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Abstract—This paper presents and validates methods to
extend reuse distance analysis of application locality charac-
teristics to shared-memory multicore platforms by accounting
for invalidation-based cache-coherence and inter-core cache
sharing. Existing reuse distance analysis methods track the
number of distinct addresses referenced between reuses of
the same address by a given thread, but do not model the
effects of data references by other threads. This paper shows
several methods to keep reuse stacks consistent so that they
account for invalidations and cache sharing, either as references
arise in a simulated execution or at synchronization points.
These methods are evaluated against a Simics-based coherent
cache simulator running several OpenMP and transaction-
based benchmarks. The results show that adding multicore-
awareness substantially improves the ability of reuse distance
analysis to model cache behavior, reducing the error in miss
ratio prediction (relative to cache simulation for a specific cache
size) by an average of 70% for per-core caches and an average
of 90% for shared caches.

I. INTRODUCTION

Reuse distance analysis (also called stack distance anal-
ysis) is a method for characterizing application memory
access behavior without being tied to a specific memory
hierarchy [1]. The reuse distance of a reference to element
x is the number of distinct data elements that have been
referenced since the last access of x (or ∞ if the element
has not been referenced before). The data elements can be
pages, cache lines, individual words, or even instructions,
yielding a generalized machine-independent measure of pro-
gram locality. Conceptually, this is implemented by tracking
the depth of the access in a stack, though more efficient
implementations also exist [2], [3], [4], [5], [6]. Forming a
cumulative histogram of reuse distances gives a prediction
of cache hit ratio; in particular, the hit ratio of a cache with
N one-word blocks organized in a single LRU set would
correspond to the fraction of references with reuse distance
less than N . A single run of reuse distance analysis can thus
predict the behavior of an application over a variety of cache
sizes, but does not account for real cache constraints like as-
sociativity, block size, or replacement policy details. Despite
those limitations, reuse distance analysis has been used and
validated for predicting cache performance (even for low-
associativity caches), modeling program locality, providing
cache hints during code generation, and for feeding models
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that restructure code and data to improve locality [7], [8],
[4], [9], [10], [11], [12], [13].

When considering multicore systems, however, existing
reuse distance analysis methods are insufficient, as their
abstract notion of access ordering by counting only makes
sense within a single reference stream. Considering events
within only a single reference stream ignores inter-core data
communication that may impact or even dominate parallel
program performance. These inter-core interactions depend
largely on the cache configuration, which may consist of
private caches or shared caches. Private caches are typi-
cally kept coherent using invalidations; shared caches can
allow fast inter-thread communication when more than one
core sharing the cache accesses the same block (inter-
core prefetching), and can also use cache capacity more
efficiently by reducing the number of replicated copies of
widely-read data. Reuse distances are supposed to represent
a measure of locality, with shorter distances being more
likely to hit and longer ones less likely. However, if one
thread has written to the same address between two reuses
of that address by another thread with a different cache,
an invalidation may take place and the access will miss
regardless of how short the reuse distance is. Similarly, if
a thread fetches an address into a shared cache, another
thread will see that access as a hit even if it has never
referenced that data before. Thus, reuse distance alone does
not consistently correspond to locality in multicore systems.

There is thus a fundamental tradeoff between completely
machine-independent metrics and those that include details
of the machine such as the organization of the memory
hierarchy. Machine independent metrics are advantageous in
that they require less information about machine parameters,
and data from a single run may be more broadly applicable,
but at the cost of some accuracy. Although reuse distance is
intended to be largely machine-independent, applying it to
multithreaded programs requires striking a balance: adding
enough machine awareness to accurately capture locality
characteristics but not so much as to diminish its simplicity
and broad applicability.

This paper enables reuse distance analysis for parallel
systems by modeling the cache sharing configuration of the
multicore processors used. Although the analysis methods
are independent of cache sizes, they do require an under-
standing of which (if any) cores share a cache. In practice,
real systems include private L1 caches even if they have a
shared L2 or L3; this paper only considers the configuration



of the outermost level of on-chip cache since that determines
off-chip bandwidth consumption and typically has the most
pronounced impact on performance [14]. Systems with per-
core caches use private reuse distance stacks, but must
guarantee that addresses are removed from the reuse distance
stack when they would be invalidated in a real system; a
reuse after an invalidation is just as “non-local” as a cold
miss, and is thus treated as such.

