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ABSTRACT
Reuse distance analysis is a well-established tool for pre-
dicting cache performance, driving compiler optimizations,
and assisting visualization and manual optimization of pro-
grams. Existing reuse distance analysis methods either do
not account for the effects of multithreading, or suffer se-
vere performance penalties. This paper presents a sampled,
parallelized method of measuring reuse distance profiles for
multithreaded programs, modeling private and shared cache
configurations. The sampling technique allows it to spend
much of its execution in a fast low-overhead mode, and al-
lows the use of a new measurement method since sampled
analysis does not need to consider the full state of the reuse
stack. This measurement method uses O(1) data structures
that may be made thread-private, allowing parallelization
to reduce overhead in analysis mode. The performance of
the resulting system is analyzed for a diverse set of parallel
benchmarks and shown to generate accurate output com-
pared to non-sampled full analysis as well as good results
for the common application of locating low-locality code in
the benchmarks, all with a performance overhead compara-
ble to the best single-threaded analysis techniques.

Categories and Subject Descriptors
C.4 [Performance of Systems]

General Terms
Performance, Measurement

1. INTRODUCTION
The details of locality in multicore processors are

architecture-specific, but locality is largely determined by
fundamental parallel program characteristics: data reuse
and inter-thread interactions. Reuse distance analysis (also
known as stack distance analysis) characterizes memory lo-
cality by forming a histogram of the number of references to
distinct data since the last reuse of the same data, or ∞ for

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PACT’10, September 11–15, 2010, Vienna, Austria.
Copyright 2010 ACM 978-1-4503-0178-7/10/09 ...$10.00.

data not previously referenced [27]. Reuses are conceptually
tracked using a stack, but more efficient implementations
also exist [1, 3, 17, 30, 36]. Data granularity can be words,
cache blocks, or VM pages, but the metric is independent
of the size of storage in the memory hierarchy. Reuse dis-
tance directly predicts the hit ratio of a fully-associative
LRU cache, since data with reuse distance of less than N
would hit in a fully-associative LRU cache of size N . Since
a single run of reuse distance analysis models the behavior
of of all possible cache sizes, this analysis has been used and
validated not only for modeling locality but also for per-
formance optimizations such as generating cache hints or
restructuring code and data to improve locality [7, 9, 17, 19,
25, 26, 34, 40].

Recent studies have extended reuse distance analysis to
consider the effects of multicore processors, some of which
have private coherent caches and some of which have shared
caches. Some of these methods combine data sharing char-
acteristics with per-thread measurements of reuse distance
to estimate actual reuse distance in a shared reuse stack [16,
20]. In previous work, we measure actual reuse distance in
private or shared reuse stacks, keeping private stacks“coher-
ent” by eliminating entries from other stacks when they are
written at one stack and modeling shared stacks by inter-
leaving references from different threads onto a single reuse
stack [31, 32].

Although faster than running separate tests to simulate
the locality-related behavior of all possible cache sizes, full
reuse distance analysis is quite slow. Even under the best im-
plementations, analyzing every memory reference of a pro-
gram costs at least 1–2 orders of magnitude in execution time
slowdown, with even slower performance for parallel pro-
grams. For maximum utility, analysis should be fast enough
to run a whole program with large datasets to completion,
allowing, for example, a software developer to see the de-
tailed performance effect of code changes. The popularity
of tools like Valgrind has shown that developers are willing
to accept an order of magnitude slowdown for a sufficiently
useful tool [33].

This paper presents random sampling and parallelized
analysis as mechanisms to achieve these performance ob-
jectives. Whereas full reuse distance analysis tracks every
reference, sampling analysis randomly selects individual ref-
erences from the dynamic reference stream and yields a sam-
ple for each by tracking unique addresses accessed until the
reuse of that address. The sampling analyzer can account
for multicore characteristics in much the same way as the
full analyzer. One important point, though, is that initi-



ating a sample collection at any thread requires all threads
to record their references in per-thread distance sets so that
inter-thread interactions can be properly captured through
the modeled stacks. For large enough sample counts, un-
biased random sampling can closely approximate the full
process characteristics [29].

Multicore reuse sampling allows the use of a fast-execution
mode when no samples are currently active, but requires
mutual exclusion on each distance set update or invalida-
tion to ensure that all inter-thread interactions are captured
as expected. Parallelized analysis allows each thread to run
analysis at the same time by exploiting the observation from
previous work that the exact timing of inter-thread interac-
tions does not significantly impact the measured reuse dis-
tances [31]. To model private stacks, each thread separately
records its writes, and the model processes the interactions
only when the sampled address is reused or a synchroniza-
tion event (such as a barrier) is reached. To model shared
stacks, each thread keeps its own distance set, merging them
only when any thread reuses the tracked address.

This paper describes parallelized sampling reuse dis-
tance analysis and evaluates its implementation using
fork-join, transactional, and pipelined benchmarks from
the SpecOMP, NAS, STAMP, and PARSEC benchmark
suites [2, 13, 21, 12]. These techniques result in a system
with high accuracy that has comparable performance to the
best single-thread reuse distance analysis tools, averaging
30x slowdown from native execution, with 96% accuracy
compared to a full non-sampled analysis for invalidation-
based reuse stacks. Two variants modeling shared caches
allow different tradeoffs of speed and accuracy, giving 80–
265x average slowdown from native and 74–89% accuracy
compared to non-sampled analysis. In addition, all variants
are demonstrated effective for an example application of se-
lecting important portions of code which cause cache misses.

