
Conservative vs. Optimistic Parallelization of Stateful Network Intrusion Detection ∗

Derek L. Schuff,Yung Ryn Choe,and Vijay S. Pai
Purdue University

West Lafayette, IN 47907
{dschuff, yung, vpai}@purdue.edu

Abstract

This paper presents and experimentally analyzes the perfor-
mance of three parallelization strategies for the popular open-
source Snort network intrusion detection system (NIDS). The
parallelizations include 2 conservative variants and 1 opti-
mistic scheme. The conservative strategy parallelizes inspec-
tion at the level of TCP/IP flows, as any potential inter-packet
dependences are confined to a single flow. The flows are par-
titioned among threads, and each flow is processed in-order at
one thread. A second variation reassigns flows between threads
to improve load balance but still requires that only one thread
process a given flow at a time. The flow-concurrent scheme
provides good performance for 3 of the 5 network packet traces
studied, reaching as high as 4.1 speedup and 3.1 Gbps inspec-
tion rate on a commodity 8-core server. Dynamic reassignment
does not improve performance scalability because it introduces
locking overheads that offset any potential benefits of load bal-
ancing.

Neither conservative version can achieve good perfor-
mance, however, without enough concurrent network flows. For
this case, this paper presents an optimistic parallelization that
exploits the observation that not all packets from a flow are
actually connected by dependences. This system allows a sin-
gle flow to be simultaneously processed by multiple threads,
stalling if an actual dependence is found. The optimistic ver-
sion has additional overheads that reduce speedup by 25% for
traces with flow concurrency, but its benefits allow one addi-
tional trace to see substantial speedup (2.4 on five cores).

1 Introduction

Network intrusion detection systems (NIDSes) run on a
server at the edge of a LAN to identify and log Internet-based
attacks (called exploits) against a local network. Unlike fire-
walls, which shut off external access to certain ports, NID-
Ses can monitor attacks on externally-exposed ports used for
network services. The most popular NIDS is the open-source
Snort, which identifies intrusion attempts by comparing every

∗This work is supported in part by the National Science Foundation under
Grant Nos. CCF-0532448 and CNS-0532452.

inbound and outbound packet against a ruleset [14]. Rules in
the set represent characteristics of known attacks, such as the
protocol type, port number, packet size, packet content (both
strings and regular expressions), and the position of the sus-
picious content. Such rules target various forms of exploits,
including buffer overruns, cross-site scripting, and denial-of-
service (DoS). Each new exploit leads to new rules, with rule-
sets growing rapidly. The most recently-released Snort rulesets
have over 4000 rules.

NIDSes such as Snort are computationally intensive since
they must decode packet data, inspect it according to a rule-
set, and log intrusions. An NIDS receives input as packets, but
must aggregate distinct (and possibly noncontiguous) network
packets into TCP streams to uncover attacks that span several
packets. Additionally, an NIDS often saves asides state infor-
mation that affects its processing of later packets. For example,
if a given sequence of characters represents a possible attack
in the body of an HTML document but may appear normally
in an image, the NIDS should not trigger an alert on that at-
tack if an earlier packet indicated that this data transfer was an
image. Such constraints are incorporated into Snort as stream
reassembly and flowbits, respectively. All TCP data is reassem-
bled into streams, and about 36% of rules require flow tracking
(90% of which are related to NetBIOS). These overheads limit
Snort to an average packet processing rate of about 699 Mbps
on a modern host machine (1.8 GHz Xeon processor) — well
below link-level bandwidths that are already commoditized at 1
Gigabit and are now approaching 10 Gigabits. For higher per-
formance, companies and researchers have proposed scalable
solutions based on clustering, but these require an expensive
load-balancing switch [8, 13, 15].

This paper presents and evaluates three methods to par-
allelize Snort for multicore PC-based servers. Although the
stream reassembly and flowbits phases described above require
in-order packet processing, any information sharing between
packets only applies to packets in the same IP flow (which in-
clude not only TCP streams but also source/destination com-
munication pairs in other protocols). The first paralleliza-
tion strategy is called the flow-concurrent parallelization. This
scheme exploits concurrency by parallelizing ruleset process-
ing on a flow-by-flow basis, since this represents the minimum
granularity at which dependences can be maintained conserva-

32978-1-4244-2232-6/08/$25.00 ©2008 IEEE

tively. All packets are initially received by a “producer” thread.
That thread inspects the IP headers to determine the flow to
which the packet belongs and then steers that packet to the ap-
propriate “consumer” thread based on whether or not that flow
has already been assigned to a thread. Since each given flow
is only processed by one thread at any given time, the depen-
dences required for proper stream reassembly and flow track-
ing are maintained easily at the queue between the producer
and consumer. A variation on this conservative scheme aims
to improve load balance by allowing a flow to be dynamically
reassigned from one thread to another, but only if there are cur-
rently no packets from that flow still waiting to be processed.
This reassignment still preserves the invariant that a specific
flow is only processed by one thread at any given time.

The above conservative schemes exploit parallelism well if
there are enough independent flows, but provide no benefits if
all packets are from the same flow. The latter case is not likely
in a high-bandwidth edge NIDS, but does represent a limita-
tion of these schemes. The alternative parallelization is an op-
timistic variant on flow concurrency. This scheme starts with
the basic flow-concurrent parallelization but can dynamically
reassign a flow to a different thread even while earlier pack-
ets of the flow are still being processed, potentially exploiting
parallelism even with just one flow. This optimistic version
relies on two key observations. First, TCP stream reassembly
will still take place even if a stream is broken at some arbi-
trary point; reassembly is triggered by various flush conditions,
one of which is a timeout. It is also easy to force additional
flushes if needed for correctness. Consequently, any unpro-
cessed earlier packets will still go through stream reassembly
at their thread even though later packets are being reassembled
and processed in another thread. (This property also allows
the conservative reassignment described above). Second, most
packets do not match rules that use flowbits tracking, so en-
forcing ordering across all packets in a flow just to deal with
a few problematic rules is too restrictive. To precisely deal
with the rules that do use flowbits, the optimistic system stalls
processing in any packet that sets or checks flowbits unless it
is the oldest packet in its flow. This condition is checked by
adding per-flow reorder buffers. This system is optimistic in
the sense that it reassigns threads under the assumption that the
actual use of flowbits is uncommon, but is still conservative in
maintaining correct ruleset processing without speculation and
rollbacks.