For systems with shared caches, the most important issue
is to make sure that accesses by one thread become promptly
available in cache for other threads to access. This is done
by using a shared reuse distance stack that sees all references
from all threads and measures reuse distances in terms of
total number of distinct addresses referenced by all threads
since the last reuse by any thread. This paper also considers
caches shared by a subset of the cores, such as pairwise-
shared caches in a quad-core processor (e.g., the Intel Core 2
Quad Processor [15]).

The experimental results show that adding multicore-
awareness to reuse distance analysis substantially improves
locality modeling when compared to various cache configu-
rations for a simulated quad-core system. When comparing
the predictions from reuse distance analysis against actual
cache simulation results for 1 MB, 2 MB, and 4 MB total
cache sizes split across 4 per-core caches, adding multicore-
awareness reduces the error in miss ratio prediction by an
average of 70% across 13 applications. This result arises
because the unaware method does not account for the fact
that a reuse will not take place if another thread has issued
an intervening write. Comparing against simulation results
for shared caches of the same total cache size, multicore-
awareness reduces the errors in predicted miss ratios by
an average of 83%. This result arises because the unaware
method does not account for the positive effects of inter-
thread reuse when considering limited cache sizes.

II. MULTICORE-AWARE REUSE DISTANCE MODELS

Reuse distance is a model of program locality, which
determines cache performance. Its fundamental limitation
with respect to multicore systems is that cache performance
for a given thread is affected by the actions of other threads.
Because these interactions can have a significant impact on
performance, they should not be ignored by models that
predict performance. Since intra-thread locality is still the
primary factor affecting cache performance, the basic model
of reuse distance is the same; however, it must be extended
to account for inter-thread interactions because behaviors
such as coherence and sharing are fundamental elements in
multicore systems. The modifications to the reuse distance
model depend on the cache configuration used in a multicore
system. Caches may be private to each processor core or
shared among two or more cores; each policy has a different
effect on reuse distance since it has a different impact on
coherence and sharing. On the other hand, issues such as
cache size or associativity do not have any additional impact
on multicore systems, so the existing reuse distance models
may remain independent of these constraints.

Modeling private caches. When caches are private to
each processor core in a shared-memory system, a coherence
protocol is employed to prevent caches from containing stale
data. Most coherence protocols are write-invalidate, in which
a write to a cache block in one cache invalidates copies of
that block in other caches. If a subsequent reference is made
to the overwritten block, it will miss in the cache no matter
how recently the core accessed it. (This is called a coherence
miss.)

Per-core caches with invalidation-based coherence can be
modeled by using per-thread reuse distance stacks for which
a write to any address removes that address from all other
stacks which contain it, leaving it only in the stack belonging
to the thread which wrote it. Then a subsequent reference
to that address by some other thread will have infinite reuse
distance, as though it had never been seen before — just
like a cold miss. When a block is invalidated from a cache,
it leaves behind a free slot that can be re-used for the next
block of data that maps to that set. Blocks that have been
evicted will not go back into the cache, but the slot can be
filled without evicting any other blocks. In a fully-associative
cache, any block can be mapped to this slot. To model this
behavior, blocks that are overwritten are left in the stack
but marked as invalid, so an access deeper in the stack has
the same reuse distance as if the overwritten block were
still in the stack. When the deeper block is brought to the
top, the empty slot moves to the former depth of the deeper
block; this ensures that still deeper blocks do not reduce
their depth. If a new block is accessed, the topmost empty
slot is filled in. This overwriting process is referred to in
this paper as “invalidation”. It is not precisely equivalent
to invalidation in a real cache, because in a real cache,
only blocks still in the cache get invalidated. In the reuse
stack, invalidation affects all blocks which the thread has
ever referenced, resulting in more interaction between the
stacks than real caches would have. Invalidation is performed
on every write, as with real caches. However, Section IV-C
discusses the impact of variations in this timing.

False sharing is an additional concern in write-invalidate
protocols. It can be detected by extending the analysis such
that each stack entry includes information on which words
in the block have been accessed by which thread, allowing
differentiation between true and false sharing.