2. BACKGROUND ON MULTICORE
REUSE DISTANCE

Reuse distance has long been a popular architecture-
independent quantitative metric for data reuse in programs,
and a single run of reuse distance analysis can model the be-
havior of all possible memory hierarchy sizes by using a stack
to track the depth of accessed memory addresses in LRU or-
der [27]. When considering multicore systems, this analysis
must be augmented, as considering events within only a sin-
gle reference stream ignores inter-core data communication
that may impact or even dominate parallel program perfor-
mance. These inter-core interactions depend largely on the
cache configuration, which may consist of private caches or
shared caches. Reuse distances are supposed to represent a
measure of locality, with shorter distances being more likely
to hit and longer ones less likely. However, if one thread
has written to an address between two reuses of that same
address by another thread with a different cache, an invali-
dation will take place and the access will miss regardless of
how short the reuse distance is. Similarly, if a thread fetches
an address into a shared cache, another thread will see that
access as a hit even if it has never referenced that data be-
fore. In prior work, we presented a multicore-aware model of
reuse distance analysis that accounts for these inter-thread
interactions during measurement [32].
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When modeling shared caches, all threads share a single
reuse stack in a straightforward manner. When modeling
private caches, each thread has its own reuse stack. When a
block is invalidated from a real cache, it leaves behind a free
slot (a hole) that can be re-used for the next block of data
that maps to that set. Blocks that have been evicted will
not go back into the cache. In a general stack this means
that blocks should never decrease in depth, other than when
they are accessed. However, the hole can be filled without
evicting any other blocks; thus, if a hole is filled in, blocks
that otherwise would have increased in depth do not. To
model this behavior, blocks that are invalidated are left in
the stack but marked as invalid. This means an access to a
block a deeper in the stack has the same reuse distance as if
the invalidation had not occurred. Then when a is brought
to the top, the hole is filled in. In the absence of any holes,
a block b that was above a before it was accessed would
increase in depth. If there is a hole above b, then it is filled
in and b does not increase in depth. However, to keep blocks
below a’s original position from decreasing in depth, the slot
at a’s original position becomes the hole. If a new address is
added to the stack, it effectively comes from infinite depth;
thus, if it fills a hole, the hole is simply removed.

Figure 1 illustrates different approaches to measuring
reuse distance with an example reference stream to 3 dif-
ferent blocks; the fifth reference is a write from thread 2
and the rest are reads from thread 1. If reuse stacks are
independent, the reuse of block B has a reuse distance of 1
(C is the only block referenced in between) and the reuse
of block A has distance 2. With multicore-aware private
stacks, the intervening write of A by thread 2 causes the
second reference by thread 1 to have infinite distance due
to the invalidation, and with a shared stack, its distance is
reduced to 1.

This approach effectively accounts for the sharing and in-
validation behavior of multithreaded programs, but it dras-
tically reduces the speed of analysis. All reuse distance anal-
ysis methods add significant overhead, increasing program
runtime many times over. For parallel programs, however,
the problem is compounded, because the tight inter-thread
interaction used by the analysis negates the benefits of par-
allel execution. One of the goals of this paper is to rectify
this problem. A good solution should analyze execution di-
rectly without requiring a trace and should be fast enough
to use as part of a program development cycle; preserving a
program’s parallel execution substantially furthers this goal.



3. SAMPLED PARALLEL MULTICORE
REUSE DISTANCE ANALYSIS

3.1 Reuse Distance Sampling
Full reuse distance analysis tracks every reference, main-

taining global state that is updated with every reference,
and yields a measurement (sample) for every reference. The
fastest full reuse distance analysis uses O(logM) time per
reference for accurate analysis or O(log logM) time per ref-
erence for approximate analysis, where M is the total size
of the data accessed by the program [17]. In contrast, the
sampling implementation selects individual references from
the dynamic reference stream and yields a sample for each.
Because reuse distance for a reference is determined by the
global state, the sampler must track all references between
the use and reuse of the address accessed by the sampled ref-
erence. When a reference is selected for sampling, the set of
all unique addresses accessed between the use and reuse (the
distance set) is recorded in a hash table. When the address
is reused, the size of the distance set is the reuse distance for
the initial reference, and this reuse distance is recorded in
the histogram. As the analysis only requires one hash table
lookup, this method of measurement requires only amortized
O(1) time per reference, but yields many fewer samples than
the full analysis. In theory this technique could be used for
full analysis by replicating it for every outstanding use/reuse
pair in the program, but it would cost up to O(M) time per
reference and O(M2) space in the worst case.

The sampling tool operates in two modes: fast mode,
which simply counts down the number of dynamic references
until the next sample; and analysis mode, which tracks all
references for measurement. References are chosen at ran-
dom from the dynamic reference stream. At each sample,
the number of references before the next sample is chosen
from a geometric distribution, ensuring that each dynamic
reference has an equal probability of being chosen. The sam-
pling rate can be adjusted by specifying the expected num-
ber of references between samples.

The system begins in fast mode and selects the number of
references before the first sample. After the selected num-
ber of references passes, the sample address is recorded and
analysis mode tracks all references until the sample address
is reused. The number of references until the next sample
is chosen at the beginning of analysis mode rather than the
end, to avoid skewing the sample. This means that multiple
samples may be tracked simultaneously, if the next sample
is reached before the current address is reused. Each active
sample has its own distance set that must be tracked inde-
pendently. When a sampled address is reused, it is removed
from the list of tracked addresses; when that list empties,
the system returns to fast mode until the next sample.

