
Conservative vs. Optimistic Parallelization of Stateful Network
Intrusion Detection ∗

Derek L. Schuff, Yung Ryn Choe, and Vijay S. Pai
Purdue University

West Lafayette, IN 47907
{dschuff, yung, vpai}@purdue.edu

Abstract
This paper presents two approaches to parallelizing the Snort net-
work intrusion detection system (NIDS). One scheme parallelizes
NIDS processing conservatively across independent network flows,
while the other optimistically achieves intra-flow parallelism by ex-
ploiting the observation that certain intra-flow dependences are un-
common and may be ignored under certain circumstances. Both
schemes achieve average speedup over 2 on four cores, with an av-
erage throughput over 1 Gbps on 5 traces tested.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Parallel programming; C.2.0 [Computer-Communication
Networks]: Security and Protection

General Terms Performance, Security, Design

Keywords Snort, Parallelization

Background. Network intrusion detection systems (NIDSes) run
on a server at the edge of a LAN to identify and log Internet-based
attacks against a local network, such as attempts at buffer over-
runs, cross-site scripting, and denial-of-service. Unlike firewalls,
which work by shutting off external access to certain ports, NID-
Ses can monitor attacks on externally-exposed ports used for run-
ning network services. The most popular NIDS is the open-source
Snort, which identifies intrusion attempts by comparing every in-
bound and outbound packet against a ruleset [4]. Rules in the set
represent characteristics of known attacks, such as the protocol
type, port number, packet size, packet content (both strings and
regular expressions), and the position of the suspicious content.
Each new type of attack leads to new rules, with rulesets growing
rapidly. The most recently-released freely-available Snort rulesets
have over 4000 rules.

The processing required by a network intrusion detection sys-
tem such as Snort is quite high, since the system must decode the
data, inspect the data according to the ruleset, and log intrusions.
These requirements limit Snort to an average packet processing rate
of about 557 Mbps on a modern host machine (2.2 GHz Opteron
processor) — just over half of the Gigabit link-level bandwidth.
Consequently, it is not possible to deploy Snort directly at a high-
end network access point that requires a data rate of 1 Gbps or
more. To address this problem, various companies and researchers
have proposed solutions based on clustering [1, 3, 5]. Clustered

∗ This work is supported in part by the National Science Foundation under
Grant Nos. CCF-0532448 and CNS-0532452.

Copyright is held by the author/owner(s).

PPoPP’07 March 14–17, 2007, San Jose, California, USA.
ACM 978-1-59593-602-8/07/0003.

NIDS potentially allows high scalability, but requires the use of an
expensive load-balancing switch.

Contributions. This paper presents and evaluates methods to
parallelize Snort. Although an NIDS like Snort receives its input
packet-by-packet, an NIDS must aggregate distinct packets into
TCP streams to prevent an attacker from disguising malicious com-
munications by breaking the data up across several packets. Addi-
tionally, an NIDS must process later packets in a given commu-
nication based on its analysis of earlier packets. For example, if
a given sequence of characters represents a possible attack in the
body of an HTML document but may appear normally in an image,
the NIDS should not trigger an alert if an earlier packet indicated
that this data transfer was an image. Such constraints are incor-
porated into Snort as stream reassembly and flowbits, respectively.
All TCP data is reassembled into streams, and about 36% of rules
require flow tracking (90% of which relate to NetBIOS). Both of
these systems require packets to be processed in-order; the TCP re-
assembler should see the packets in the same order that they will be
seen by the destination host to mimic its TCP stack behavior, and
flowbits requires ordering because a packet which checks the flow-
bits state depends on all previous packets which may have set that
state. However, any ordering or data sharing between the process-
ing of separate packets only applies to packets in the same IP flow
(not only TCP streams, but also source/destination communication
pairs in other protocols). Although this paper specifically targets
Snort, the parallelization challenges and strategies discussed apply
to any intrusion detection system that uses TCP stream reassembly
to merge packets together for inspection or preserves other state
across different packets from the same flow.

The strategies studied in this paper take different approaches to
parallelizing the Snort NIDS: one conservative and one optimistic.
The conservative scheme, called the flow-concurrent paralleliza-
tion, exploits concurrency by parallelizing ruleset processing on
a flow-by-flow basis. All packets are initially received in the or-
der in which they appear on the network. The thread that receives
them inspects the IP headers to determine the flow to which the
packet belongs and then steers that packet to the appropriate pro-
cessing thread based on whether or not that flow has already been
assigned to a thread. Since each given flow is only processed by
one thread at any given time, the dependences required for proper
stream reassembly and flow tracking are maintained easily. This
scheme works well if there are enough independent flows, but pro-
vides no benefits if all packets are from the same flow. The latter
case is not a likely situation in a high-bandwidth edge NIDS, but
does represent a limitation of this scheme.