Modeling shared caches. When threads run on cores that
share a cache, the locality of each thread is affected by the
behavior of the others in several ways. First, one thread
accessing data will effectively prefetch that data for all others
with the same shared cache. Second, all threads sharing a
cache can use just one copy of a given widely-read data
element, thus reducing unnecessary replication and using the
cache capacity more efficiently. Third, different threads may
have different working set sizes and thus require different
partitions of total cache capacity, possibly freeing up space
for others, or taking space away from them.

Reuse distance can be measured across all references from
all threads; in this case the distance seen by one thread’s



references are affected by the data use patterns of the other
threads. This type of analysis can be enabled by directly
using a shared reuse stack.

Additionally, caches may have hierarchical sharing. For
example, a 4-core system could have 2 caches, each shared
by 2 cores, which use a coherence protocol between them
(e.g., the Intel Core 2 Quad Processor [15]). In this case,
any of the private techniques could be used across caches.

Definition of reuse distance. These modifications can
be summarized in a new definition of reuse distance. For a
multithreaded program, the reuse distance of a reference by
thread T to address x is
(a) ∞ if x has never been referenced before;
(b) ∞ if x has been overwritten by a thread which does not

share a cache with T since the last reference by a thread
which shares a cache with T ; or

(c) the number of distinct data accessed by threads which
share a cache with T since the last reference to x by a
thread which shares a cache with T .

III. EXPERIMENTAL METHODOLOGY

Simulation Platform. The reuse distance stack imple-
mentation is based on Sugumar and Abraham’s splay tree
code as distributed with SimpleScalar 4.0 [16], [6]. The
reuse distance stacks were implemented as a memory hier-
archy module in the Virtutech Simics full-system simulator,
which executes all code from the Linux kernel and system
daemons [17]. However, only userspace references from the
benchmark were fed to the stacks. In addition the stacks
were tied to the thread rather than the processor to eliminate
any effects of thread migration. Timing of the instructions
and memory references was not modeled; Simics’ default
timing model of one instruction per cycle was used for
most tests, with round-robin switching among processors on
each cycle. Some additional tests were also performed with
different switching frequencies to determine if the results
were sensitive to that particular assumption.

Workloads. This system is evaluated with thirteen bench-
marks: six from SPEC OMP2001, three from the OpenMP
implementation of the NAS Parallel Benchmarks version 3.3,
and four from the STAMP transactional memory bench-
mark suite [18], [19], [20]. They include 312.swim,
316.applu, 318.galgel, 320.equake, 324.apsi,
and 326.gafort from SPEC OMP; CG.W, FT.W, and
MG.W from NAS; and genome, intruder, kmeans,
and vacation from STAMP. All benchmarks were run
with 4 threads. The “test” data input was used for SPEC
benchmarks and the “W” input size for NAS benchmarks.
High-contention input parameters were used for kmeans
and vacation. For the OpenMP benchmarks under the
lazy and oracular invalidation models, the library itself
was modified to notify the simulator at the end of each
parallel region and thus allow the simulator to ignore the
implementation of barriers between parallel regions. For the
STAMP benchmarks, all transactions are implemented in
software using the TL2-x86 STM system distributed with
STAMP [21].

Validation against simulated caches. This study also
validates the accuracy of reuse distance as a predictor of
cache performance by comparing against Simics’ coherent
cache simulation module called g-cache. The caches op-
erated on the same reference stream as the reuse distance
stacks. The stacks were then used to predict hits and misses
at each reference for 3 specific cache sizes by comparing
the reuse distance for the reference with the size of the
simulated cache. The base tests use caches with single-word
(8 byte) lines and 8-way set associativity; as discussed in
Section II, some sensitivity tests also consider 64 byte cache
block sizes.

The cache simulations model configurations with private
per-thread caches with MSI coherence, with a single cache
shared among all 4 threads, and with a pair of caches, each of
which is shared by 2 threads, and which use MSI coherence
between them. The private cache experiments use 256KB,
512KB and 1MB sizes. The shared cache experiments use
1MB, 2MB, and 4MB sizes, so as to correspond to the same
total cache size used in the private cache tests. Similarly, the
pairwise shared cache tests used 512KB, 1MB, and 2MB
sizes.

