA-9 (June, 1997)

(Approximate RC-knee) (knee+32) (2 x knee)
Application || RCbest | PC+SL || SC+SL+SB | +SR [+1W | SR | +IW
Erlebacher 2.36 2.45 2.6 2.56 | 2.61 2.45 2.41
FFT 1.08 1.11 1.22 1.19 1.17 1.15 1.13
LU 5.85 5.83 6.59 6.19 | 6.26 6.03 | 6.03
Mp3d 3.26 5.18 4.89 4.91 5.05 5.4 5.87
Radix 3.84 5.17 5.09 5.04 | 5.05 4.87 | 4.92
Water 4.2 4.26 4.64 4.62 | 4.68 4.43 | 4.45

Figure 6: Performance impact of speculative retirement.

already complex register-file-access paths, as discussed in
Section 6.2.

Figure 6 lists the execution times (in millions of cycles)
seen by different consistency implementations. The first
three columns list the performance of the best implemen-
tations of RC, PC, and SC at the approximate value of the
RC-knee®. The next two columns show the execution time
achieved by SC implementations with a 32-element history
buffer and a 32-element increase in the instruction window,
respectively (for a base instruction window of RC-knee el-
ements). The last two columns show an implementation
with a history-buffer and instruction window size equal to
the RC-knee, and an instruction window size equal to twice
the RC-knee, respectively. As in Section 6, memory queue
sizes are also increased according to the history buffer size
or instruction window increase. We note that, for all cases,
the performance impact of speculative retirement is very
close to or better than the performance of an equivalently
increased instruction window size implementation for the
reasons described above. Thus, at larger instruction win-
dow sizes, speculative retirement appears preferable for pro-
viding similar performance with potentially less impact on
complexity.

8 Discussion

Section 6 discussed the effectiveness of a hardware imple-
mentation of speculative retirement, showing that this tech-
nique can improve the performance of SC and reduce the
performance gap between SC and relaxed consistency mod-
els. Sections 6 and 7 compare the benefits of speculative
retirement with another hardware technique, larger instruc-
tion windows. These sections have focussed on hardware
techniques in order to investigate the performance benefits
achievable with a previously-existing SC code base. This
study has found that all of these hardware optimizations
are limited to varying extents by early prefetches and roll-
backs, particularly on applications with significant amounts
of true and false sharing. Using speculative retirement in-
stead of larger instruction windows can reduce the amount
of early prefetches in some cases and can reduce the impact
of some rollbacks; however, these problems remain impor-
tant for performance. One possible optimization to reduce
the number of early prefetches and rollbacks is to dynami-
cally adjust the size of the history buffer according to the
current program behavior. Specifically, the processor could
limit the number of instructions allowed into the history
buffer if too many prefetches were invalidated or replaced
before use. A similar optimization may not be practical in
the case of larger instruction windows, as the physical reg-
ister file must be designed according to the largest possible

5We only have approximate values of the RC-knee because our ex-
periments only include instruction window sizes in successive powers
of 2, rather than every window size in the range considered.

11

instruction window size; consequently, the processor would
still have to suffer from the elongated register file access time
even during periods when it wanted to limit the number of
instructions in the system.

Additionally, attempts to narrow the performance gap
between consistency models can focus on software tech-
niques. Recent work has considered the interaction of op-
timized consistency models with software-controlled non-
binding prefetching on IL.P-based multiprocessors and has
found that such software-controlled prefetching can reduce
the gap between SC and RC in some cases, but that a sig-
nificant performance gap remains in other cases (again due
to write latency) [18]. Previous work has shown that com-
piler optimizations that schedule load misses closer together
(within the same instruction window) can improve perfor-
mance in RC systems by better exploiting clustering [16].
Similarly, compiler techniques to schedule store misses closer
to load misses may better hide the impact of store miss time
on SC. However, any technique that requires modification or
recompilation of source code will not provide benefits to the
previously-existing code base.

9 Conclusion

This paper makes three contributions. First, we analyze
the performance of processor consistency (PC) (and, equiv-
alently, total-store ordering [TSO]) with implementations
suitable for shared-memory multiprocessors with state-of-
the-art 1LP processors. Second, we propose and evaluate
speculative retirement, a hardware optimization for sequen-
tial consistency (SC) aimed at reducing the impact of the
store-to-load ordering constraint imposed by SC. Specula-
tive retirement builds upon the currently implemented op-
timization of speculative loads, and can be implemented
with a structure similar to a history buffer. Third, we in-
vestigate the interaction of consistency optimizations with
larger instruction windows that may represent future pro-
cessor trends.

In the first part of our study, we find that the optimized
implementation of PC yields more than a 15% reduction in
execution time relative to the best implementation of SC
for two of our six applications (FFT and Radix). PC re-
alizes these benefits by relaxing the store-to-load ordering
constraint of SC and thus seeing fewer performance limita-
tions from store latency. However, release consistency (RC)
provides more than 15% additional reduction in execution
time relative to the optimized implementation of PC for two
applications (Radix and Mp3d). These differences stem pri-
marily from insufficient memory queue sizes and the negative
effects of early store prefetches on the performance of PC.

Our results evaluating the performance of speculative
retirement show that speculative retirement using a 64-
element history buffer reduces SC execution time notably
for the two applications which saw a significant difference
between SC and PC. Specifically, the execution time reduc-

To appear in Proceedings of SPAA-9 (June, 1997)

tion provided by PC relative to SC drops from 15% to 5%
in FFT and from 24% to 11% in Radix. Comparing the
history buffer implementation of speculative retirement to
equivalent increases in instruction window size, we find that
both forms of hardware support can improve performance
and outperform the other in certain cases. However, specu-
lative retirement appears likely to have less impact on cycle
time or the number of pipeline stages, as increasing the in-
struction window size requires increases in the register file,
consequently slowing register file access.

