
IEEE Network • July/August 200722 0890-8044/07/$20.00 © 2007 IEEE

odern computer systems increasingly rely on
almost constant communication with the out-
side world. Ethernet bandwidth to individual
computers has continued to increase at an

exponential rate to accommodate this demand. Today, 1 Gb/s
Ethernet is becoming common for desktop systems, and 10
Gb/s Ethernet is available for server systems. Nevertheless,
actually accessing the network at these rates poses serious
hardware and software challenges on the network interface
that stem from high computational requirements, large vol-
umes of data traffic, security concerns, and the need for sys-
tem responsiveness. Furthermore, unlike a network interface
in a router, a network interface card (NIC) in a server also
must tolerate high latency communication with the system
host processor for all incoming and outgoing frames. All of
these challenges must be met subject to the constraints of a
peripheral within the server, limiting the area and power con-
sumption of the NIC.

The NIC of the future must provide not only high-band-
width access to the network, but also must support extensible
services, most notably for security. Programmable NICs can
serve as a flexible and extensible interface to such high-band-
width Ethernet links.

This article presents the design of an efficient pro-
grammable Ethernet network interface and extensions to
enable such an interface to support network intrusion detec-
tion. This article presents a hardware architecture for pro-
grammable network interfaces that splits protocol processing
work across low-frequency parallel reduced instruction set
computer (RISC) cores (rather than a single power-hungry
high-frequency core). This architecture can easily achieve full-
duplex 10 Gb/s throughput. This article then presents and
evaluates a strategy for integrating security into this pro-
grammable network interface architecture by re-targeting the

popular Snort network intrusion detection system to exploit
parallelism across independent network flows. The proposed
architecture and firmware achieves gigabit packet inspection
rates. This draws together the authors’ previous work in net-
work interface design and network intrusion detection [1, 2].

Background
Network Interfaces
The host operating system of a network server uses the net-
work interface to send and receive packets. The operating sys-
tem stores and retrieves data directly to or from the main
memory, and the NIC transfers this data to or from its own
local transmit and receive buffers. Sending and receiving data
is handled cooperatively by the NIC and the device driver in
the operating system. These two components notify each
other when data is ready to be sent or has just been received,
and they must work together as only the device driver has
access to host OS structures, and only the NIC has direct
access to the network. This coordination requires both the
NIC and the device driver to maintain state information about
frames that currently are being processed. Managing this state
to enable the NIC to send and receive frames requires several
different types of communication between the device driver
and the network interface. The device driver uses programmed
input/output (I/O) to notify the NIC that there is new data to
transmit or new buffer space for received data. The NIC uses
direct memory accesses (DMA) to host memory to transfer
frames between the host and the NIC. The NIC also uses
interrupts to notify the host when frames have been sent or
received. Finally, the NIC also must manage access to the
actual network via the media access control (MAC). The NIC-
side tasks may be performed using either a programmable or
hardwired application-specific integrated circuit (ASIC) net-

MM

Derek L. Schuff and Vijay S. Pai, Purdue University
Paul Willmann and Scott Rixner, Rice University

Abstract
Programmable network interfaces can provide network servers with a flexible inter-
face to high-bandwidth Ethernet links, but they face critical software and architec-
tural challenges. This article explores architectural and software support for an
efficient programmable 10 Gigabit Ethernet controller. The design is then extended
to support a self-securing Gigabit Ethernet controller that performs intrusion detec-
tion on all network data frames. Both raw performance and security require high-
bi trate frame data transfer, low-latency metadata access, and intensive
computational capacity while still operating under the area, cost, and power bud-
get of a peripheral device. These goals are achieved using a combination of paral-
lel lightweight processing cores, an explicitly-partitioned memory system, and
dedicated hardware assists. The firmware on the network interface is designed to
utilize these resources efficiently by exploiting frame-level, flow-level, and task-level
concurrency.

Parallel Programmable Ethernet Controllers:
Performance and Security

SCHUFF LAYOUT 7/3/07 11:47 AM Page 22

IEEE Network • July/August 2007 23

work interface, but programmable
interfaces are attractive because
they may be used to offload various
services from the host, such as
TCP/IP processing [3], iSCSI [4], or
network interface data caching [5].