IV. EXPERIMENTAL RESULTS

A. Private Cache Configurations
Reuse distance results. Figure 1 shows the cumulative

reuse distance function for each application using unaware
per-thread reuse distance analysis without considering mul-
ticore effects and using the multicore-aware reuse distance
analysis method discussed in Section II. The X axis rep-
resents a given reuse distance value x, while the Y axis
represents the percentage of application data accesses that
exhibit a reuse distance of x or less under each model. Be-
cause these applications are dominated by double-precision
floating-point accesses, addresses are considered at 64-bit
granularity. A particular (x, y) point on these curves thus
predicts a cache hit ratio y for a fully-associative LRU cache
of size x 64-bit words. The graphs in this section do not
include the 312.swim benchmark because both multicore-
unaware and multicore-aware analyses give nearly the same
results and see practically no error compared to simulated
caches. However, the benchmark is included in all tables and
averages.

In most cases, there is little discernible difference in
predicted hit ratio between unaware and multicore-aware
reuse distance measurement until the right end where reuse
distance is the longest, and the plots are zoomed to show
these differences. The fact that the differences primarily ap-
pear for large reuse distances stems from traditional working
set analysis. Reuse distance plots often have one or more
knees and plateaus, which correspond to different working
sets. These working sets can be seen clearly, for example,
in the equake benchmark. In data-parallel applications the
largest datasets would be the ones most commonly divided
among the cores in the system, so any differences between
traditional and multicore-aware reuse distance would be seen
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Figure 1. CDFs of reuse distance using private per-thread stacks. X axis is reuse distance in 64-bit words, Y axis is fraction of references
with reuse distance less than x.
at this end of the plot. In addition, with smaller caches and
lower overall hit ratios, capacity misses increase, causing
coherence misses to become a smaller fraction of overall
misses, mitigating their effects. The STAMP benchmarks
do not have the clean data distribution or the well-defined
(and often long) periods between synchronizations that the
OpenMP benchmarks do, and write more frequently to
actively shared data. Thus, a higher fraction of the misses are
coherence misses even at small cache sizes, causing unaware
and invalidating schemes to diverge in the plots even at small
reuse distances.

Impact on performance prediction. Comparing the
multicore-aware model to the unaware model shows that

for most applications, the multicore-aware cumulative reuse
level reaches a peak at least a few percent below that of the
unaware case. The multicore-aware version never reaches
100% reuse because coherence-related misses behave just
like cold misses, with an infinite reuse distance. When
seen on a plot as hit ratio variations of just a few or
even fractions of a percent, these differences may seem
insignificant. However the memory hierarchy is such an im-
portant factor in system performance because the difference
in stall time between a hit and a miss is so great. This is
especially significant when overall miss ratios are very low.
Consequently, the difference between a 98% hit ratio (2%
miss ratio) and a 99% hit ratio (1% miss ratio) leads to a



Benchmark Percent error
Private

Unaware Aware
316.applu 91.46 5.53
324.apsi 82.63 5.84
CG.W 2.6 0.63
320.equake 1.29 1.36
FT.W 5.2 5.2
326.gafort 99.89 0.37
318.galgel 79.68 4.45
genome 9.42 4.79
intruder 19.71 0.11
kmeans 45.58 0.69
312.swim 4.3E-04 1.7E-04
vacation 8.39 1.25
Average 37.15 2.52

Table I
PERCENT ERROR OF EACH REUSE DISTANCE METHOD

COMPARED TO SIMULATED CACHES.

performance impact far greater than 1%, and indeed often
closer to doubling.

Validating against simulated caches. Table I shows a
comparison of miss ratios predicted by the reuse distance
analysis schemes with miss ratios determined by simulated
caches using MSI coherence. Reuse distances for each thread
are used to predict the miss ratio for each of the cache
sizes on each of the threads, and then averaged together. The
predicted and simulated cache miss ratios for cache sizes of
256 KB, 512 KB, and 1 MB are compared, and the reported
prediction error for each application represents the average
error when modeling these three cache sizes.