When evaluating the interaction of previous consistency
implementations with the larger instruction window sizes
that may appear in future processors, we find that increases
in instruction window size initially lead to significant reduc-
tions in execution time for all models with most applications.
However, after certain instruction window sizes, SC perfor-
mance tends to degrade as a result of the negative effects of
early prefetching and speculative loads, while PC and RC
performance tends to stabilize. At the instruction window
size where RC performance stabilizes, the potential for load
overlap has been virtually exhausted. Beyond this instruc-
tion window size, additional benefits in SC performance can
come primarily from store overlap. Thus, beyond this point,
speculative retirement appears to be a more attractive choice
than further increases in instruction window size for more
aggressive SC designs, as speculative retirement can give
comparable or better benefits than an equivalent increase in
the instruction window size, with possibly less complexity.

10 Acknowledgments

We would like to thank Norm Jouppi, Jim Smith, David
Wood, and the anonymous reviewers for valuable feedback
on earlier drafts of this paper.

References

[1] V. S. Adve et al. An Integrated Compilation and Per-
formance Analysis Environment for Data Parallel Pro-
grams. In Proc. of Supercomputing ’95, 1995.

[2] T. A. Diep et al. Performance Evaluation of the Pow-
erPC 620 Microarchitecture. In Proc. of the 22nd ISCA,

1995.

K. 1. Farkas et al. Register File Design Considerations
in Dynamically Scheduled Processors. In Proc. of the
2nd HPCA, 1996.

K. Gharachorloo et al. Memory Consistency and Event
Ordering in Scalable Shared-Memory Multiprocessors.
In Proc. of the 17th ISCA, 1990.

K. Gharachorloo et al. Performance Evaluation of
Memory Consistency Models for Shared-Memory Mul-
tiprocessors. In Proc. of the 4th ASPLOS, 1991.

K. Gharachorloo et al. Two Techniques to Enhance the
Performance of Memory Consistency Models. In Proc.

of ICPP, 1991.

J. R. Goodman. Cache consistency and sequential con-
sistency. Technical Report 61, SCI Committee, 1989.

D. Hunt. Advanced Features of the 64-bit PA-8000.
CompCon 1995, Hewlett Packard Company.

Intel Corporation. Pentium (r) Pro Family Developer’s
Manual.

12

[10] J. Keller. The 21264: A Superscalar Alpha Processor
with Out-of-Order Execution. 9th Annual Microproces-
sor Forum, 1996.

[11] D. Kroft. Lockup-Free Instruction Fetch/Prefetch

Cache Organization. In Proc. of the 8th ISCA, 1981.

L. Lamport. How to Make a Multiprocessor Computer
that Correctly Executes Multiprocess Programs. IFEF
Trans. on Computers, C-28(9):690-691, 1979.

[12]

MIPS Technologies, Inc. R10000 Microprocessor User’s
Manual, Version 1.1, 1996.

[13]

[14] V. S. Pai et al. An Evaluation of Memory Consistency
Models for Shared-Memory Systems with ILP Proces-

sors. In Proc. of the 7th ASPLOS, 1996.

V. S. Pai et al. RSIM: An Execution-Driven Simula-
tor for ILP-Based Shared-Memory Multiprocessors and
Uniprocessors. In Proc. of the 3rd Workshop on Com-
puter Architecture Fducation, 1997.

[15]

V. S. Pai et al. The Impact of Instruction Level Paral-
lelism on Multiprocessor Performance and Simulation

Methodology. In Proc. of the 3rd HPCA, 1997.

S. Palacharla et al. Complexity-Effective Superscalar
Processors. In Proc. of the 24th ISCA, 1997.

P. Ranganathan et al. The Interaction of Software
Prefetching with ILP Processors in Shared-Memory
Systems. In Proc. of the 24th ISCA, 1997.

M. Rosenblum et al. The Impact of Architectural
Trends on Operating System Performance. In Proc. of
the 15th ACM Symposium on Operating Systems Prin-
ciples, 1995.

J. P. Singh et al. SPLASH: Stanford Parallel Applica-
tions for Shared-Memory. Computer Architecture News,
20(1):5-44, 1992.

[20]

[21] J. E. Smith and A. R. Pleszkun. Implementation of

precise interrupts in pipelined processors. In Proc. of

the 12th ISCA, 1985.

[22] Sparc International. The SPARC Architecture Manual,

Version 9, 1993.

Sun Microsystems. The UliraSPARC Processor — Tech-
nology White Paper, 1995.

[23]

[24] D. M. Tullsen et al. Exploiting Choice: Instruction

Fetch and Issue on an Implementable Simultaneous
Multithreading Processor. In Proc. of the 23rd ISCA,
1996.
[25] S. C. Woo et al. The SPLLASH-2 Programs: Character-
ization and Methodological Considerations. In Proc. of
the 22nd ISCA, 1995.
[26] K. C. Yeager. The Mips R10000 Superscalar Micropro-
cessor. IEEFE Micro, 1996.
[27] R. N. Zucker and J.-L.. Baer. A Performance Study
of Memory Consistency Models. In Proc. of the 19th
ISCA, pages 2-12, 1992.