All the parallelizations use most of the same packet pro-
cessing code as the current Snort (version 2.6), with minor
modifications to make certain code segments re-entrant and
well-synchronized using Pthreads. The resulting NIDS tools
are evaluated and analyzed on two different systems: a 2U
rack-mounted x86-64 Linux system with two quad-core Xeon
processors (eight cores in total) and a similar system with
two dual-core Opteron processors. The flow–concurrent par-
allelization achieves substantial speedups on 3 of the 5 net-
work packet traces studied, ranging as high as 4.1 speedup on
8 processor cores and processing at speeds up to 3.1 Gbps. The

extra overheads introduced by allowing reassignment actually
degrade performance by about 4.5% for the traces that exhibit
good flow concurrency, and additional overheads in the op-
timistic parallelization degrade performance by an additional
16%, limiting speedup to 3.0 on six cores. However, the po-
tential for intra-flow parallelism enabled by the optimistic ap-
proach allows one additional trace to see good speedup (2.4 on
five cores), with a peak traffic rate over 2.6 Gbps. All schemes
achieve an average traffic rate of over 1.7 Gbps for the 5 traces,
providing several options for increasing NIDS performance by
exploiting multicore processors.

2 Background

Snort is the most popular intrusion-detection system avail-
able. The system and its intrusion-detection ruleset are freely
available, and both are regularly updated to account for the
latest threats [14]. Snort rules detect attacks based on traffic
characteristics such as the protocol type (TCP, UDP, ICMP,
or general IP), the port number, the size of the packets, the
packet contents, and the position of the suspicious content.
Packet contents can be examined for exact string matches and
regular-expression matches. Snort can perform thousands of
exact string matches in parallel using one of several multi-
string pattern matching algorithms, including the well-known
Aho-Corasick algorithm [1] and a modified version of the Wu-
Manber algorithm [21], which can be selected by the user.
Additionally, Snort includes preprocessors that perform cer-
tain operations on the data stream. Some important prepro-
cessors include flow, stream4, and HTTP Inspect. The flow
preprocessor associates each scanned packet to a specific net-
work traffic flow between a source and destination pair and
allows rules to set, clear and check flags (called flowbits) as-
sociated with the flow based on packet contents. For exam-
ple, one rule checks for a GIF image header and sets a specific
flowbit, and another checks for a heap overflow exploit that
may occur in a later packet in flows which have that bit set.
The stream4 preprocessor tracks TCP connection states for use
by rules (for example, only alert for packets in an established
TCP connection). Stream4 also performs stream reassembly,
concatenating multiple scanned packets from a given direction
into a single conceptual packet so that rules may match con-
tent that spans packet boundaries. Without stream reassembly,
an attacker may hide attacks by splitting them across packets.
Packets are reassembled into stream buffers and sent into the in-
spection process after a “flush point” is triggered by conditions
such as processing a certain randomly-selected amount of data
or a timeout. The HTTP Inspect preprocessor converts URLs
to a normalized canonical form so that rules can specifically
match URLs rather than merely strings or regular expressions.

The Snort ruleset has been growing at a nearly constant rate
over the past 6 years, with over 4000 attack signatures in the
most recent rulesets. Although the performance of multi-string
content matching does not depend directly on the number of
rules, a greater number of rules does require a greater amount

33

Read
Packet

Decode Preprocessors
Rule tree lookup,

multi-pattern
matching

Verification: string,
regex, non-content

Notification

Figure 1. The Snort packet processing loop

of memory and may require more time to be spent in other
stages of intrusion detection. Over 86% of the rules are for
TCP-based exploits (including over 30% for HTTP rules), with
UDP at about 9%, ICMP at 4%, and other IP rules at just over
1%. All rules specify several conditions, alerting only if all
such tests are met. Nearly all of the higher-level protocol rules
(HTTP, TCP, and UDP) check for string matching content, but
a large fraction of the ICMP and general IP rules do not. The
multi-string pattern match generally serves as a first-order fil-
ter; other tests are not performed unless the corresponding pat-
tern matches. This is particularly important for rules that spec-
ify time-consuming regular expressions. About 10% of HTTP
rules, 40% of all TCP rules, and 30% of UDP rules test for
regular expression matches.

The following rules demonstrate some of the kinds of traffic
characteristics used by Snort to detect attacks:

• SMTP Content-Type buffer overflow: TCP traffic to
SMTP server set, established connection to port 25,
string “Content-Type:”, regular expression “Content-
Type:[ˆ\r\n]300,” (i.e., 300 or more characters after the
colon besides carriage return or newline)

• PHP Wiki Cross-site Scripting: TCP traffic to HTTP
server set, established connection to HTTP port set,
URI contains string “/modules.php?”, URI contains string
“name=Wiki”, URI contains string “<script”

• DDOS Trin00 Attacker to Master: TCP traffic to home
network, established connection to port 27665, string
“betaalmostdone”

Figure 1 depicts Snort’s packet processing loop. Snort first
reads a packet from the operating system using the pcap li-
brary (also used by tcpdump and other analysis tools). The
decode stage interprets the packet’s tightly-encoded protocol
headers and stores the results in Snort’s loosely-encoded packet
data structure. Snort then invokes the preprocessors, which use
and manipulate packets in various ways. The rule-tree lookup
and pattern matching stage determines which rules are relevant
for the packet at hand (based on port number) and checks the
packet content for the attack signatures defined in the string
rules using the multi-string matching algorithms. Packets may
match one or more strings in the multi-string match stage, each
of which is associated with a different rule. For each of those
rules, all the remaining conditions are checked, including other

strings, non-content conditions, and regular expressions. Be-
cause each match from the multi-pattern algorithm may or may
not result in a match for its rule as a whole, this stage may be
thought of as a “verification” stage. This stage also calls detec-
tion functions for any rules without exact string matches. The
last stage alerts the system owner when rules match.

Figure 2 categorizes the execution time of a system running
Snort into various components for five different network test
patterns. Most of these components correspond to the stages
shown in Figure 1. The component labeled Other includes
utility code and library functions shared among several com-
ponents, the overall packet processing loop and other code be-
tween the stages, operating system activity, and other processes
running on the system (such as the profiler itself). Most of
the time spent in this category consists of shared library calls
(malloc, memset, etc.) and code that calls the other stages
and transitions between them. The remaining part is very small,
and its effect is not considered further. The Snort code tested
here is modified to read all of its packets sequentially from an
in-memory buffer to allow the playback of a large network trace
representing communication from various hosts to a local net-
work. The network traces used in these tests and their signifi-
cance are described in more detail in Section 5.