3.2 Multicore Reuse Distance Measurement
The discussion thus far has not considered multithread-

ing. Data sharing can be accounted for directly by using a
shared sampler that sees references from all threads. Ac-
counting for invalidations in private stacks is less straight-
forward. As discussed in Section 2, an invalidation leaves
behind an empty cache block (a hole) in its slot in the reuse
stack. A hole is filled in when a block is brought to the top
from a position deeper than the hole, or when a new block
is added. Along with the distance set, each tracked address
also has a count of the holes above it in the reuse stack. On
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each write of an address aw by thread tw, all other threads
ti are checked. For each address ai currently tracked by ti,
its distance set is checked. If aw itself is the address being
tracked (i.e. aw = ai), it is recorded as an invalidation with
infinite distance and removed from the list of tracked ad-
dresses. If aw is in the distance set of ai, it is invalidated
(removed from the set) and a hole is created. The actual
addresses that become holes need not be kept; only the hole
count is required. If in the future a new address is added
to ai’s distance set, the hole is filled in by decrementing the
hole count. When ai is eventually reused, its reuse distance
is the size of the distance set plus the hole count.

Writing to an address that another thread ti is tracking
causes that address to be sampled as an infinite distance
because one of two things will happen: either the address
will be accessed by ti again, which will be a coherence miss,
or ti will never access it again, in which case the sample was
a last touch, which is also recorded as an infinite distance.
To see that the handling of holes is correct, it is helpful
to consider the depth in the per-thread reuse stack of the
address ai being tracked, the address ar being referenced,
and the topmost hole. The distance set of ai contains all
still-valid addresses that are between the top of the stack
and ai, and the hole count is the number of addresses that
were in this range but have been invalidated and were not
filled in. Therefore the depth of ai is the size of its distance
set plus the hole count, and the depth of all tracked holes is
less than the depth of ai. When an ar is referenced, there
are 4 possibilities:

1. If ar is above ai in the stack and above the topmost
hole, it has been referenced since the last reference to
ai and is therefore already in the distance set. It is
moved to the top of the stack without changing the
depth of ai and without filling in any holes; the dis-
tance set and hole count remain the same. This is Case
1 in Figure 2.

2. If ar is above ai in the stack and below the topmost
hole, it moves to the top and fills in the hole, but the
hole moves down to ar’s original position, which is still
above ai. Therefore the distance set and hole count
remain the same. This is Case 2 in Figure 2.

3. If ar is below ai (and therefore below the topmost hole)
it will go to the top of the stack, and fill in the topmost
hole. It will be be added to the distance set and the
hole count will be decremented, so the depth of ai to
remains the same. This is Case 3 in Figure 2.



4. If ar is a new address that is not in the stack at all,
the situation is the same as case 3.

3.3 Parallel Reuse Distance Sampling
The section so far has described a sampled method of

measuring multithreaded reuse distance. However, it shares
with full reuse distance the requirement that access to the
measurement structures be serialized, or at least heavily syn-
chronized. For shared reuse distance stacks, each thread
must update the shared hash table on every reference, which
requires locking at least part of the table. For private stacks,
a write reference requires the writing thread to check every
other thread’s distance sets and, if the written address is in
the distance set, to remove it and increment the hole count.
This again requires synchronized data structure accesses on
every reference, potentially many per reference. Because
atomic operations are many times slower than normal mem-
ory references, and because having data updated frequently
by many processors causes severe performance penalties, the
analysis would ideally require neither of these things in the
common case. Parallel reuse distance sampling is a modi-
fication of the sampling method that achieves this goal, at
the possible cost of some accuracy.

Private stacks. The method so far described requires
that when a thread writes to an address, this potential in-
validation is immediately propagated to all other threads,
updating their distance sets and hole counts. Previous work
showed that in data-race-free programs, data overwritten by
one thread is not usually referenced immediately by another
thread; there must be some synchronization controlling the
access. Therefore the exact timing of the propagation of
these writes between threads does not significantly impact
the reuse distance measurement [31]. The parallel method
takes advantage of this fact. Instead of immediately check-
ing the other threads’ distance sets on every write, each
thread keeps track of the set of unique addresses written
since the sample was created; this set is called the write set.
For every active sample, the thread that made the initial ref-
erence tracks the distance set, updating it on every reference.
All other threads track a write set for this sample, updat-
ing it on every write. This split allows each thread to have
its own private analysis data. At a synchronization event
such as a barrier, any invalidations caused by the writes are
propagated back to the sample’s distance set. This process
is the same as above; each written address is checked against
the distance set, and if the address is found in the distance
set, it is removed and the hole count is incremented. When
this synchronization happens, all threads are suspended and
wait until the writes are all propagated before continuing.
This synchronization also happens when the sample’s ad-
dress is reused. If there are no recognizable synchronization
events, invalidations are not propagated until reuse, poten-
tially causing overestimation of reuse distances (a new block
added to the distance set after an unpropagated invalidation
occurred will increase the distance set size rather than filling
a hole).

Shared stacks. The parallel method for shared stacks is
similar, but simpler. In a shared reuse distance stack, the
reuse distance of a reference is the total amount of unique
data referenced by all threads between the use and reuse.
Once a sample is activated, all threads keep their own dis-
tance set for the sample, until one of them encounters a
reuse of the address. Then they all pause and the distance

sets are merged; the combined size of the distance sets is the
sample’s reuse distance.