Detailed analysis of the previous
tasks on a programmable network interface shows that on
average, sending a full-sized Ethernet frame requires 281
RISC instructions and 404 bytes of metadata access, and
receiving an Ethernet frame requires 253 instructions and 340
bytes of metadata accesses [1]. A full-duplex 10 Gb/s link can
deliver maximum-sized 1518-byte frames at the rate of 812,744
frames per second in each direction. Therefore, a full-duplex
10 gigabit Ethernet controller must be able to sustain 435
MIPS and 4.8 Gb/s of data bandwidth for protocol processing.
Additionally, the frame data must be touched twice on every
transmission: once for a transfer between the NIC memory
and the host and once for a transfer between the NIC memo-
ry and the network. Thus, sending and receiving maximum-
sized frames at 10 Gb/s requires an additional 39.5 Gb/s of
bandwidth for frame data. This is slightly less than the overall
link bandwidth would suggest (2*2*10 Gb/s), because data
cannot be sent during the Ethernet interframe gap.

Traditional solutions for achieving high performance in
conventional processors are not applicable to network inter-
faces. Instruction-level parallelism requires high complexity
(such as wide issue windows, register renaming hardware, and
complex branch prediction), all of which add area, delay, and
power consumption. High-frequency processors are also not
an option because power consumption grows superlinearly as
frequency increases, leading to a less-efficient peripheral. Fur-
ther, techniques commonly used in network processors
designed for routers (such as multithreading) are not applica-
ble for NICs; unlike router interfaces, server NICs must toler-
ate the long latencies of DMA communications with the host
and thus must use more aggressive latency-tolerance tech-
niques (such as event-driven firmware).

Intrusion Detection
Network intrusion detection systems (NIDS) aim to detect
(and in some cases prevent) attempted intrusions and vulnera-
bility exploits by inspecting the content of every packet des-
tined for a system or network. Snort is the most popular NIDS
available. The system and its intrusion-detection rule set are
freely available, and both are regularly updated to account for
the latest threats [6]. Snort rules detect attacks based on traffic
characteristics such as the protocol type (TCP, UDP, ICMP, or
general IP), the port number, the size of the packets, the pack-
et contents, and the position of the suspicious content. Packet
contents can be examined for exact string matches and regular
expression matches. Snort can perform thousands of exact
string matches in parallel using one of several different multi-
string pattern matching algorithms, with the Aho-Corasick
algorithm as the default [7]. Snort also includes preprocessors
that perform certain operations on the data stream, such as
TCP stream reassembly (to avoid missing attacks that are split
across packets) or rewriting uniform resource locators (URLs)
in HTTP canonical format (e.g., replacing “%7e” with a tilde
or eliminating “../” directory traversals).

Common rules include checks for buffer-overflow attacks,
cross-site scripting, or distributed denial-of-service attacks.
Each of these rules includes multiple test conditions and uses
the logical AND of those conditions to confirm an attack. The
Snort ruleset language includes 15 tests based on packet pay-
load and 20 based on headers. Over 95 percent of the rules in
recent Snort rulesets specify string content to match, but no

rule specifies only string content matching. Some rules specify
multiple string matches; about 30 percent use regular expres-
sions; and all are augmented with other tests, such as specific
ports, IP addresses, or URL.

Figure 1 depicts the stages of the Snort packet processing
loop along with the percentage of execution time spent on
each one when invoked with a representative network trace
[8]. The profile shown here was gathered using the oprofile
full-system profiling utility on Linux, running on a Sun Fire
v20z with two 2.0 GHz dual-core Opterons (four processors
total). Snort runs on only one processor. The Snort configura-
tion used a full recent ruleset and included the preprocessors
described previously. The Snort code profiled here is modified
to read all of its packets sequentially from an in-memory
buffer to allow playback of a previously-captured network
trace and avoid the overhead of capturing packets from the
operating system (OS). The system achieves 463 Mb/s inspec-
tion throughput for this trace, with packet inspection consum-
ing 92 percent of execution time (the remaining 8 percent is
consumed by tasks that are not part of Snort packet process-
ing, such as miscellaneous library calls, operating system activ-
ity, the profiler, and other applications). Because the
processors of an actual running server machine also must be
shared with the server applications and the OS, it is not feasi-
ble to deploy Snort directly on high-end network servers that
must serve data at gigabit rates or higher. These observations
tend to limit the deployment of NIDS to edge appliances, as
in commercial developments by F5, Radware, and other com-
panies. Edge-based NIDS is effective at detecting intrusions
from the Internet, but provides no coverage for attacks within
the local area network (LAN) that might occur as follow-on
attacks after one external attack slips through the perimeter.