The profiles shown here were gathered using the
oprofile full-system profiling utility running on a Dell Pow-
eredge 2950 with two quad-core Xeons (8 processors total),
but Snort only runs on 1 processor. The system has 16 GB of
DRAM and uses Linux version 2.6.18. The profile was gath-
ered using the oprofile full-system profiling utility, and the
Snort configuration included the most important preprocessors:
flow, stream4, and HTTP Inspect as described above. The over-
all performance of this system averages 699 Mbps for these
traces with a peak of 1094 Mbps.

As Figure 2 shows, string content matching ranges from 29–
77% of the execution time of the system with an average of
48%. For all traces except DEF1, the combination of ruleset
processing components (string match, verification, and regular
expression) make up over 54% of execution time. Thus, any
performance optimization strategy must effectively target those
components. At the same time, the other components cannot
be ignored since they make up an average of 41% of execution
time.

34

Figure 2. Execution time of Snort categorized into principal components when run using various traces
on an Intel Xeon-based system

3 Concurrency Opportunities

As discussed in Section 2, the main loop of the Snort NIDS
works on one packet at a time. Figure 3 illustrates the interac-
tions between the processing of two separate packets in Snort.
The center column of Figure 3 depicts resources shared by the
processing of multiple packets, with dashed lines indicating the
accesses to these resources by specific stages in the Snort pro-
cessing loop. Although this paper focuses on Snort, the same
basic steps and resources are present in any intrusion detec-
tion system that reassembles packets from the same stream and
tracks flow-specific state.

Even though Snort receives its input as packets, the depicted
resource sharing prevents packet-level parallelization. In par-
ticular, the flow tracking table must be consulted while pro-
cessing all packets and must be updated any time a packet ar-
rives from a flow that is not currently being tracked. The rules
associated with flowbits are tested and set in the verification
stage. Similarly, each TCP packet’s stream must have its state
checked and set (loosely following TCP’s state transition ta-
ble [7], but with provisions for handling missing packets and
picking up streams in mid-session) in the stream reassembly
preprocessor, the actual reassembly information must be up-
dated for each packet in an established connection, and the TCP
stream state must again be checked in verification since some
rules depend on this. Both flowbits processing and stream re-
assembly thus require in-order processing of packets to main-
tain correct state information, limiting the available concur-
rency.

4 Parallelization Strategies

4.1 Flow-level Parallelization

Although packet-level parallelization is impractical because
of ordering requirements on shared data structures, any ac-
tual information sharing only applies to packets in the same
flow. Since packets from one flow will never affect the flow-
bits or TCP connection state of another flow, different flows
can be processed by independent processing threads with no
constraints on ordering. Moreover, the data sharing require-
ment of the stream preprocessor can be eliminated by simply
maintaining separate stream tables for each thread. Then each
thread can be responsible for different flows, as long as packets
from the same flow are always steered to the same processing
thread in-order. This steering process should consist of a mini-
mal amount of code to determine the flow associated with any
given packet and then enqueue the packet for processing by the
appropriate thread. In-order processing by each thread guaran-
tees that the packets from each flow will be processed in the
same relative sequence as in the serial code. Consequently, this
flow-based concurrency model maintains all required ordering
constraints between packets in a flow.

Effective flow-level parallelization depends on the existence
of concurrent flows in the network stream. However, this
should be a normal situation for high-bandwidth NIDS sensors
because they usually protect many machines or an entire net-
work.

Figure 4 shows the stages of the flow-based concurrency
model. This model consists of two components: the producer
routine and the consumer routine. The producer reads the
packet from the interface and assigns the packet to its thread

35

Decode Preprocessors
Rule tree lookup,

multi-pattern
matching

Verification: string,
regex, non-content

Read
Packet

Notification

Capture
Interface

Notification
plugins

Flow and stream
tables, TCP state,
reassembly lists

Rule tree data
(read-only)

Decode Preprocessors
Rule tree lookup,

multi-pattern
matching

Verification: string,
regex, non-content

Read
Packet

Notification

Packet 1
processing

Packet 2
processing

Shared
resources

Figure 3. Multiple instances of the Snort packet processing loop, with access to shared resources explicitly
identified

Producer routine

Read packet
Minimal
decode

Flow
Preprocessor,
queue lookup/

assignment

Enqueue
descriptor

Own queue threshold not reached
Distributed task

queues

Acquire producer
lock

Own queue
threshold reached

Own queue
empty

Dequeue
descriptor

Full Decode
Stream, HTTP

Inspect
preprocessors

Rule tree
lookup,
pattern

matching

Verification:
string, regex,
non-content

Notification

Rule tree data
(read-only)

Notification
plugins

Dequeue
descriptor

Full Decode
Stream, HTTP

Inspect
preprocessors

Rule tree
lookup,
pattern

matching

Verification:
string, regex,
non-content

Notification

Consumer routine

Own queue not empty

Figure 4. Flow-level parallelization strategy for Snort

based on its flow. The consumer routine processes the remain-
ing stages of the NIDS just as in the single-threaded Snort.
Each thread has its own work queue and consumes packets
from it as long as there are packets waiting. If its own queue
becomes empty, it then attempts to become the producer, and
begins reading packets and assigning them to their proper work
queues. These work queues can be made quite large since each
entry only requires 3 pointers; consequently, it is unlikely that
a work queue will fill up and cause head-of-line blocking by
stalling the producer. Any thread can be the producer, but the
producer code is protected by a mutex lock so that only one
thread may do so at a time. A thread will continue to act as the
producer until its own queue size reaches a threshold, at which
point it gives up the producer lock and returns to processing
from its work queue. The threshold prevents the producer lock
and shared data structures from passing back and forth between
processors (which causes expensive cache-to-cache transfers)
too often.

To assign packet flows to threads properly, the producer
must never allow packets from the same flow to be queued or
processed at multiple consumer threads at the same time. The

stream reassembly preprocessor (stream4) separates TCP ses-
sions based on their IP addresses and TCP ports, and the flow
preprocessor considers IP addresses, layer 4 protocol, and ports
if applicable, meaning that any assignment scheme that satis-
fies flow’s requirements will also satisfy stream4’s.

Static hashes of flows to threads based on IP addresses and
TCP/UDP ports are fast and simple, but are prone to uneven
assignments and load imbalance if the flow distribution on the
network is unfavorable. Instead, the producer assigns new
flows to the currently least-busy consumer. Since the informa-
tion needed for flow lookup and assignment is identical to that
used by the flow preprocessor, this preprocessor is made part
of the producer routine and its data structures are augmented to
include information on flow-to-thread mapping. The flow pre-
processor requires decoded packets, but only uses a few fields
(IP addresses, ports, and protocol). Thus, the system must only
run a small subset of the decode stage before the flow prepro-
cessor.