The prediction error for the unaware non-invalidating
method varies from 1.29% for equake to more than 99%
for gafort, with an average of 37%. The accuracy of
Unaware correlates strongly with overall miss ratio, espe-
cially for the OpenMP benchmarks. For example, applu,
galgel, apsi, and gafort have miss ratios ranging
from 1.2-4.0% for the smallest cache size, and their error
for Unaware is greater than 79%. The remaining OpenMP
benchmarks have miss ratios ranging from 10-51%, with
error of less than 5.5%. The STAMP benchmarks fall in
between, with an average of 6.9% miss ratio and 21% error
for Unaware. In these cases where the overall number of
misses is small, the proportion of coherence misses, unac-
counted for by Unaware, is much higher and its accuracy is
reduced. In contrast, the multicore-aware method improves
accuracy dramatically, seeing less than 6% inaccuracy for
all benchmarks; the average reduction in error is 70%.

B. Shared Cache Configurations
Figure 2 shows the cumulative reuse distance function for

each application using a single shared reuse distance stack
(solid black line) and pairwise shared stacks that invalidate
each other using the eager method (dotted line). The unaware

Benchmark Percent error
Shared cache Pairwise shared

Unaware Aware Unaware Aware
316.applu 69.84 5.51 84.78 5.5
324.apsi 12477.1 0.22 68.25 6.57
CG.W 2.27 0.02 1.69 0.14
320.equake 4.03 0.25 2.67 1.24
FT.W 4.56 4.02 4.2 1.83
326.gafort 125.68 1.0E-05 99.8 0.51
318.galgel 511.7 41.08 60.55 4.12
genome 23.05 1.03 6.77 2.56
intruder 28.74 0.34 7.71 0.38
kmeans 0.97 1.4E-03 35.51 1.1
312.swim 0.19 1.1E-03 9.7E-02 5.1E-04
vacation 73.16 2.77 8.03 2.47
Average 1110.11 4.6 31.67 2.2

Table II
PERCENT ERROR OF EACH REUSE DISTANCE METHOD

COMPARED TO A SIMULATED SHARED OR PAIRWISE SHARED
CACHE CONFIGURATION

reuse distance with no invalidation or sharing is shown
for comparison. The lines are shifted for the unaware and
pairwise shared stacks such that the x value represents the
total cache size in all cases (4x the size of the unaware
caches and 2x the size of the pairwise caches).

When reuse distances are shortened by effects such as
inter-core prefetching or reduced replication, the shared plots
reflect higher fractions of accesses less than a given distance
(and thus a higher predicted hit ratio for a cache of that
size). For most benchmarks (especially the OpenMP bench-
marks), this corresponding distinction between unaware and
multicore-aware models is seen over a wider range of sizes
than with the private caches. Though not easily seen on all
plots, the line for the pairwise shared stacks dips below those
of the shared stacks in the upper right corner and flattens out
at a hit ratio less than 100% due to invalidations between
the shared caches.

Table II shows a comparison of miss ratios predicted
by the reuse distance analysis schemes with miss ratios
determined by simulated shared caches and pairwise-shared
caches. For the unaware method, the predictions are made
for individual caches of size 1/4 the size of the shared cache
or 1/2 the size of the pairwise-shared caches, so that the total
cache size is the same. Reuse distances for each thread are
used to predict the miss ratio for each of the cache sizes on
each of the threads (for the shared stack there is only one
stack for all threads), and then averaged together.

Focusing first on the single shared cache, there are two
main sources of error when attempting to model this with
independent unaware reuse stacks. The first is that they will
indicate capacity misses that will not be seen by a shared
stack; this is due to duplication of data reducing the effective
aggregate capacity, and to accesses by other cores that keep
shared blocks in the cache when they would have been
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Figure 2. CDFs of reuse distance using a single shared or pairwise shared stacks. X axis is reuse distance in 64-bit words, Y axis is
fraction of references with reuse distance less than x.
evicted from a private cache. The second is that accurately
modeling inter-core prefetching will also cause the shared
stacks to report fewer cold misses. These effects represent
benefits to using a shared-cache configuration.

Both of these effects are strongly intensified when the
working set is small compared to the total size of the shared
cache. This can be seen in the inaccuracy of the unaware
method on the apsi, galgel, applu, and gafort
benchmarks. All 4 have very low simulated miss ratios
(less than 0.13% in the smallest simulated cache size). The
particularly extreme numbers seen in apsi and galgel
are due to reductions in capacity misses; the working set
fits entirely into a 1MB cache, so the shared 1MB cache

correctly predicts the extremely low miss ratio, but individ-
ual caches of 256KB do not. Conversely, for applu and
gafort the errors are due mostly to a discrepancy in cold
misses; they too have very low miss ratios, so the difference
in cold misses is significant. For the rest of the benchmarks,
which do not have such small working sets, the breakdown
is more mixed, but slightly favors the impact of reduced
capacity misses.