Pruning. The parallel sampling method has the ben-
efits of being completely parallel and free of any atomic
synchronization operations for most references. This is one
source of speedup compared to the full analysis. The second
source is the fast mode; when there are no active samples,
no operations need to be performed on a per-reference basis.
Therefore, the fraction of time the sampler spends in fast vs.
analysis mode significantly impacts the performance. This
fraction in turn is determined by the locality of the pro-
gram itself; the longer the references go between use and
reuse, the longer the sampler will have to remain in the slow
analysis mode. This behavior is in fact controlled not by
the reuse distance (in space) but by the reuse time (or to-
tal number of references between use and reuse, whether to
unique or repeated data elements). Suppose for example an
“unlucky” sample is chosen at the beginning of the execu-
tion, such as an address that is used during initialization
and not touched again until the end. This outstanding sam-
ple will force the sampler to operate in analysis mode for the
entire execution, significantly limiting the speed benefits of
sampling. To keep these stray samples from having a dis-
proportionate effect on the analysis speed, a heuristic called
pruning is employed. Periodically (e.g. whenever a new
sample is created) the pruning procedure checks the oldest
outstanding sample. If this sample’s current reuse distance
is sufficiently large (e.g., if it is in the top 1% of reuse dis-
tances seen so far), it is pruned and recorded as if it were
a cold miss. This scheme prevents long-standing samples
(especially those from the very beginning of execution) from
keeping the sampler in analysis mode for too long. Making
the threshold based on distance rather than time allows bet-
ter control over the resulting inaccuracy (pruning will only
occur at large distances), but this can have a performance
cost. If, for example, the program executes a long-running
loop with a small memory footprint while a sample is active,
it will consume a lot of time in slow analysis mode with-
out significantly increasing the reuse distance of the sample
(and therefore will not trigger pruning). Making the prun-
ing threshold relative to references seen so far allows it to
handle any size input, but requires that pruning not start
until enough samples have been recorded to have meaningful
statistics.

4. EXPERIMENTAL METHODOLOGY
Binary Instrumentation. Both the full reuse distance

analyzer and the sampled analyzer are implemented as plu-
gins for the Pin binary instrumentation system [24]. For
the full analysis, the reuse distance stack implementation
is based on Sugumar and Abraham’s splay tree code as
distributed with SimpleScalar 4.0 [23, 36], modified as de-
scribed in previous multithreaded reuse distance work [32].
It is invoked by Pin on every memory reference; because it
is not parallel, access is serialized using Pin’s built-in lock-
ing facility. For the sampled implementation, the operation
mode is determined by the global count of the number of
active sampled addresses. If it is greater than 0, the sys-
tem is in analysis mode and the analysis code is invoked on
every reference. Regardless of the current mode, the refer-
ence counting code is called at every basic block rather than
every reference (for increased efficiency).



Workloads. This system is evaluated with twelve bench-
marks: six from SPEC OMP2001 [2], three from the
OpenMP version of the NAS Parallel Benchmarks version
3.3 [21], one from the STAMP transactional memory bench-
mark suite [13], and two from the PARSEC benchmark
suite [12]. They include 312.swim, 316.applu, 318.galgel,
320.equake, 324.apsi, and 326.gafort from SPEC OMP;
CG.W, FT.W, and MG.W from NAS; genome from STAMP; and
canneal and ferret from PARSEC. The OpenMP bench-
marks are data-parallel, genome uses transaction-based par-
allelism, ferret uses a pipelined model, and canneal uses
unstructured parallelism with lock-free synchronization.

All benchmarks were run with 4 worker threads except
ferret, which requires at least 5 for its pipeline. The“train”
data input was used for SPEC benchmarks and the“A”input
size for NAS benchmarks. The “native” input parameters
were used for genome with the TL2-x86 STM system dis-
tributed with STAMP [15]. The “simlarge” input was used
for the PARSEC benchmarks. Time comparisons were taken
for the region of interest as defined by the benchmark. Due
to the randomness inherent in sampling, sampling results
were averaged over 3 runs. The expected average sampling
rate was one per million references for all benchmarks ex-
cept canneal, which was sampled at one per 500,000 to get
sufficient samples. After 100 samples were collected, further
samples were pruned if their distance became greater than
99% of all previous samples.

5. EXPERIMENTAL RESULTS

5.1 Private stacks
Figure 3 shows the reuse distance results reported by the

the full and sampled analyzers for all benchmarks analyzed
using the private per-thread stack model. The figure shows
the reuse distance histograms as CDFs; the X axis is reuse
distance in 64-byte blocks, and the Y axis is the fraction of
references with a reuse distance less than or equal to x. In
general the results of the full analysis and the sampled anal-
ysis correspond closely, and the working sets of the programs
are clearly identifiable using either analysis.

The major exception is genome. In the fully-measured his-
togram, 87% of its references have a reuse distance of 0. This
is an artifact of the full analysis code’s perturbing the an-
alyzed program’s behavior, especially during locking in the
STM system. Because the instrumented program spends so
much time in the analysis code while the analyzed program
holds the locks, the other threads spin more often while wait-
ing to acquire them. Because the sampled analysis has much
lower overhead than the full analysis, it does not suffer from
this problem. As reuses due to spinning have no interven-
ing accesses, this perturbation largely affects the 0-distance
bin. Ignoring this bin when making comparisons can mostly
compensate for the interference; the reported accuracy re-
sults adopt this approach.

There are several possible ways to determine if sampling
produces accurate results for reuse distance measurement.
The simplest is to compare the overall reuse distance his-
tograms. A straightforward way to perform this comparison
is to normalize the histograms such that each bin represents
the fraction of references with that range of distances, and
compare each bin. If fi and si are the values in bin i of the
fully-measured and sampled histograms, then the cumula-
tive error E =

∑
i(|fi−si|) for all i. E has a maximum value

of 200% and the overlap of the histograms (i.e. the accuracy
of the sampled histogram on a scale of 0% to 100%) is given
as 1 − E/2, as in [17]. The histogram bins are distributed
logarithmically, such that there are 10 bins per power of 2.
Appendix A discusses the error bounds for accuracy mea-
surements on sampled reuse distance histograms.