Figure 1 indicates that string content matching is a major
component of intrusion detection, constituting 46 percent of
execution time. Similar observations have led others to design
dedicated hardware specifically aimed at string content match-
ing; various solutions based on ASICs, field-programmable
gate arrays (FPGAs), and ternary content addressable memo-
ries (TCAMs) have been shown to match content at line rate
(e.g., [9–11]). However, the other stages of NIDS are also
equally important. This is not unexpected since the rules
invariably include multiple types of tests, not just string con-
tent matching. Thus, any performance optimization strategy
should target the full intrusion detection system.

Programmable Network Interface
Architecture
This article proposes a self-securing Ethernet controller that
runs event-driven protocol processing firmware on multiple
RISC processors augmented with special-purpose hardware to
accelerate the string-matching portion of intrusion detection.
Figure 2 shows the architecture of the proposed Ethernet con-
troller. The specific portions of the architecture target the fol-
lowing uses:
• Programmable processors: control-intensive computation;

require low latency
• Memory transfer assists (DMA and MAC): data transfers to

external interfaces; require high bandwidth

n Figure 1. The Snort packet processing loop with percentage of time spent in each phase.

Non-content
rules, regexp

matching
Exact string
matchingPreprocessorsDecode

packet
Read

packet Notification

Non-content 15%
Regexp 15%46%13%2% 1%

SCHUFF LAYOUT 7/3/07 11:47 AM Page 23

IEEE Network • July/August 200724

• String-matching hardware: data processing; requires high
bandwidth

• Graphics double-data-rate (GDDR) synchronous dynamic
random access memory (SDRAM): provides high band-
width and high capacity for network data and dynamically
allocated data structures

• Banked static random access memory (SRAM) scratchpads:
provides low latency for fixed control data access

• Instruction caches: provides low latency instruction access
• Data cache: provides low latency on repeated accesses of

dynamic NIDS data structures
The following discusses the architectural components in

greater detail.

Programmable Processing Elements
Ethernet protocol processing and the portions of Snort other
than string matching are executed on RISC processors that
use a single-issue five-stage pipeline and an instruction set
based on a subset of the MIPS architecture. Parallelism is a
natural approach to achieving performance in this environ-
ment because packets from independent flows have no seman-
tic dependencies between them. The processor count is varied
from 1–8 in this study, and the frequency is varied from
100–500 MHz.

Memory Transfer Assists
This system includes hardware engines to transfer data
between the NIC memory and the host memory or network
efficiently. These assists, called the DMA and MAC assists,
operate on command queues that specify the addresses and
lengths of the memory regions to be transferred to the host by
DMA or to the network following the Ethernet medium-
access control policy. The DMA assist also offloads TCP/IP

checksumming from the host oper-
ating system.

String Matching Hardware
High-performance network intru-
sion detection requires the ability
to match string content patterns
efficiently, so the controller inte-
grates string-matching-assist hard-
ware. The string-matcher operates
by reading from a dedicated task
queue describing regions of mem-
ory to process and then reading
those regions of memory (just like
the DMA/MAC assists). It then
feeds that data to a simulated
hardware implementation of the
Aho-Corasick algorithm. The actu-
al implementation could be based
on many previously proposed
ASIC, TCAM, or FPGA-based
designs, many of which have been
shown to match content at line
rate (e.g., [9–11]). The only poten-
tial slowdown would be reading
the input data from memory; for-
tunately, the memory hierarchy
provides sufficient bandwidth.

Memory System
The memory system consists of
small instruction caches for low-
latency access to the instruction
stream, banked SRAM scratch-

pads for access to protocol processing and Snort control
data, and an external GDDR SDRAM memory system for
high-bandwidth access to high-capacity frame data. The
instruction caches, though very small, have high enough hit
rates that instruction access is not a bottleneck in this sys-
tem. The scratchpads used in this study have four banks and
run at the processor clock frequency. Two 500 MHz Micron
GDDR SDRAM chips provide 64 Mbytes of memory with a
64-bit interface yielding a peak bandwidth of 64 Gb/s. Addi-
tionally, for the NIDS firmware, the memory system includes
a shared data cache to enable the programmable processors
to use dynamic random access memory-based (DRAM)
frame data when required without incurring row activation
overhead on every access. The cache is not used for scratch-
pad accesses or by the assists. For simplicity, the cache is
write-through; consequently, it is important to avoid allocat-
ing heavily-updated performance-critical data in the DRAM.
The cache also does not maintain hardware coherence with
respect to the assists; instead, the code must explicitly flush
the relevant data from the cache any time it must communi-
cate with the assists.