Parallelization requires some other minor changes. For ex-
ample, the notification interface is shared across threads, but
the specific ordering of alert reports is not important. Conse-

36

quently, simple mutual exclusion suffices to protect this code
(and leads to little serialization since notification accounts for
less than 2% of time). The Snort code for stages such as multi-
pattern matching assumes only one packet at a time and thus
keeps only one common structure for all processing; these
structures must now be associated with a specific thread or
packet to make the code reentrant.

Deadlock avoidance. This flow-based parallelization can-
not encounter deadlock because there is no cycle of depen-
dences that cause stalling. The consumer routines do not affect
each other, so they never stall for each other. Thus, any cy-
cle would have to include the producer. A consumer can stall
waiting to receive work from the producer (empty queue) or
because its thread is currently serving as producer. The pro-
ducer can only stall if it is trying to insert a work item into a
consumer queue that is already full. If this consumer is not the
same as the producer thread, it cannot be stalled since such a
consumer will only stall for an empty queue. Thus, a cycle can
only be formed if the producer is trying to insert into its own
full consumer queue. The system avoids this case by causing
the producer routine to return control to the consumer once its
own work queue is sufficiently full.

4.2 Conservative Flow Reassignment

The assignment of flows to threads is critical, but the par-
allelization described above only considers the length of each
thread queue when balancing load. In reality, some flows will
require more inspection time than others, and some will end
while others continue. The second parallelization scheme, con-
servative flow reassignment, targets situations where one thread
has too many active flows while another thread has few or none.
The scheme balances load by reassigning flows when safe.

Reassignment is safe when all the packets from a given flow
drain out of the system and finish processing. Changing threads
is not harmful in this case because there are no packets from the
same flow being simultaneously processed by different threads.
Changing the assignment here has the same effect as reaching a
stream flush point in single-threaded Snort; in addition, neither
the flush point selection (which is randomized) nor the flow
reassignment (which is essentially random because it depends
on the processing speed of Snort and the state of all flows in
the network) can be predicted (and therefore exploited) by an
attacker. Reassignment also has no impact on deadlock avoid-
ance since it introduces no new stall conditions.

To implement reassignment, the producer increments a per-
flow counter when a packet passes through the flow preproces-
sor, and the consumer decrements it when the packet finishes
processing. This is essentially a reference count for each flow,
and a flow with zero packet counts no longer needs a thread as-
signment. If the flow reappears, the producer will then assign
it to the least-loaded consumer at the time of reappearance.

While improving load balance, reassignment introduces two
complications. First, the stream4 session data remains in the
stream table of the original thread, not the new one. This data

will be flushed from the stream table after a timeout elapses,
ensuring that all packets are inspected. Second, flow reas-
signment introduces locking overheads, since counters for each
flow must be incremented and decremented concurrently.

4.3 Optimistic Flow Reassignment

The prime limitation of the flow-based parallelization is that
it offers no opportunity for speedup on data streams with only
a single network flow. As discussed in Section 3, data sharing
between packets in the same flow stems from two key compo-
nents: stream reassembly and flowbits. However, these sub-
systems have certain favorable properties that may enable a re-
laxation of the requirement. First, packets from the same flow
that are separated by a stream reassembly flush point actually
have no reassembly-related dependences between them since
they will be reassembled into separate stream buffers. Second,
only 36% of the rules actually test or set the flowbits used in
flow-tracking (and more than 90% of these only apply to Net-
BIOS packets); rules that do not consider the flowbits have no
dependences caused by flow-tracking. If few packets have con-
tent matches for these rules, there will be no dependence most
of the time.

To allow intra-flow parallelization, the producer must be
able to steer packets from the same flow to different con-
sumers while also maintaining flowbits dependences when
needed. Spreading a single flow across threads is only valuable
when the base flow-concurrent version has a load imbalance.
Consequently, the approach studied here starts with the flow-
concurrent version and opts to reassign a flow to a different
thread if the number of packets in the current thread’s queue
belonging to the flow are over a certain threshold, called the
reassignment threshold (providing flow affinity to avoid prob-
lems in stream reassembly). The flow will then be reassigned
to the least-loaded thread. The first packet after reassignment
is then marked with a special flush point indicating that all pre-
vious packets from this flow should be reassembled and sent
to inspection before attempting to process this packet in stream
reassembly. This flush insures proper stream reassembly even
when a flow is reassigned to a thread to which it has previously
been assigned, making sure that the older packets are not re-
assembled with the newer ones.

Reassignment must not alter the behavior of flow tracking.
However, it only needs to enforce flowbits dependences for
packets that actually match rules that use flowbits. Detailed
statistics show that only about 3% of the packets match flowbits
rules for the traces shown in Figure 2 except DEF1. The new
parallelization stalls the actual testing or setting of flowbits un-
til the packet which has actually matched the rule is the oldest
packet from that flow in the system. The system determines the
oldest packet by maintaining per-flow reorder buffers, which
are simply circular arrays of bits representing the completion
state of packets in that flow. The flow preprocessor adds an in-
complete entry bit to the tail of a flow’s reorder buffer whenever
it processes a packet. A packet’s bit is marked complete when
the verification stage completes. If the newly completed packet

37

is at the head of the circular array, the head pointer advances
through as many complete entries as possible. Only the packet
corresponding to the head of the circular array is allowed to
test or set flowbits, but any packet that does not require flow-
bits may simply mark itself complete and then exit the system.
(Unlike register renaming in superscalar processors, intrusion
detection cannot use the reorder buffers to rename the flow-
bits because any given operation that sets flowbits only changes
some of the bits. Consequently, such an operation must be con-
sidered both a read and a write, making renaming useless.)

This parallelization is optimistic because it assumes that
intra-flow dependences will not be common. It then uses that
assumption to assign flows to multiple threads. If the opti-
mistic assumption is correct, packets from the same flow need
not have any ordering imposed on them and will thus achieve
intra-flow parallelism. If the optimistic assumption is incorrect,
the system will stall until the dependences are met, providing
correct detection of attacks.