Table 1 shows the 12 benchmarks, with the accuracy of
parallel sampled reuse distance compared to the full anal-
ysis, the slowdown compared to native execution, and the
analyzed fraction (the percent of all memory references spent
in analysis mode). On average, for the private stacks, the
accuracy is 95.6% with a slowdown of 29.6x. This is quite
accurate for a very general definition of accuracy; exactly
what accuracy metric is appropriate and what accuracy level
is sufficient depends on the application. For example, an ap-
plication such as PC selection requires enough samples to get
meaningful distributions for many PCs, the longer distances
are more important than the shorter distances, and the rel-
ative distributions of the PCs are more important than the
overall average.

The base performance overhead of Pin in the fast mode
is is 5.3x on average, which includes the basic JITing and
instrumentation, and decrementing the references remaining
until the next sample on each basic block. Each memory ref-
erence in the instrumented program is converted to check if
there are any active samples and if so, call the analysis code
(which at minimum doubles the number of memory refer-
ences, with additional instructions in each basic block for
reference counting). Comparison with other reuse distance
and other memory access analyzers is difficult, particularly
since this paper specifically targets multithreaded programs,
which pose challenges both for instrumentation platforms
and analysis. Zhong and Chang report base slowdowns
(i.e. with just instrumentation but no analysis) of 2–4x for
compiler-based instrumentation and 4–10x for the Valgrind
framework [28] for single-threaded benchmarks [39]. In con-
trast Valgrind with no analysis showed 4–75x slowdown for
our parallel benchmarks, averaging 23x and failing to run
3 of them. The same paper reports an additional 10–90x
slowdown with sampled analysis. Other slowdowns have
been reported as 15–25x for compiler-based single-threaded
non-random sampling with a lower-resolution reuse distance
approximation [8]. Valgrind’s popular memory checker [33],
which also analyzes every memory reference, averages 97x
slowdown for our benchmarks. So, although there are no di-
rect comparisons, the slowdowns reported here are broadly
similar to existing tools, while extending reuse distance anal-
ysis to multithreaded programs.

The overall performance is dependent on the analyzed
fraction, the percent of all program references spent in anal-
ysis mode. The overall analyzed fraction is 19.6%, indicat-
ing that the sampler processes most references in fast mode.
This in turn is dependent on the reuse behavior of the pro-
gram. The pathological case is swim, which is forced to
analyze nearly all its references because pruning is ineffec-
tive, leading to a slowdown of 143x. One possible way to
improve this could be to reduce the sample rate and try a
longer-running input.

The sampled analyzer is on average 177 times faster over-
all than the full analyzer. Factoring out the speed gains from
using the fast mode, the sampler’s analysis mode in isola-
tion is 29x faster than the full analysis. This is the speed
gain from the parallelism (and the removal of most atomic
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Figure 3: CDFs of reuse distance using private per-thread stacks. X axis is reuse distance in 64-byte blocks, Y axis

is fraction of references with reuse distance less than or equal x.

operations), the use of private data structures (which do not
suffer remote cache misses), and the fact that the sampled
analyzer needs only O(1) time per active sample on each
reference, rather than O(logM) time (where M is the total
program data) for the full analysis.

5.2 Shared stacks
With shared reuse stacks, the reuse distance seen by a ref-

erence in one thread is the sum of the unique data accessed
by all threads that share the stack. Therefore that thread’s
measurements are dependent on references made by other



Table 1: Accuracy, slowdown, and fraction of references analyzed for sampled histograms
Private Shared Shared, sequential samp.

Benchmark Samples Acc. Slwdn. %Refs Acc. Slwdn. %Refs Acc. Slwdn. %Refs

applu 141814 98.6% 20.2 8.1% 86.6% 43.2 17.5% 93.6% 281.8 16.8%
apsi 148647 97.5% 7.8 4.5% 85.4% 9.6 4.1% 93.0% 62.2 7.0%
canneal 1098 91.4% 12.6 15.4% 75.2% 25.3 20.8% 88.7% 94.6 17.7%
CG 2335 95.9% 26.8 22.9% 45.5% 90.3 19.8% 94.8% 354.6 19.4%
equake 46718 95.3% 16.1 15.5% 87.1% 33.6 15.6% 93.1% 130.7 11.9%
ferret 9804 97.1% 24.5 6.8% 89.2% 28.5 6.2% 93.7% 154.2 11.6%
FT 8050 98.1% 21.9 7.4% 57.9% 42.2 12.0% 84.2% 225.5 10.4%
gafort 27135 95.6% 7.1 3.6% 83.3% 7.7 3.1% 93.0% 37.2 2.9%
galgel 167527 96.4% 10.2 8.2% 74.5% 13.7 9.1% 81.4% 13.2 1.8%
genome 1488 90.7% 7.7 22.6% 74.6% 12.3 21.8% 84.7% 22.2 4.8%
MG 4252 94.8% 57.0 28.3% 60.0% 157.2 32.9% 71.6% 720.8 36.9%
swim 67589 95.8% 143.0 92.1% 70.0% 496.3 93.8% 94.6% 1084.0 91.7%

Average 95.6% 29.6 19.6% 74.1% 80.0 21.4% 88.9% 265.1 19.4%

threads, regardless of whether they are sharing data with
or synchronizing relative to the measuring thread. Conse-
quently the measured reuse distance depends on the rela-
tive rate of execution of the different threads. This rela-
tive rate can vary between runs of the same program, either
slightly or drastically (e.g., a thread may be suspended by
the operating system and access no data at all) and can
potentially be altered by analysis. This is an undesirable
characteristic in a metric that is supposed to be hardware-
independent; however, it does not mean that reuse distance
becomes meaningless. In particular, threads in data-parallel
programs with regular structure will tend to execute at the
same rate on average; likewise threads in some pipelined
programs may execute at the same relative rate, although
for others it may depend on the input. This means that
reuse distance is still an inherent property of the program
and has meaning independent of the particular execution or
hardware environment; however, there will be more varia-
tion both in measured reuse distance results and in cache
performance on real hardware.