The processors and each of the five hardware assists con-
nect to the scratchpads through a crossbar as in a dancehall
architecture. Arbitration for a given scratchpad requires a
cycle, and actual scratchpad access requires another cycle.
Although this arbitration cost could be tolerated by extending
the processor pipeline, our work makes no changes to the
processors and thus experiences an additional cycle delay on
each data load from the scratchpad. There also is a crossbar
connection to allow the processors to connect to the shared
data cache or the external memory interface; the assists access
the external memory interface directly to facilitate longer
burst transfers.

n Figure 2. Block diagram of proposed Ethernet controller architecture.

ICache P-1

CPU P-1

Scratch
pad S-1

ICache 21

CPU 2

Scratch
pad 1

ICache 1

CPU 1

Shared
DCache

Bus interface

External memory interface

External DDR SDRAM

ICache 0

CPU 0

PCI
interface

String
matching

assist
MAC

Scratch
pad 0

128 bits

Ethernet controller with NIDS

External SRAM

Instruction memory interface

128 bits

64 bits
PCI
bus

Full-duplex
Ethernet

32 bits

P+5 x S+1 crossbar (32-bit)

SCHUFF LAYOUT 7/3/07 11:47 AM Page 24

IEEE Network • July/August 2007 25

Network Interface Firmware
The firmware of a programmable network interface is respon-
sible for using the architecture provided to perform protocol
processing and other extended services. The key challenge in
this system is to exploit parallelism efficiently without violat-
ing network ordering constraints.

Protocol Processing
To tolerate the long latencies of interactions with the host,
NIC firmware uses an event-based processing model in which
the various steps of data communication map to separate
events. When an event is triggered, the firmware runs a spe-
cific event handler function for that type of event. Events may
be triggered by hardware completion notifications (e.g., pack-
et arrival, DMA completion) or by other event handler func-
tions that wish to trigger a software event (e.g., processing a
newly arrived packet descriptor to fetch the actual packet con-
tents). The protocol processing firmware used in this study
exploits both frame-level and task-level parallelism, dividing
work into bundles of specific frames that require a certain
type of processing.

The firmware is a parallel program that executes identically
on all processors in the system. Each processor executes the
work-discovery dispatch loop, which inspects a distributed task
queue and several hardware-maintained pointers. The dis-
tributed task queue contains software-generated events, and
the hardware-maintained pointers indicate the completion of
hardware events such as packet arrivals. After work units are
discovered (subject to synchronization to ensure correctness),
they can be executed in parallel, regardless of the type of pro-
cessing required. This frame-level parallel organization
enables high levels of concurrency but requires additional
overhead for work discovery and to maintain frame ordering.
Whereas the firmware work-discovery and task-management
orchestration is entirely new, the core task-processing func-
tions are based on those used in Revision 12.4.13 of the
Alteon Websystems Tigon-II firmware. However, that task
handling code has been extended to make the task processing
functions re-entrant and to apply synchronization to all data
shared among different tasks.

A side effect of frame-parallel event processing is that
frames may complete their processing out-of-order with
respect to their arrival order. However, in-order frame deliv-
ery must be ensured to avoid the performance degradation
associated with out-of-order TCP packet delivery, such as
duplicate acknowledgments (ACKs) and the fast retransmit
algorithm. To facilitate this, the firmware maintains several
status buffers where the intermediate results of network inter-
face processing may be written. The firmware’s work-discovery
loop inspects the final stage results in order for a “done” sta-
tus and commits all subsequent, consecutive completed

frames. The task of committing a
frame may not be run concurrently
but committing a frame requires
only a pointer update.

Adding NIDS
Recall the Snort processing loop
depicted in Fig. 1. A NIC-embed-
ded Snort does not require a sepa-
rate stage to read packets, as
Ethernet processing already will
have brought them into memory,
and Snort can be added as follow-
on phases to the existing parallel
firmware. However, the paralleliza-

tion of these stages presents obstacles. In particular, the data
structures used by stream reassembly must be shared by dif-
ferent packets, making packet-level parallelization impractical.
However, there are no data dependencies between different
TCP sessions, so a parallelization that ensures that each ses-
sion would be handled by only one processor could access the
different sessions without any need for synchronization.
Whereas the Ethernet-processing portion of the firmware uses
frame parallelism, the lack of dependencies among TCP ses-
sions for Snort analysis motivates session-level parallelism for
intrusion-detection stages of the firmware.