Deadlock avoidance. Proving the optimistic parallelization
deadlock-free is somewhat more complicated than the conser-
vative version. In addition to the stall cases possible in the
conservative case, one consumer may now wait for another as
a result of a flowbits condition. Further, the producer may stall
because it is trying to process a packet from a flow that has a full
reorder buffer. Consumer-to-consumer stall cycles are avoided
because each queue is processed in-order. Consequently, the
oldest packet in the system is also the oldest in its flow and
thread and thus will never have to wait for flowbits condition
testing or setting. The processing of this packet can only stall
if its consumer thread is currently acting as the producer. As
in the conservative case, the producer will revert control to the
consumer if its queue is sufficiently full. The only remaining
case is if the producer thread is stalled waiting to insert an en-
try into a full reorder buffer. If the producer ever encounters
a full reorder buffer, it does not immediately know if it is re-
sponsible for processing the oldest packet in the flow since the
reorder buffer is nothing more than an array of bits. The pro-
ducer avoids deadlock by checking each entry in its own queue
to see if it is responsible for resolving the dependence. If so,
the producer puts back the current packet (so that some later
producer can handle it) and reverts control to the consumer.
Although traversing its own queue is potentially an O(N) op-
eration, it is an extremely unlikely event; additionally, it takes
place when the producer would already be stalled waiting for
reorder-buffer space, so the cost is not a concern.

5 Experimental Methodology

The system studied here is based on Snort version 2.6RC1,
downloadable from www.snort.org. A few modifications
were made to snort that are independent of the parallelization
strategy. The most important of these is the use of a large in-
memory buffer from which to read the packets while process-
ing, to minimize the system-dependent effects of reading di-
rectly from a file or network interface. In practice, this may

be an important component of IDS performance, but separate
solutions exist to address this problem, such as a version of
libpcap that uses the mmap() system call to map a kernel
ring buffer into Snort’s address space, thus avoiding the over-
head of copying packets to userspace. The measured runtimes
for the tests do not include copying the packets from the trace
file into the memory buffer, nor printing out statistics data after
processing, but only cover reading the packets from the mem-
ory buffer, processing them, and generating alerts.

Snort is designed on a plugin architecture for almost all as-
pects of packet processing. Preprocessors, detection mecha-
nisms, and notification methods are all based on modular plu-
gins that may be mixed and matched according to the speci-
fications of the user and rule writer. The system supports the
stream4, flow, and HTTP Inspect preprocessor plugins, all the
standard detection plugins (those that are not required to be ex-
plicitly enabled in the configuration file), and the “fast” alert
method, which consists of writing a line to a text file for each
alert generated. Packet logging was disabled. In practice, it is
common for large installations to use an external database for
collecting alert and log data, which may be on another machine.
These and other methods can be supported by making their plu-
gins reentrant. The multi-pattern matching algorithms are also
abstracted from the rest of Snort’s architecture; the modified
Wu-Manber algorithm (the default up until version 2.6) is used
in the parallel Snort.

As of Snort version 2.4, the rules and signatures are no
longer distributed and released along with Snort itself. Instead,
they are updated more often and may be downloaded sepa-
rately. This paper uses the ruleset released on March 29, 2006.
All rules are enabled except those marked as deleted or depre-
cated. In addition, many rules refer to a variable, such as “home
net” or “HTTP servers” (for example, to check for patterns on
streams that are only incoming or only bound for a user’s web
servers), which may be configured to refer to the user’s own
systems or network. In this study, however, these terms were
set to “any” to catch all possible attacks. Other configuration
variables exist to define which ports run particular services, and
these were left at their defaults. The preprocessors’ configura-
tions were also left at their defaults.

Tests were run and analyzed two different types of ma-
chines: The first is a 2U Dell Poweredge 2950 server with two
1.8 GHz quad-core Intel Xeon E5320 processors based on the
Core 2 microarchitecture (8 processors total). This system has
16 GB of system RAM and 4 MB L2 caches shared between
pairs of processors. This system runs Linux kernel 2.6.18 and
GNU C library 2.3.6 with the Native POSIX Threads Library
in the Debian AMD64 distribution. The second is a 1U rack-
mounted Sun Fire X4100 server with two 2.2 GHz dual-core
AMD Opteron processors (4 processors total). This system has
4 GB of system RAM and 1 MB private L2 cache per pro-
cessor core. The system is run using Linux kernel version
2.6.15 and the GNU C library 2.3.6 with the Native POSIX
Threads Library in the same Debian AMD64 distribution. The
Linux kernel supports affinity scheduling to maintain threads

38

Table 1. Packet traces used to evaluate the system and the throughput achieved by uniprocessor Snort
(measured in Mbps)

Trace Name Source Date Size (MB) Packets Alerts Intel Rate AMD Rate

LL1 Lincoln Lab 4/9/99 991 3,393,919 2,074 694 525
LL2 Lincoln Lab 4/08/99 740 3,201,382 3,567 469 369
LL3 Lincoln Lab 3/24/99 694 2,453,967 142 801 566

DEF1 DEFCON 7/14/01 687 3,960,264 127,672 434 345
DEF2 DEFCON 7/14/01 842 1,050,364 395 1094 933

on the same processor whenever possible. Instead of the stan-
dard pthread mutex locks, both parallelization methods use the
pthread spin locks provided by the GNU C library. Unlike the
standard mutex locks, these lock primitives do not suspend the
calling thread when they encounter a lock that is already held
by another thread; instead, they simply spin-wait until the lock
is free. Because the system uses only as many threads as there
are processors, the threads do not need to yield the processor,
and critical sections are short enough that the overhead of in-
voking the operating system to block the thread is much higher
than simply spinning until the lock is free. On x86 platforms,
the spin locks are implemented using an atomic compare-and-
swap instruction.

The packet traces used to test the system come from the
1998-1999 DARPA intrusion detection evaluation at MIT Lin-
coln Lab and from the Defcon 9 Capture the Flag contest [10,
16]. The Lincoln Lab traces are simulations of large mili-
tary networks generated during an online evaluation of IDSes
and are available for download. Because they were generated
specifically for IDS testing, (including anomaly-based detec-
tion systems, which require realistic traffic models to be use-
ful) the traces have a good collection of ordinary-looking traffic
content and also contain attacks that were known at the time.
The traces used here are the largest available in the set, and
come from the 1999 test. The Defcon traces are logs from
a contest in which hackers attempt to attack and defend vul-
nerable systems. Consequently, these traces contain a huge
amount of attacks and anomalous traffic, representing a sort of
pathological case for intrusion detection systems. For example,
DEF1 generates a very large number of alerts (even compared
to the LL traces, which are seeded with real attacks). Table 1
shows a summary of the traces used, their source, their cap-
ture date, the number and total size of the packets they con-
tain, the resulting number of alerts, and the throughput rates
in Mbps achieved by uniprocessor Snort using the Intel-based
server (averaging 699 Mbps) and the AMD-based server (aver-
aging 548 Mbps).