As a baseline to investigate this effect, the full analyzer
(which serializes all reuse distance measurement) is modified
to use a ticket-based queueing lock, ensuring fair ordered ac-
cess to the waiting threads. It does not completely assure
the same execution rate for all threads because they can still
be put to sleep or get delayed executing code other than the
analysis code (e.g., in Pin itself or in long sequences of non-
memory instructions in the benchmark); however, it does
come close, and it is significantly more fair than the default
Pin lock implementation, which can cause waiting threads
to sleep and often results in runs of many consecutive ac-
cesses by one thread. Figure 4 shows part of the histogram
and CDF for the FT benchmark. In the baseline full analysis
(black line), the working sets of the program are clearly visi-
ble; the well-defined knees in the CDF curve are the result of
many references falling in the same histogram bucket, which
can be seen as spikes in the histogram.

To compare against the baseline, two different sampled
implementations are considered. First is the parallel sam-
pler, implemented as described in Section 3. The result of
the variation in relative speed of the threads is variation in
the distances, which causes some of the samples to fall into
neighboring bins in the histogram. Thus the spikes in the
histogram and the knees in the curve of the CDF are not as
well-defined, and the average accuracy over all benchmarks
falls to 74%, as shown in Table 1.

For some purposes this variation in reuse distances is
not a problem; for example, it does not significantly affect
the problem of low-locality PC selection discussed in Sec-
tion 6 (those results are presented using the parallel sam-
pler). However for other applications (e.g., a working set
analysis) it can be a problem. One simple way to keep the
threads running at closer to the same rate is to serialize
the references during analysis mode, in the same way as the
full analyzer, using the fair lock (the two-mode operation
and stack-merging behavior are kept the same). This ap-
proach could be called “sequential sampling”. The results of
this technique can be seen in Figure 4 (dotted line), where
the spikes in the histogram and corresponding knees in the
CDF are much clearer than with parallel sampling (grey
line). And because the general histogram accuracy metric
depends on samples falling into the correct bin, the accuracy
is much improved as well, reaching 89% on average.

Performance. The parallel shared sampling analysis has
reduced performance compared to the private stacks, as Ta-
ble 1 also shows. This is due to two effects: the first is the
increased cost of merging the reuse stacks when a sample is
reused. With invalidation, the synchronizing operation re-
quires traversing the write set and removing any items found
there from the distance set. With merging, all threads’ dis-
tance sets must be merged into a single hash table to fil-
ter out duplicates, possibly substantially increasing its size.
This extra overhead occurs during synchronization and pe-
nalizes all threads if any of them have slow merges. The
second is the resulting increased load on Pin’s memory allo-
cator (which has its own synchronization), which reduces the
performance. This reduction in performance could be miti-
gated by tuning the implementation of the distance sets and
potentially using more intelligent merging algorithms, such
as parallel reduction (which would give even more benefit as
the number of threads scales).

The cost of the additional accuracy gained by sequen-
tial sampling is also reduced performance; the average slow-
down of analysis mode compared to the base shared analy-
sis is 4.1x, (almost exactly equal to the number of threads),
indicating that aside from the serialization the technique
introduces little extra overhead. Note that fast mode re-
mains parallel, even in the sequential sampling implemen-
tation. Accuracy can be traded off for performance fairly
smoothly by synchronizing the threads periodically (but
without merging the stacks), which would allow limited skew
between the threads’ execution rates. Decreasing the fre-
quency of synchronization will improve performance, but
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Figure 4: Portion of the reuse distance histogram (left) and corresponding cumulative distribution function (right)

for full analysis, parallel and sequential sampling on the FT benchmark using the shared stack model

degrade accuracy; in the limit, the analysis will behave like
the full parallel analysis.

6. APPLICATION: LOW LOCALITY PC
IDENTIFICATION

One major application of reuse distance analysis is deter-
mining which portions of a program contribute most to poor
locality and assisting the programmer in making improve-
ments [8, 11, 26]. The chief challenge in this application is
selecting PCs that contribute a significant proportion of a
program’s misses.

Suppose we would like to concentrate our optimization ef-
fort on a small number of PCs. For example, the top N
PCs that are responsible for 75% of the misses at a par-
ticular cache size C. If we use the sampled parallel reuse
distance analysis to select these PCs, how effective will this
selection be as an optimization target? To measure the ac-
curacy of low locality PC selection using sampled reuse dis-
tance analysis, we use Wall’s weight-matching approach [38],
which measures how well an estimated profile (generated by
the sampled analysis) selects entries of interest compared to
a reference profile (generated by full analysis). Intuitively,
weight-matching answers the question, if we select N PCs
using the sampling run, how important are those PCs com-
pared to the N most important PCs according to the refer-
ence run?

Each PC i in the reference run is assigned weight wr,i (i.e.,
the number of misses suffered at PC i in the reference run).
We compute Wr, the total weight of the top N PCs (by
weight) in the reference run. Next, we perform the optimiz-
ing run using the sampled, parallel reuse distance analysis.
Each PC is assigned a weight ws,i according to the number
of misses suffered as predicted by the sampled run. We find
the top N PCs according to their weights in the sampled
run, and compute their total weight, Ws, according to their
weights in the reference run. Note that the identities of these
top N PCs are determined by the weights ws,i, but the total
weight Ws is determined by the weights wr,i. The accuracy,
α, of low locality PC selection in the sampled run is given
by α = Ws

Wr
.

Note that the accuracy measurement is dependent solely
on the weights of the selected PCs, not the identity of the
PCs. This measures the effectiveness of targeting PCs using
the sampled analysis, not whether the exact same PCs are

selected as in full analysis (the latter is captured by Wall’s
key-matching metric [38]).