Figure 3 shows the stages of Snort operating using this
parallelization strategy. The top and bottom rows represent
separate threads of execution, with shared elements in the
middle. The parallel software uses distributed task queues,
with one per processor. After a packet has been committed
for completion by the Ethernet-layer firmware processing,
it is ready for intrusion-detection processing. However, the
packet must first be placed into the queue corresponding to
its f low. The source and destination IP addresses are
looked up in a global hash table. If the stream has an entry,
the queue listed in the table is used. Otherwise the stream
is assigned to whichever queue is currently shortest, and
the entry is added to the table, ensuring subsequent packets
from the stream will go into the same queue. Hence, after
assignment, the flow is entered into the firmware’s dis-
tributed task queue, where it will be processed by the
assigned processor’s work-discovery loop. Stream reassem-
bly is then performed for each session using the steps
described earlier. The processor assigned to the queue
places a pointer to the incoming packet data in its stream
reassembly tree. Eventually, enough of the stream is gath-
ered that Snort decides to flush it. This processor then
finds a free stream reassembly buffer and copies the packet
data from DRAM into the free buffer. These stream
reassembly buffers are allocated in the scratchpad for fast
access; then the buffers are passed to the hardware pattern
matching assist by enqueueing a command descriptor.

The string content-matching assist dequeues the descriptor
passed in from stream reassembly, fetches the reassembled
stream data, scans it in hardware, and notes any observed rule
matches. For each rule matched by the stream, it writes a
descriptor into the global match queue, containing a pointer
to the rule data. The next processor to dequeue from the
match queue must verify each match reported by the content
matcher. Each Snort rule specifies several conditions (that
may include multiple strings), but the matcher checks only for
the longest exact content string related to each rule. The veri-
fication stages check each condition for the rule and handle
alerting, if necessary. The HTTP inspect and verification
stages are essentially unmodified from the original Snort. The
notification stage shares common alerting mechanisms; no

n Figure 3. Firmware parallelization strategy used for NIC-embedded Snort.

Match verification stages

Distributed
task queues

Ethernet
frame
ready

Stream
reassembly

Hardware
content
matcher

Rule tree
lookup,
pattern

matching

Non-content
rules, regexp

matching
Notification

Match verification stages

Rule tree
lookup,
pattern

matching

Non-content
rules, regexp

matching
Notification

Ethernet
frame
ready

Stream
reassembly

SCHUFF LAYOUT 7/3/07 11:47 AM Page 25

attempt was made to privatize this stage as it represents only
1.5 percent of the total computation even with complete seri-
alization.

The firmware resides in the external instruction memory
and requires approximately 415 kbytes, but its working set is
small enough to allow a high hit rate in the instruction caches.
The firmware uses the scratchpads for all statically-allocated
data (e.g., Ethernet processing control data, interstage
queues, and target buffers for stream reassembly and HTTP
inspect). DRAM is used for frame contents and all dynamical-
ly-allocated data (e.g., the stream reassembly trees, the session
assignment table, and the per-port rule tree data). This data
allocation does not suffer as a result of the simple write-
through cache in the system because very little data in DRAM
is actually updated by the processors during operation.

Performance Evaluation
The proposed Ethernet controller architectures are evaluated
using Spinach, a cycle-accurate toolkit for simulating pro-
grammable network interfaces [12]. Spinach allows various
simulators to be composed from a library of modules that can
be composed hierarchically at various levels of abstraction.
Spinach features modules that are applicable to general-pur-
pose programmable systems and modules that are specific to
embedded systems and network interfaces, including host and
network harness modules capable of playing back a tcpdump-
formatted trace file. Spinach has been validated against the
Tigon-II programmable multiprocessor NIC.

Ethernet Processing
The proposed architecture is first evaluated by examining raw
performance when performing only Ethernet protocol pro-
cessing. Performance is benchmarked by using streams of
fixed-length user datagram protocol (UDP) packets. Figure 4
shows UDP throughput when processing bi-directional
streams of maximum-sized UDP packets (1472 bytes) that
lead to maximum-sized Ethernet frames (1518 bytes). The fig-
ure shows the achieved UDP throughput as the processor fre-
quency and number of processors in the architecture are
varied. All configurations use four scratchpad banks, an 8-
kbyte two-way set associative instruction cache with 32-byte
lines/processor, external SDRAM operating at 500 MHz, and
a physical network link operating at 10 Gb/s for both transmit
and receive traffic. The figure shows that the architectural and

software mechanisms enable parallel cores to achieve the
physical network maximum UDP bandwidth of almost 19.2
Gb/s.

At 175 MHz, six cores achieve 96.3 percent of line rate, and
eight cores achieve 98.7 percent of line rate. At 200 MHz,
both six and eight cores achieve within 1 percent of 10 Gb/s
Ethernet bi-directional line rate. In contrast, simulation data
(not shown in the figure) shows that a single core must oper-
ate at 800 MHz to achieve line rate [1]. Given the superlinear
relationship between processor frequency and power dissipa-
tion, even eight 200-MHz processors would be far more
power-efficient than a single 800-MHz processor.