The alternative parallelization is an optimistic variant on flow
concurrency. This scheme starts with the basic flow-concurrent par-
allelization but then has the ability to dynamically reassign a flow
to a different thread even while earlier packets of the flow are still



0

0.5

1

1.5

2

2.5

3

3.5

LL1 LL2 LL3 DEF1 DEF2

Trace

S
p

ee
d

u
p

2 Threads 3 Threads 4 Threads

Figure 1. Parallel speedup for conservative parallelism

being processed, potentially exploiting parallelism even with just
one flow. This optimistic version relies on two key observations.
First, TCP stream reassembly will still take place even if a stream
is broken at some arbitrary point; reassembly is triggered by various
flush conditions, one of which is a timeout. It is also easy to force
additional flushes if needed for correctness. Consequently, any un-
processed earlier packets will still go through stream reassembly at
their thread even though later packets are being reassembled and
processed in another thread. Second, most packets do not match
rules that use flowbits tracking, so enforcing ordering across all
packets in a flow just to deal with a few problematic rules may be
too restrictive. To precisely deal with the rules that do use flowbits,
the optimistic system stalls processing in any packet that sets or
checks flowbits unless it is the oldest packet in its flow. This condi-
tion is checked by adding per-flow reorder buffers. This system is
optimistic in the sense that it reassigns threads under the assump-
tion that the actual use of flowbits is uncommon, but is still conser-
vative in maintaining correct ruleset processing without requiring
rollbacks and redundant processing.

Experimental Results. The parallel NIDS is tested using 3
packet traces from the 1998-1999 DARPA intrusion detection eval-
uation at MIT Lincoln Lab and 2 from the Defcon 9 Capture the
Flag contest [2, 7]. The Lincoln Lab traces (LL1–LL3) are sim-
ulations of large military networks. Because they were generated
specifically for IDS testing, (including anomaly-based detection
systems, which require realistic traffic models to be useful) the
traces have a good collection of ordinary-looking traffic content
and also contain attacks that were known at the time. The Defcon
traces (DEF1, DEF2) are logs from a contest in which hackers at-
tempt to attack and defend vulnerable systems. Consequently, these
traces contain a huge amount of attacks and anomalous traffic, rep-
resenting a sort of pathological case for intrusion detection sys-
tems. Both parallelizations use most of the same packet processing
code as the current Snort (version 2.6), with minor modifications
to make certain code segments re-entrant and well-synchronized
using Pthreads. The resulting NIDS is evaluated on a 1U rack-
mounted Sun Fire X4100 x86-64 Linux system with two dual-core
Opteron processors (four processor cores in total).

Figure 1 shows the performance speedup for the conservative
parallelization scheme, which achieves substantial speedups on
all 3 LL traces, achieving 73–83% of the theoretical ideal lin-
ear speedup for 2–4 threads and achieving 2.9–3.0 speedup at 4
threads. All 3 traces see processing rates in excess of 1 Gbps with 4
threads; two of the traces achieve this rate with 3. The peak process-
ing rate is 1.7 Gbps. The two factors that limit performance in these
cases are a small amount of imbalance (occasionally more than one

0

0.5

1

1.5

2

2.5

3

LL1 LL2 LL3 DEF1 DEF2

Trace

S
p

ee
d

u
p

2 Threads 3 Threads 4 Threads

Figure 2. Parallel speedup for optimistic parallelism

thread ran out of work at the same time) and synchronization and
data transfer overheads (primarily in the form of cache-to-cache
transfers between processors). In contrast, the Defcon traces have
poor speedup because of their unusual composition. One in particu-
lar (DEF2) has almost no flow concurrency; in fact, for much of the
trace there is only one active flow, so no flow-based parallelization
scheme can hope for any significant improvement. This makes it
a good candidate for improvement using the optimistic paralleliza-
tion strategy. Figure 2 shows the speedup for this method, which
indeed showed benefits over the conservative method; performance
improved by about 50% for 4 threads to achieve a factor of 2.2 par-
allel speedup and a peak traffic rate over 2 Gbps. Since the Lincoln
Lab traces already have good flow concurrency, optimistic flow re-
assignment provides no benefit for them; in fact, their performance
is degraded by 7–13% compared to the conservative method be-
cause of the overhead of maintaining the reorder buffers and the ex-
tra synchronization required, limiting speedup to 2.8 on four cores.

Summary. Both schemes see an average traffic rate of just
over 1 Gbps for the 5 traces, nearly doubling the performance
of the serial version with only a slight increase in hardware cost
and no increase in space. Either parallelization allows the benefits
of high-performance intrusion-detection without relying either on
higher clock frequencies (which are reaching a stage of diminishing
returns) or costly and space-consuming load balancers. Additional
detail can be found in the full paper [6].

References
[1] F5 Networks. Securing the Enterprise Perimeter – Using F5’s BIG-IP

System to Provide Comprehensive Application and Network Security.
White paper, Oct. 2004.

[2] J. W. Haines, R. P. Lippmann, D. J. Fried, E. Tran, S. Boswell,
and M. A. Zissman. 1999 DARPA Intrusion Detection System
Evaluation: Design and Procedures. Technical Report 1062, MIT
Lincoln Laboratory, 2001.

[3] Radware Inc. FireProof Security Activation. White paper, Sept. 2004.

[4] M. Roesch. Snort – Lightweight Intrusion Detection for Networks. In
Proceedings of the 13th USENIX Conference on System Administra-
tion, pages 229–238, 1999.

[5] L. Schaelicke, K. Wheeler, and C. Freeland. SPANIDS: A Scalable
Network Intrusion Detection Loadbalancer. In Proceedings of the 2nd
Conference on Computing Frontiers, pages 315–322, 2005.

[6] D. L. Schuff, Y. R. Choe, and V. S. Pai. Conservative vs. optimistic
parallelization of stateful network intrusion detection. Technical report,
Purdue University, 2007.

[7] Shmoo Group. Defcon 9 Capture the Flag Data, Sept. 2001.