6 Results and Discussion

This section gives experimental results for the paralleliza-
tion strategies, using the hardware platform and traces de-

scribed in Section 5 and comparing to the performance results
given in Table 1.

6.1 Flow-concurrent Parallelization

Figure 5 shows the parallel speedup achieved by the most
conservative scheme on the Xeon-based Dell system and the
Opteron-based Sun Fire system. Each line represents a packet
trace, with parallel speedup plotted against number of threads.
The plots show that the flow concurrent scheme achieves good
speedup on the three LL traces but not on the DEFCON traces.
The conservative parallelization sees an average throughput of
2.03 Gbps across the five traces for the Intel machine, and 1.36
Gbps for the AMD.

The three LL traces have similar speedup characteristics,
achieving 63–79% of the theoretical ideal linear speedup for
2–4 threads, but decreasing to as low as 48% for 8 threads,
with a peak speedup of 4.1 on the Intel machine. The AMD
machine was slightly more efficient, achieving 79–87% of lin-
ear speedup for 2–4 threads with approximately 3.2 speedup at
4 threads. All 3 traces see processing rates in excess of 1 Gbps
with 4 threads even on the slower AMD platform; LL1 and LL3
achieve this rate with 3. The peak processing rate is 3.1 Gbps
for the Intel machine and 1.8 Gbps for the AMD machine. The
two factors that limit performance in these cases are a small
amount of imbalance (sometimes more than one thread ran out
of work at the same time) and synchronization and data trans-
fer overheads (primarily in the form of cache-to-cache trans-
fers between processors). In particular, the work queues for
each thread require transfers of the packet inspection descrip-
tors from the producer to the consumers, as well as the descrip-
tors for the queues themselves. Consequently, the amount of
coherence traffic on the memory bus may become significant
with larger numbers of processors. Although its absolute in-
spection rate is lower, the parallel speedup seen on the AMD
machine is significantly better than that of the Intel machine —
on average 20% better across the LL traces for 4 threads. This
may be because the Opteron’s HyperTransport interconnect al-
lows lower-latency cache transfers than the Xeon’s front-side
bus.

In contrast, the DEFCON traces, and in particular DEF2,
achieve little speedup in any case. As discussed previously,

39

(a) Dell Poweredge 2950 server with two quad-core Xeon processors
(8 processors total)

(b) Sun Fire X4100 server with two dual-core Opteron processors (4
processors total)

Figure 5. Parallel speedup for pure flow-concurrent parallelism on two systems

these workloads behave very differently from the others. DEF2
has extremely poor flow concurrency; most of the trace sees
only one active flow, so no purely flow-based parallelization
scheme can provide substantial speedup. DEF1 has several
factors which contribute to poor performance. First, it trig-
gers an extreme number of alerts; because alerts require syn-
chronization, significantly more time is spent waiting for locks
with DEF1. Second, DEF1 apparently contains attack attempts
which create and abandon huge numbers of flows. This is the
cause of the large preprocessing time seen in figure 2; in fact,
for the single-threaded case, over 17% of the total time is spent
in the flow preprocessor searching and updating the hash ta-
ble containing the flows. This limits the speed of the producer
routine, and thus the whole system. Lastly, despite the load on
the flow preprocessor, DEF1 also has relatively poor flow con-
currency, because the created flows are quickly abandoned and
most of the actual traffic is concentrated in a relatively small
number of flows. These last two problems exacerbate each
other, because threads acting as consumers are more likely to
run out of data when the producer is slower, further causing
these threads to compete for the lock which protects the pro-
ducer routing. Of course, the source and nature of the DEF-
CON workload mean that diminished performance is to be ex-
pected; it reflects a very small network and an extremely adver-
sarial environment where nearly all traffic is malicious. A sys-
tem that detects such a high rate of alerts may respond quickly
by more aggressive firewalling to shut off traffic on vulnerable
ports or from IP addresses observed to participate in malicious
behavior. The other traces are actually more likely to be dan-
gerous since they have a small number of attacks hidden in a
larger amount of “normal” traffic. Consequently, such work-
loads are more important and realistic for IDS testing, and the
conservative parallelization performs quite well on 3 of those 4
workloads.

6.2 Conservative flow reassignment

Figure 6 shows the parallel speedup achieved by the Dell
and Sun servers with conservative flow reassignment, which

should improve load balance without affecting the amount of
packet inspection work. Figure 6(b) is nearly identical to Fig-
ure 5(b), indicating no improvement on the AMD platform.
Moreover, Figure 6(a) indicates that in most cases adding con-
servative reassignment actually reduces performance on the In-
tel platform. With 7 or 8 threads, flow reassignment degrades
complexity by as much as 22% and sometimes underperforms
6 threads. These effects arise from the bookkeeping required
for reassignment. For each packet, the producer must acquire
the lock on the flow data structure to which the packet belongs,
make a new assignment if necessary, and increment the flow’s
reference count. The consumer must likewise acquire the lock,
decrement the reference count, and remove the flow’s thread
assignment if its reference count has reached zero. This re-
sults in more synchronization overhead, remote cache trans-
fers, and coherence traffic for every packet; combined with the
overheads discussed in Section 6.1, the cost of this strategy is
enough to offset any benefits gained by more flexible flow as-
signment.

6.3 Optimistic flow reassignment

DEF2, as mentioned, has poor flow concurrency, and is thus
a good candidate for improvement using optimistic flow reas-
signment. Figure 7 shows the parallel speedup with optimistic
reassignment for the Intel and AMD platforms, with a reassign-
ment threshold of 100 (about 10% of the queue length). DEF2
indeed shows benefits over the conservative method, improv-
ing performance on the Intel machine by as much as 68% for 6
threads, with a 2.4 speedup and a 2.63 Gbps rate. Likewise the
performance on the AMD machine improved by about 45% for
4 threads to achieve a factor of 2.38 parallel speedup and a peak
traffic rate over 2.2 Gbps. The value chosen for the reassign-
ment threshold should be small enough so that when a packet
matches a flowbit rule and must wait for previous packets, it
does not have to wait too long (since the number of packets
ahead of it can be no more than the threshold multiplied by
the number of other queues). However it must be large enough
to avoid excessive switching (which causes too much flushing

40

(a) Dell Poweredge 2950 server with two quad-core Xeon processors
(8 processors total)

(b) Sun Fire X4100 server with two dual-core Opteron processors (4
processors total)

Figure 6. Parallel speedup for conservative flow reassignment on two systems

(a) Dell Poweredge 2950 server with two quad-core Xeon processors
(8 processors total)

(b) Sun Fire X4100 server with two dual-core Opteron processors (4
processors total)

Figure 7. Parallel speedup for optimistic flow reassignment on two systems

and other overhead in stream reassembly). In practice, 100 is a
good balance.