When using six 200-MHz cores, the proposed memory and
computation architecture is operating at peak performance as
the system is able to provide full-duplex 10 Gb/s line rate.
However, the two-dimensional scalability of the proposed
architecture affords the flexibility to improve overall capability
through either parallel processing or frequency scaling. This
enables the programmer to implement advanced services,
including intrusion detection, in exchange for a portion of the
achievable Ethernet-processing bandwidth of the architecture.

Intrusion Detection
Benchmarking for NIDS is more complicated than for proto-
col processing because NIDS is highly sensitive to the content
of the packets being inspected. Thus, actual packet traces
must be used. The traces used here come from the 1998-1999
Defense Advanced Research Projects Agency (DARPA)
intrusion detection evaluation at the MIT Lincoln Lab, which
simulates a large military network [8]. Because they were gen-
erated specifically for NIDS testing, the traces have a good
collection of traffic and contain attacks that were known at
the time. However, because they were designed for testing
completeness rather than performance, the packet sizes and
flow concurrency levels are not realistic. To address this prob-
lem, a variety of flows were taken from several DARPA traces
and reassembled to more closely match average packet sizes
(≈ 778 bytes) seen in publicly available header traces from the
National Laboratory for Applied Network Research
(NLANR) Passive Measurement and Analysis Web site
(pma.nlanr.net). Two traces, called LL1 and LL2, were creat-
ed in this manner, using different ordering and interleaving
among the flows. The NIDS ruleset is taken from the official
Snort ruleset released by its authors. Running an NIDS on an
individual system enables the ruleset to be customized; in par-
ticular, rules that do not apply to the system (e.g., Windows
NetBIOS rules on a Unix system) can be removed to increase
performance and reduce false positives. Two different rulesets
are tested, one containing rules that might apply to a mail
server and another containing rules that might apply to a Web
server. Both rulesets contain rules for common services such
as ssh.

Figure 5a shows the base results for the LL traces using the
Web and mail rulesets for varying numbers of CPU, running
at 500 MHz. There are many factors, both in hardware and
software, that affect performance. The following analyzes the
impact of the ruleset used, the number of processors, and the
clock frequency.

Rulesets
Rulesets have an important effect on any intrusion detection
system (IDS), and the choice of rules always involves perfor-
mance trade-offs. In Snort, the ruleset affects how much work
the firmware must do in verifying content matches. Since the
content matcher has only one string table, many matches are
for rules that ultimately do not lead to alerts; these false posi-
tives will be filtered out by the verification stage. A false posi-

IEEE Network • July/August 200726

n Figure 4. Scaling core frequency and the number of processors
for 10 Gb/s Ethernet.

Core frequency (MHz)

125100
0

2

To
ta

l t
hr

ou
gh

pu
t

(G
b/

s)

4

6

8

10

12

14

16

18

20

150 175 200 225 250 275 300

8 processors
6 processors
4 processors
2 processors
1 processors

SCHUFF LAYOUT 7/3/07 11:47 AM Page 26

IEEE Network • July/August 2007 27

tive can arise because the rule does not apply to the TCP/UDP
ports in use or because it specifies additional conditions that
are not met by the packet. If the ports do not match, the veri-
fication will complete quickly. However, if additional string or
regular expression matching is required, verification will be
much slower as the processor must read the packet and pro-
cess the data using the matching algorithms. The mail ruleset
actually generates more false positives at the string-matching
hardware, because this ruleset contains many short strings that
appear in many packets; however, the traces used contain far
more Web flows than email flows, so verification for the mail
ruleset typically completes quickly after a simple port mis-
match. In contrast, many Web rules continue to the more
expensive checks, causing the Web ruleset to spend nearly
twice as much of its time on verification as the mail ruleset.
Within the verification stage, the largest fraction of CPU time
is consumed by regular expression matching.