Overall, the prediction accuracy for shared caches is
improved by 90% by using the multicore-aware method.
Even if the 4 benchmarks with extremely low miss ratios
are ignored, the improvement is substantial, averaging 87%.

The galgel benchmark has significant error even with



the shared stack; this benchmark had significant numbers
of conflict misses in the shared configuration that did not
appear in the private configuration.

Looking next at the pairwise-shared cache results, the
accuracy on most of the benchmarks is quite similar to
that of the private invalidating stacks. Those where errors
are higher tend to be those that also had higher error in
the shared-cache configuration. The overall effect of adding
multicore-awareness is a 83% improvement in modeling
accuracy (78% if not counting the benchmarks with low
miss ratios).

C. Sensitivity Analysis
Besides the basic tests described above, additional exper-

iments considered the sensitivity of our methods to number
of cycles between simulator context switches, cache block
size, and timing of invalidations.

The base tests switch between simulating all of the pro-
cessors in round-robin order on each instruction. Since this is
unlikely to accurately represent a real execution, additional
experiments were run with context switching every 100,
1000, 5000, and 10000 instructions. In all cases, all of
these switching times caused less than 3% difference in
accuracy for any of the reuse distance models tested: namely,
the multicore-unaware models continued to show large and
highly variable errors while the aware models had much
smaller and more bounded errors. Most tests saw less than
1% difference betweenthe various switching times.

In addition to interleaving of references, the timing of
the invalidations is also investigated. The multicore-aware
scheme presented so far mimics the behavior of a cache,
performing invalidations for each write reference as soon as
it occurs during simulation. Two alternative methods were
used: In lazy invalidation, each thread accesses its own reuse
stack as normal, but write references are also buffered. All
invalidations caused by writes in the buffer take place at
the next synchronization point. Oracular invalidation uses
future knowledge of the write references for the upcoming
parallel region and invalidates the addresses that will be
written before the region begins. These variants are valid
for the OpenMP benchmarks because OpenMP requires
the programs to be data-race-free (DRF); in particular this
means that any data invalidated from a processor’s will
must not be accessed again by that processor until the next
synchronization. For OpenMP this usually means the barrier
at the end of parallel regions. The lazy and oracular schemes
test the effect of invalidations freeing space in the cache to be
used by other data. Since the DRF property guarantees that
a thread will not reference an address in the same parallel
region in which it is invalidated, these addresses just take
up space until they are invalidated and removed. The lazy
invalidation scheme leaves them in the stack as long as
possible, which should increase the overall reuse distance
and thus represent a worst case. The oracular invalidation
scheme removes these addresses as soon as possible, thus
freeing up their space early and reducing overall reuse
distance; it represents a best case. Even with these relatively

extreme timing differences, the lazy and oracular cache
predictions fell within 4.5% of the simulated timing scheme.
These results, along with the simulator context switching
results, indicate that while it is important to add multicore-
awareness to reuse distance analysis, the precise timing of
references and invalidations is not as important for these
applications.

Although the base tests use single-word cache lines,
simulations were also run for all benchmarks under all
sharing configurations with 64-byte line sizes (to more
accurately reflect the designs of modern caches and to
detect false sharing), and with 4-byte line sizes for genome
and kmeans (the only benchmarks dominated by 4-byte
instead of 8-byte accesses). The results were very similar,
with average accuracy and improvement within 5% of the
numbers reported above.

V. RELATED WORK

Rather than extend reuse distance analysis directly, Ding
and Chilimbi present a model which computes a set of
statistics on data sharing and thread interleaving. Combined
with per-thread reuse distance analysis, it can predict mul-
tithreaded reuse signatures and cache performance [22].