Since the LL traces already have good flow concurrency, op-
timistic flow reassignment provides no benefit; in fact, their
performance is degraded by 26.5% on average because of the
overhead of maintaining the reorder buffers. In addition to the
overhead of the conservative flow reassignment, updating and
checking the bits in the buffer and the head and tail pointers
must be done even when packets in a flow are serialized, and
this must be done while holding the mutex lock associated with
the flow, leading to additional synchronization overhead. DEF1
also does not benefit from reassignment because most of its
packets actually set or check flowbits. Thus, any advantage
gained by reassigning flows is erased because so many flows
must serialize themselves. Further, since the serialized flows
are spread across all the threads, they even block flows behind
them that might otherwise have been able to pass them. Con-
sequently, the overall rate in DEF1 is reduced to approximately
that of the single-threaded case.

As with the non-reassignment scheme, the AMD machine
gets better parallel speedups in both reassignment schemes than
the Intel machine for the same number of threads. In fact the
advantage increases to almost 26% on average for 4 threads

with optimistic reassignment. As synchronization overhead
and read-write sharing of data increase with the addition of con-
servative and then optimistic reassignment, so does the parallel
speedup advantage of the AMD system over the Intel system,
providing more evidence that the AMD interconnect handles
this sharing better.

Because overheads increase with the number of processors,
the throughput achieved peaks at 5 or 6 processors and then de-
creases as more are added. Despite the degradations in some
of the traces, the average of the best traffic rates achieved
for each trace using the optimistic reassignment is roughly
the same as that of conservative reassignment at 1.74 Gbps,
but does not reach the 2.03 Gbps average seen by the non-
reassignment scheme. The optimistic parallelization sees good
parallel speedup for 4 out of 5 traces, though these are some-
what lower than the conservative version for 3 traces.

6.4 Discussion

The results in this section indicate substantial benefits from
parallelization in the Snort NIDS. For most realistic scenarios
with many simultaneous packet flows, conservative flow-based
parallelism without reassignment is sufficient. Conservative re-
assignment provided no scalability benefits because of the over-

41

head of maintaining per-flow counters. Networks with poor
flow concurrency can see benefits from optimistic reassignment
of flows, provided that the number of packets that must check
flowbits is limited. All of these parallelization strategies use
multicore hardware that is increasingly becoming commodi-
tized, allowing for fast single-node edge-based NIDS. As ar-
chitectures continue to evolve, all expectations are for more
multicore and multiprocessor solutions and less potential bene-
fit from ramping up clock frequency. Thus it is essential for an
application as important as NIDS to achieve its performance by
exploiting fine-grained flow-level and intra-flow parallelism.

The effectiveness of optimistic flow reassignment may vary
substantially with the conditions used for reassignment. Ad-
ditional modifications were tested that would prevent reassign-
ment if the queue length at the reassignment target were at least
a certain percentage of the queue length of the origin (indicat-
ing some load balance factor), but this conditionhad had little
impact on performance as this threshold was varied from 10–
50%. Further modifications seemed promising, but had little or
no impact (for example, disabling reassignment on NetBIOS
flows as these account for most flowbits rules, or moving the
flowbits tests to the end of rule processing so that they would
only be checked if all other conditions matched).

The optimistic system is also still conservative in how it
manages rules that actually use flowbits since it stalls when
a flowbit is to be set or checked out-of-order. An alternative
would be to speculatively perform the flowbit operation and
then roll back if there was a violation, but such rollbacks would
require the reprocessing of many packets and a great deal of
stored state.

7 Related Work

Clustered intrusion-detection systems achieve performance
using multiple low-cost, identically-configured and adminis-
tered PCs along with a load-balancing switch. Schaelicke et
al. proposed SPANIDS, a system that combines a specially-
designed FPGA-based load-balancing switch that considers
flow information and system load when redirecting packets
to commodity PCs that run intrusion detection software [15].
Commercial offerings by F5 and Radware use the compa-
nies’ L4–7 load-balancing switches to redirect traffic to a pool
of intrusion-detection nodes, allowing high overall through-
put scalability [8, 13]. In contrast, parallelized Snort exploits
trends toward multicore processing to achieve good perfor-
mance for small to mid-scale deployments without the expense
of a load-balancing switch. For larger deployments, paral-
lelized Snort could be used in a clustered IDS with greater per-
system performance and higher space-efficiency.

The research community has also proposed distributed
NIDS, in which nodes at various points in the network track
anomalies and collaboratively collect data that may indicate
a system-level intrusion even if no specific host triggers an
alert [17, 9]. Efforts in distributed NIDS have invariably tar-
geted gathering additional information to identify intrusions,

rather than processing packets at a faster rate. Thus, distributed
NIDS is largely orthogonal of the parallel processing approach.

Because matching multiple simultaneous strings is such an
important component of intrusion detection and can poten-
tially exploit extensive hardware concurrency, several works
have proposed hardware support for this stage (and, in some
cases, regular expression processing) using FPGAs, ASICs,
and TCAMs [2, 3, 6, 11, 18, 19, 22]. Such works are valuable
but do not solve the entire NIDS problem. Figure 2 shows an
average of 48% of processing time for multi-string and 4% for
regular expression matching. By Amdahl’s Law, even infinite
hardware acceleration for these stages would lead to a limit of
2.1 speedup for the entire NIDS application. The software ap-
proach to parallelizing the various stages of intrusion detection
should work synergistically with hardware that speeds up string
matching and regular expression matching, increasing the ef-
fectiveness of both.

There has also been some investigation on running intrusion
detection software on network processors: Bos and Huang im-
plement a rudimentary IDS using the Intel IXP network proces-
sor architecture and its parallel microengine processor cores to
perform Aho-Corasick string matching, stream reconstruction,
and I/O operations [4]. Vermeiren et al. propose several strate-
gies for a multithreaded Snort with the aim of running it on
high-end network microprocessors [20] such as the Broadcom
BCM1250 [5]. That work does not discuss any solutions for
maintaining dependences across the stages of Snort processing
or for insuring that packets from the same flow are processed
in an appropriate order.