Processor and Frequency Scaling
Figure 5b shows the speedup obtained by increasing the num-
ber of processors, normalized to the two-processor throughput,
for each trace and ruleset. Although the mail ruleset has higher
raw throughput in all cases, the Web ruleset scales much better
with increasing numbers of processors. For the mail ruleset,
two main factors contributed to the limitation in scalability.
Because the mail ruleset requires a comparatively small amount
of verification work per packet, its throughput is more limited
by the rate at which the processors can perform the TCP
stream reassembly and copy the reassembled data from the
DRAM into the scratchpad for inspection. Thus, there is more
contention for the shared cache with the mail ruleset even with
four processors than there is with the Web ruleset with eight,
limiting the scalability of the throughput with more processors.
The mail ruleset also triggers a larger increase in lock con-
tention as the number of processors increases. Conversely, the
Web ruleset requires much more verification work per packet
and as a result, has lower overall throughput. The verification
process reads the reassembled packet data from scratchpad
rather than DRAM so for the Web ruleset, the overall work-
load is more balanced between the scratchpad and the DRAM,
making increased contention for the DRAM less important.
Moreover, because the scratchpad is banked, the increase in
processors causes less contention there than for the cache.

Figure 6 shows the relationships between processor fre-
quency and throughput for the LL1 trace with the Web and
mail rulesets. Scaling the processor frequency gives less than
linear speedups because the DRAM latency and bandwidth is
unchanged, so processors at higher frequencies spend more
cycles waiting for DRAM accesses. The Web ruleset scales
better with frequency for the same reason it scales better with
additional processors—it is slower overall, and DRAM access
makes up a smaller fraction of its time. These results indicate
several paths to achieve near-gigabit speeds; for simpler rule-
sets, such as the mail ruleset, four processors can be used at
400 MHz, six at between 200 MHz and 300 MHz, or eight at
200 MHz, depending on costs and power budgets. Likewise, a
workload such as the more demanding Web ruleset would
require six processors at 400 MHz or eight at between 200
MHz and 300 MHz. Scaling the architecture beyond eight
processors would probably require bandwidth improvements
in the cache. Alternatively, adding further hardware assistance
for stream reassembly (such as adding a gather capability to
the string matcher) could substantially reduce the overall
workload by eliminating copy overhead for the reassembly but
would make the overall system less flexible.

Additional results, including the effect of flow assignment
and reassignment, hardware-assisted string matching, and
caches are discussed elsewhere [2]. To summarize them, flow
reassignment provides benefits of up to 16 percent, with an
average of 7 percent across all traces and configurations test-
ed. Hardware-assisted string matching was found to be essen-
tial to approach gigabit speeds, as was at least a small amount
of cache. However the DRAM footprint and amount of reuse
are small enough that increasing cache size beyond 4 kbytes
provides only limited benefit. In addition, a shared cache con-
figuration performed better than private caches as coherence-
related flushes were not required for interprocessor sharing.

Conclusions
This article proposes and evaluates a design for an efficient
programmable Ethernet controller based on parallel process-
ing cores, an explicitly-partitioned memory system, and
firmware that exploits concurrency in the network data
stream. This architecture is shown to scale to 10 Gb/s full-
duplex rates using six simple pipelined cores at 200 MHz. This

n Figure 5. Snort throughput results achieved with 2–8 CPUs for mail and Web rulesets with LL1 and LL2 input traces: a) inspection
throughput; b) normalized speedup relative to 2 CPUs.

Number of CPUs

2 4

100

Th
ro

ug
hp

ut
 (

M
b/

s)

0

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

1600

6 8

Web LL1
Web LL2
Mail LL1
Mail LL2

Number of CPUs

2 4

0.25

Re
la

ti
ve

 s
pe

ed
up

0

0.5

0.75

1

1.25

1.5

1.75

2

2.25

2.5

2.75

3

3.25

3.5

3.75

4

6 8

Web LL1
Web LL2
Mail LL1
Mail LL2

SCHUFF LAYOUT 7/3/07 11:47 AM Page 27

IEEE Network • July/August 200728

architecture provides a solid base for implementing extended
services, such as network intrusion detection. This network
interface architecture can directly execute the Snort network
intrusion detection system at gigabit Ethernet network
throughputs by extending the NIC to eight cores operating at
300 MHz and adding a hardware string-matching assist. Such
a network interface can support all standard Snort rule fea-
tures, reassemble TCP streams, and transform HTTP URL. In
contrast, achieving similar performance on the host would
require multiple 2 GHz general-purpose processors. Using a
programmable NIC enhanced with Snort, a single host can
effectively be protected from both LAN-based and Internet-
based attacks, unlike edge-based NIDS which only guards
against the latter.

Acknowledgments
This work is supported in part by the National Science Foun-
dation (NSF) under Grant Nos. CCR-0209174, CCF-0532448,
and CNS-0532452 and by donations from Advanced Micro
Devices (AMD).