Several works have used reuse distance analysis to model
locality in broader ways. For example, Marin and Mellor-
Crummey extend reuse distance analysis to identify the
source, destination, and scope of a data reuse pattern, provid-
ing a list of suggested transformations such as data-splitting
and loop fusion that can address misses generated in various
ways [11]. Ding and Zhong present a scheme to detect access
patterns based on approximate reuse analysis results [4].
Zhong et al. use those access patterns to predict cache
behavior for all possible data sizes using a limited number
of actual observations [13]. Shen et al. show that reuse-
distance in programs exhibits phase-dependent behavior and
that information-processing methods (such as wavelet trans-
formations) can be used to understand the time-frequency
characteristics of reuse [12]. Other efforts have focused on
per-instruction characterization of reuse distance [9], [10].
All of these analysis and transformation methods considered
the behavior of a single reference stream; the strategies
therein could be combined with the methods from this paper
to provide a better understanding of locality in multicore
programs.

Berg et al. present a statistical model of multiprocessor
caches with full associativity and random replacement [23].
That work models coherence misses probabilistically using a
definition of reuse distance that counts all intervening refer-
ences, whether distinct or not. In contrast, our work models
coherence misses directly, considers how synchronization
points may be used to propagate coherence information, and
performs reuse distance analysis using the more commonly-
studied metric of stack distance. These distinctions makes
their work well-suited for cache performance evaluation but
less so for application locality analysis.

Shi et al. present an analytical model of data replication
and a method to simulate multiple caches in a CMP in a



single pass [24]. Their method uses a list-based reuse stack
to model private and shared caches and to account for data
replication in the shared cache, but instead of calculating the
actual reuse distance for each access, it simply accumulates
the appropriate hit and miss counters for the various caches.
Therefore it is unsuitable for uses other than simulation.

Agarwal and Gupta study shared memory reference pat-
terns independent of a specific memory hierarchy by mark-
ing a reference as a ping if it accesses a block that was last
accessed by a different core and as a cling otherwise [25].
The number of clings between pings on a block indicates
how often that block remains associated with the same core
(processor locality), the number of references (distinct or
not) between clings at a given address represents temporal
locality, and successive references by the same core to
nearby addresses represent spatial locality. Their per-address
approach aims primarily to explore cache coherence alter-
natives, whereas this work aims to model how application
reuse characteristics interact with the memory hierarchy’s
sharing configuration to shape overall performance.

VI. CONCLUSIONS

Reuse distance analysis has previously proven to be a
valuable tool for cache modeling, application locality pre-
diction, and locality-aware code transformations [8], [4],
[9], [10], [11], [1], [12], [13]. This paper extends reuse
distance analysis to the multicore domain by exploring
methods to make the reuse stack account for inter-thread
interactions, such as invalidations for per-core caches or
inter-core prefetching for shared caches. The results show
that modeling these interactions can lead to reuse distance
analysis that is much more accurate in predicting application
locality characteristics. The net effect is to substantially
improve the robustness and applicability of reuse distance
analysis in the face of evolving multicore hardware.
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[2] G. Almási, C. Caşcaval, and D. A. Padua, “Calculating
stack distances efficiently,” SIGPLAN Not., vol. 38, no. 2
supplement, pp. 37–43, 2003.

[3] B. T. Bennett and V. J. Kruskal, “LRU stack processing,” IBM
Journal of Research and Development, vol. 19, pp. 353–357,
1975.

[4] C. Ding and Y. Zhong, “Predicting whole-program locality
through reuse distance analysis,” in PLDI ’03: Proceedings
of the ACM SIGPLAN 2003 conference on Programming
language design and implementation. New York, NY, USA:
ACM, 2003, pp. 245–257.

[5] F. Olken, “Efficient methods for calculating the success func-
tion of fixed space replacement policies,” Lawrence Berkeley
Laboratory, Tech. Rep. LBL-12370, 1981.

[6] R. A. Sugumar and S. G. Abraham, “Multi-configuration sim-
ulation algorithms for the evaluation of computer architecture
designs,” University of Michigan, Tech. Rep., 1993.

[7] K. Beyls and E. D’Hollander, “Reuse distance as a metric
for cache behavior,” in IASTED conference on Parallel and
Distributed Computing and Systems 2001 (PDCS01), 2001,
pp. 617–662.

[8] K. Beyls and E. D‘Hollander, “Generating cache hints for im-
proved program efficiency,” Journal of Systems Architecture,
vol. 51, no. 4, pp. 223–250, 4 2005.
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