Other intrusion detection software systems also exist, such
as the Bro IDS from Lawrence Berkeley National Labs [12].
Bro rules can detect all standard Snort traffic signatures as well
as anomalies such as an excessive number of connections. This
paper chooses a Snort-based system primarily because of its
popularity and greater update frequency. Despite the differ-
ences among systems, the problem of and need for fine-grained
parallelism applies to all NIDS software, and the fundamental
challenges and solutions discussed here apply to any system
that employs stream reassembly and flow tracking to provide
stateful ruleset processing.

8 Conclusions

This paper presents and evaluates two conservative and one
optimistic parallelization strategies for network intrusion detec-
tion. Although this paper specifically targets Snort, the chal-
lenges and solutions described here apply to any NIDS that
performs stream reassembly and flow-tracking. Each paral-
lelization schemes has its limitations, but each performs well
for most of the workloads that it targets. The most conservative
flow-concurrent parallelization achieves substantial speedups
on 3 of the 5 network packet traces studied, ranging as high
as 4.1 speedup on 8 processor cores and processing at speeds
up to 3.1 Gbps. The extra overheads in the optimistic paral-
lelization degrade performance by about 26% for the traces

42

that exhibit flow concurrency, limiting speedup to 3.0 on six
cores. However, the potential for intra-flow parallelism en-
abled by the optimistic approach allows one additional trace
to see good speedup (2.4 on five cores), with a peak traffic
rate over 2.6 Gbps. The most conservative scheme achieves
an average traffic rate of 2.03 Gbps for the 5 traces, and both
reassignment-based schemes average over 1.7 Gbps, providing
major improvements in intrusion detection performance using
hardware that is cost-effective, space-efficient, and increasingly
being commoditized.

References

[1] A. V. Aho and M. J. Corasick. Efficient String Matching: An
Aid to Bibliographic Search. Commun. ACM, 18(6):333–340,
1975.

[2] M. Aldwairi, T. Conte, and P. Franzon. Configurable
string matching hardware for speeding up intrusion detection.
SIGARCH Comput. Archit. News, 33(1):99–107, 2005.

[3] Z. K. Baker and V. K. Prasanna. A Methodology for the Synthe-
sis of Efficient Intrusion Detection Systems on FPGAs. In Pro-
ceedings of the Twelfth Annual IEEE Symposium on Field Pro-
grammable Custom Computing Machines 2004 (FCCM ’04),
Apr. 2004.

[4] H. Bos and K. Huang. Towards software-based signature de-
tection for intrusion prevention on the network card. Recent
Advances in Intrusion Detection. 8th International Symposium,
RAID 2005. Revised Papers (Lecture Notes in Computer Science
Vol. 3858), pages 102 – 23, 2005.

[5] Broadcom. BCM1250 Product Brief, 2006.
[6] B. C. Brodie, D. E. Taylor, and R. K. Cytron. A scalable archi-

tecture for high-throughput regular-expression pattern match-
ing. In ISCA ’06: Proceedings of the 33rd International Sym-
posium on Computer Architecture, pages 191–202, Washington,
DC, USA, 2006. IEEE Computer Society.

[7] DARPA Internet Program Protocol Specification. Transmission
Control Protocol. IETF RFC 793, Sept. 1981.

[8] F5 Networks. Securing the Enterprise Perimeter – Using F5’s
BIG-IP System to Provide Comprehensive Application and Net-
work Security. White paper, Oct. 2004.

[9] R. Gopalakrishna and E. H. Spafford. A Framework for Dis-
tributed Intrusion Detection using Interest Driven Cooperating
Agents. In Proceedings of the 4th International Symposium
on Recent Advances in Intrusion Detection (RAID 2001), Oct.
2001.

[10] J. W. Haines, R. P. Lippmann, D. J. Fried, E. Tran, S. Boswell,
and M. A. Zissman. 1999 DARPA Intrusion Detection System
Evaluation: Design and Procedures. Technical Report 1062,
MIT Lincoln Laboratory, 2001.

[11] J. Moscola, J. Lockwood, R. P. Loui, and M. Pachos. Imple-
mentation of a Content-Scanning Module for an Internet Fire-
wall. In Proceedings of the 11th Annual IEEE Symposium on
Field-Programmable Custom Computing Machines, pages 31–
38, Apr. 2003.

[12] V. Paxson. Bro: A System for Detecting Network Intruders in
Real-Time. Computer Networks, 31(23-24):2435–2463, Dec.
1999.

[13] Radware Inc. FireProof Security Activation. White paper, Sept.
2004.

[14] M. Roesch. Snort – Lightweight Intrusion Detection for Net-
works. In Proceedings of the 13th USENIX Conference on Sys-
tem Administration, pages 229–238, 1999.

[15] L. Schaelicke, K. Wheeler, and C. Freeland. SPANIDS: A Scal-
able Network Intrusion Detection Loadbalancer. In Proceedings
of the 2nd Conference on Computing Frontiers, pages 315–322,
2005.

[16] Shmoo Group. Defcon 9 Capture the Flag Data, Sept. 2001.
[17] S. R. Snapp, J. Brentano, G. V. Dias, T. L. Goan, L. T. Heberlein,

C. lin Ho, K. N. Levitt, B. Mukherjee, S. E. Smaha, T. Grance,
D. M. Teal, and D. Mansur. DIDS (Distributed Intrusion De-
tection System) - Motivation, Architecture, and An Early Pro-
totype. In Proceedings of the 14th National Computer Security
Conference, pages 167–176, Washington, DC, Oct. 1991.

[18] I. Sourdis and D. Pnevmatikatos. Fast, Large-Scale String
Match for a 10Gbps FPGA-based Network Intrusion Detection
System. In Proceedings of the 13th International Conference on
Field Programmable Logic and Applications (FPL’03), pages
880–889, Sept. 2003.

[19] L. Tan and T. Sherwood. A High Throughput String Matching
Architecture for Intrusion Detection and Prevention. In Pro-
ceedings of the 32nd Annual International Symposium on Com-
puter Architecture, pages 112–122, June 2005.

[20] T. Vermeiren, E. Borghs, and B. Haagdorens. Evaluation of
software techniques for parallel packet processing on multi-core
processors. IEEE Consumer Communications and Networking
Conference, CCNC, pages 645 – 647, 2004.

[21] S. Wu and U. Manber. A fast algorithm for multi-pattern search-
ing. Technical Report TR-94-17, Department of Computer Sci-
ence, University of Arizona, 1994.

[22] F. Yu, R. H. Katz, and T. V. Lakshman. Gigabit Rate Packet
Pattern-Matching Using TCAM. In Proc. of the 12th IEEE In-
ternational Conference on Network Protocols, pages 174–183,
Oct. 2004.

43