References
[1] P. Willmann et al., “An Efficient Programmable 10 Gigabit Ethernet Network

Interface Card,” Proc. 11th Int’l. Symp. High-Performance Comp. Architec-
ture, Feb. 2005, pp. 96–107.

[2] D. L. Schuff and V. S. Pai, “Design Alternatives for a High-Performance Self-
Securing Ethernet Network Interface,” Proc. 21st IEEE Int’l. Parallel and Dis-
trib. Processing Symp., Mar. 2007.

[3] H.-Y. Kim and S. Rixner, “TCP Offload through Connection Handoff,” Proc.
EuroSys Conf., Apr. 2006, pp. 279–90.

[4] K. Z. Meth and J. Satran, “Design of the iSCSI Protocol,” Proc. Conf. Mass
Storage Sys. and Technologies, Apr. 2003, pp. 116–22.

[5] H.-Y. Kim, V. S. Pai, and S. Rixner, “Improving Web Server Throughput with
Network Interface Data Caching,” Proc. 10th Int’l. Conf. Architectural Sup-
port for Programming Languages and Op. Sys., Oct. 2002, pp. 239–50.

[6] M. Roesch, “Snort — Lightweight Intrusion Detection for Networks,” Proc.
13th USENIX Conf. Sys. Admin., 1999, pp. 229–38.

[7] A. V. Aho and M. J. Corasick, “Efficient String Matching: An Aid to Biblio-
graphic Search,” Commun. ACM, vol. 18, no. 6, 1975, pp. 333–40.

[8] J. W. Haines et al., “1999 DARPA Intrusion Detection System Evaluation:
Design and Procedures,” MIT Lincoln Lab., tech. rep. 1062, 2001.

[9] L. Tan and T. Sherwood, “A High Throughput String Matching Architecture
for Intrusion Detection and Prevention,” Proc. 32nd Annual Int’l. Symp.
Comp. Architecture, June 2005, pp. 112–22.

[10] F. Yu, R. H. Katz, and T. V. Lakshman, “Gigabit Rate Packet Pattern-Match-
ing Using TCAM,” Proc. 12th IEEE Int’l. Conf. Network Protocols, Oct. 2004,
pp. 174–83.

[11] J. Moscola et al., “Implementation of a Content-Scanning Module for an
Internet Firewall,” Proc. 11th Annual IEEE Symp. Field-Programmable Custom
Computing Machines, Apr. 2003, pp. 31–38.

[12] P. Willmann, M. Brogioli, and V. S. Pai, “Spinach: A Liberty-based Simula-
tor for Programmable Network Interface Architectures,” Proc. ACM SIG-
PLAN/SIGBED 2004 Conf. Languages, Compilers, and Tools for Embedded
Syst., ACM Press, July 2004, pp. 20–29.

Biographies
DEREK L. SCHUFF (dschuff@purdue.edu) received an M.S. in electrical and comput-
er engineering from Purdue University and is a Ph.D. candidate in electrical and
computer engineering at Purdue. His research interests include multiprocessor
computer architecture, parallel programming, and high-performance intrusion
detection.

VIJAY S. PAI received a Ph.D. in electrical engineering from Rice University. He is
an assistant professor of electrical and computer engineering at Purdue Universi-
ty. His research interests include parallel programming tools and technologies,
multiprocessor computer architecture, network server software, and performance
evaluation.

PAUL WILLMANN received an M.S. in electrical and computer engineering from
Rice University. He is a Ph.D. candidate in electrical and computer engineering
at Rice. His research interests include operating systems, virtual machine moni-
tors, programmable embedded systems, and software/hardware interfaces for
efficient I/O.

SCOTT RIXNER received a Ph.D. in electrical engineering from the Massachusetts
Institute of Technology. He is an associate professor of computer science and elec-
trical and computer engineering at Rice University. His research interests include
media, network, and communications processing; memory systems architecture;
and the interaction between operating systems and computer architectures.

n Figure 6. Impact of CPU frequency for LL1 trace: a) Web ruleset; b) Mail ruleset.

Frequency (MHz)

200

100

Th
ro

ug
hp

ut
 (

M
b/

s)

0

200
300
400
500
600
700
800
900

1000
1100
1200
1300
1400
1500
1600

300 400 500

Frequency (MHz)

200

100

Th
ro

ug
hp

ut
 (

M
b/

s)

0

200
300
400
500
600
700
800
900

1000
1100
1200
1300
1400
1500
1600

300 400 500

4 CPU
6 CPU
8 CPU

4 CPU
6 CPU
8 CPU

SCHUFF LAYOUT 7/3/07 11:47 AM Page 28