The remaining question is how to select N . We cannot
simply choose a fixed N ; in some benchmarks, the few most
important PCs suffer the bulk of the misses, while in others,
they contribute only a small fraction. Furthermore, deter-
mining which reuses cause misses requires choosing a target
cache size, C. As the working set of every benchmark is
different, there is no single, suitable C. What is needed is a
benchmark-independent method for choosing N and C. We
choose C by examining the CDF of reuse distances (in the
full analysis), and setting C such that a fixed percentage, x,
of reuses would be predicted as misses; in our experiments,
we set x to 10%. We then find the set of PCs responsible for
those high-reuse distance accesses, and choose N to account
for a given percentage, y, of the total misses in the program;
Table 2 shows results for y ∈ {75%, 80%, 90%, 95%}, for
both private and shared stack configurations. The average
accuracy over the benchmarks is 91%–92% across both stack
types and all different sets of PCs.

These accuracy results demonstrate that sampled reuse
distance analysis can provide accurate, and hence useful,
PC selection information. There are other formulations of
the problem that use additional criteria, both to guide PC
selection and to further assist programmers. For example,
methods have been proposed that include information about
which code is executed between a use and reuse, to suggest
refactorings [10]. Parallel sampled reuse distance can be
extended to incorporate such additional information.

7. RELATED WORK

7.1 Multicore-aware reuse distance
Jiang et al. discuss the issues related to shared-stack reuse

distance, such as its potentially hardware-dependent na-
ture [20]. They present a probabilistic model based on per-
thread reuse distance that takes data sharing information
into account to predict reuse distance for shared caches (it
does not consider private invalidating caches). Ding and
Chilimbi also predict multithreaded reuse signatures and
cache performance by collecting information on data shar-
ing and thread interleaving and combining this information
with per-thread reuse distance analysis [16]. However, their
approach is limited by its statistical nature—it does not di-
rectly track the interactions between threads.



Table 2: Accuracy of low locality PC selection (percent)
Benchmark Private Accuracy Shared Accuracy
Miss Coverage 75% 80% 90% 95% 75% 80% 90% 95%

applu 95.96 97.02 96.48 96.74 96.18 95.3 94.64 94.65
apsi 97.82 97.46 96.98 96.97 95.86 94.78 93.44 92.98
canneal 86.08 87.73 87.47 87.95 98.61 96.81 96.38 92.62
CG.A 100 100 100 100 100 100 100 100
equake 85.68 85.53 93.08 93.29 89.22 87.01 84.82 87.34
ferret 85.46 87.48 88.88 90.72 93.34 93.02 90.94 88.76
FT.A 94.45 94.72 89.45 89.89 96.88 97.17 89.39 88.5
gafort 91.67 96.54 96.04 97.67 93.44 90.37 91.2 89.03
galgel 99.93 99.99 99.87 99.65 76.94 84.45 96.71 95.65
genome 98.28 98.11 96.63 95.56 87.7 86.63 87.6 84.21
MG.A 73.55 72.01 75.99 76.19 76.68 75.61 81.65 85.77
swim 84.15 82.87 80.4 79.58 99.69 99.71 99.94 100

Average 91.09 91.62 91.77 92.02 92.05 91.74 92.23 91.63

Berg et al. present a statistical model of multiprocessor
caches with full associativity and random replacement [6].
Unlike a reuse distance analysis, which tracks the number of
unique references between two accesses to a specific address,
this approach counts all intervening references, whether dis-
tinct or not. Like the Ding and Chilimbi approach, this
technique does not directly model coherence effects, but in-
stead approximates them statistically. Eklov and Hagersten
show how to estimate stack distances from these reference
counts [18], but do not cover multiprocessors.

Several studies have investigated using reuse distance-
based models to study the cache performance of multipro-
grammed workloads (i.e., multiple, distinct programs run-
ning simultaneously) [14, 22, 37]. Because these approaches
focus on multiprogramming, they need only deal with de-
structive interference between separate processes contending
for limited cache resources; they do not address the effects of
constructive sharing. Furthermore, all these techniques pro-
file the different programs separately and then use a prob-
abilistic model to combine the separate reference streams;
this is less accurate than directly tracking the interaction
between threads.

Shi et al. present an analytical model of data replication
and a method to simulate multiple caches in a CMP in a
single pass [35]. Their method uses a list-based reuse stack
to model private and shared caches and to account for data
replication in the shared cache, but instead of calculating the
actual reuse distance for each access, it simply accumulates
the appropriate hit and miss counters for the various caches.
Therefore it is unsuitable for uses other than simulation.

7.2 Sampling-based reuse distance analysis
The statistical cache model of Berg et al. uses SPARC

hardware performance counters and watch-points to count
instructions and references and to monitor accesses to spec-
ified addresses in their single-thread implementation [4, 5,
6]. Similarly to the fast mode/analysis mode used here, their
system randomly selects a number of instructions and con-
figures a counter to interrupt after that many have executed.
It chooses the next reference as a sample and uses a hard-
ware watch-point to interrupt when it its address is reused;
then it uses the performance counters to determine the num-
ber of references that have passed. Note that this approach
measures time distance, rather than stack distance.

Zhong and Chang use sampling to reduce the overhead of
traditional reuse distance measurement [39]. They use a 2-
mode system where accesses that occur in a sampling period

are marked as “sampled” (meaning they are the start of a
reuse pair and will be measured) and accesses that appear in
the “hibernation period” are not. During sampling periods,
their method uses the well-known tree-based approximate
analysis [17]. During the hibernation period the tree is not
updated, but all references are checked and the count of
unique data during the period is tracked. Then the entire
period is added as one node in the tree. In addition, for
every access in both modes, the analyzer checks to see if the
address is marked as sampled, and if so, it uses the tree to
determine its reuse distance. This results in good accuracy
and a 5.7x speedup of the analysis over the non-sampled
version.

Beyls and D‘Hollander used a form of sampling in their
reuse distance visualization, turning the analyzer on for 20
million references and then off for 180 million references, re-
porting a slowdown of 15-25x [8]. However, no discussion is
given on the accuracy of this method or its impact on the
results or speed of execution. They later present the use
of reservoir sampling to speed up the measurement of time
distance for single-threaded programs [10]. It uses a target
number of samples and dynamically adds and discards sam-
ples in the pool to get desired statistical properties. The
analysis also tracks other program properties that are more
heavyweight than time distance, so the sampling allows most
references to only record time distance, while sampled ref-
erences do more. This approach takes advantage of the fact
that measuring time distance is simple; if it were used to
track stack distance, the reservoir sampling technique would
require running in analysis mode all the time.

8. CONCLUSIONS
This paper explores and validates the use of random

sampling and parallelization as techniques to accelerate
multicore-aware reuse distance analysis. Sampling acceler-
ates performance by allowing a fast-execution mode dur-
ing periods when no monitored references are active. Par-
allelization allows the analysis to simultaneously utilize as
many threads as the base application, adding synchroniza-
tion only at application synchronization points or when
actually recording a measurement. Additionally, the new
methods use measurement techniques that do not model
the details of the reuse distance stack, allowing even the
analyzed portions to proceed much faster than in full reuse
distance analysis.



The combination of these techniques allow multicore-
aware methods to achieve performance comparable to the
best single-thread reuse distance analysis tools while still
maintaining high fidelity to the reuse distance histograms
generated by full multicore reuse distance analysis. In addi-
tion, the analysis with parallelization and sampling is highly
accurate at identifying the most performance-critical PCs
in terms of their impact on cache miss count. These tech-
niques thus facilitate the use of multicore-aware reuse dis-
tance analysis for both performance modeling and targeted
optimization.
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APPENDIX
A. REUSE DISTANCE SAMPLING ACCU-

RACY
The accuracy of sampling can be determined by compar-

ing the the histogram produced by the sampled analysis
against the one produced by the full analysis. Each bucket
in the histogram counts the number of analyzed events that
produced a reuse distance outcome in a given range. As a
result, the histograms can be considered proportion statis-
tics, where ph represents the fraction of the n samples that
produce the outcome corresponding bucket h. According to
the central limit theorem of statistics, the observed sample
proportion for a large enough sample size is normally dis-
tributed around the actual population proportion πh with

variance πh(1−πh)
n

[29]. The confidence interval range for

the sample proportion is thus πh ± z
√

πh(1−πh)
n

, where the

area under the standard normal function curve between −z
and z is the desired confidence level (z ≈ 1.96 for 95% con-
fidence).

Different options exist to state with the desired confidence
level that the error in the histogram introduced by sampling
is within a certain bound:

• Limit the absolute error of the sample proportion re-
ported by each bucket h to some value ε. In this case,

ε = z
√

πh(1−πh)
n

, which sees its maximum value at

πh = 0.5. This implies that the number of samples n

must be at least z2

ε2
(0.5)2 ≈ 1

ε2
for 95% confidence. Since

these are absolute errors, they should be quite small to
avoid causing problems for small measurements; an e
value of 0.001 would thus require a million samples.

• Limit the relative error of the sample proportion reported
by each bucket to a given fraction of the population pro-
portion. Here, ε represents the relative error, with a

range limit of
z

√
πh(1−πh)

n
πh

= z
√

1−πh
nπh

. This implies that

the sample size n must be at least z2(1−πh)
ε2πh

Both the

error bound and the number of samples required reach
their maximum value at the smallest πh value of interest.
If we wish to track πh as low as 0.01% and maintain per-
bucket relative errors of no more than 10% with a 95%
confidence level, then n would be nearly 4 million, as sug-
gested by previous work on sampling for reference-count
reuse distance (not stack reuse distance) [10].

• Limit the total error across all the H histogram buckets.
This requires us to formulate the aggregate absolute er-
ror E across the buckets. This is maximized when each
bucket sees its maximum error:

E =

H∑
h=1

z

√
πh(1− πh)

n
=

z√
n

H∑
h=1

√
πh(1− πh)

This is clearly not a straight-forward summation; how-

ever, an upper bound is z√
n

H∑
h=1

√
πh. Using the

generalized-mean inequality, followed by algebraic oper-
ations:

(
1

H

H∑
h=1

√
πh)2 ≤ 1

H

H∑
h=1

πh

H∑
h=1

√
πh ≤

√
H

√√√√ H∑
h=1

πh

Since all samples must be in some histogram bucket,
H∑
h=1

πh = 1. Thus, the aggregate absolute error limit

is z
√

H
n

, implying a sample requirement of at least z2H
E2 .

If our goal is to have at least 95% confidence that the
aggregate error across 200 histogram buckets is no more
than 10%, then we can make do with just 76,832 samples.
Although the paper uses this accuracy metric, most of
our tests have far fewer samples but still have about this
level of accuracy. This is because the actual error caused
by sampling is more likely to be close to 0 than to the
bound shown here, as it is typically normally distributed
for unbiased random sampling.

Note that the above only considers errors induced by sam-
pling, not by other deviations in the modeling (such as those
sometimes caused by parallelization in the shared stack mod-
els). The exact choice of accuracy metric clearly depends on
our application. If we are simply trying to approximate over-
all application-locality and cache performance, we can most
probably use the aggregate error metric. If we need to focus
on specific bucket entries, though, we will need to use one
of the single-bucket error metrics.


