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Abstract

This paper develops and validates an analytical model
for evaluating various types of architectural alternatives for
shared-memory systems with processors that aggressively
exploit instruction-level parallelism. Compared to simu-
lation, the analytical model is many orders of magnitude
faster to solve, yielding highly accurate system performance
estimates in seconds.

The model input parameters characterize the ability of
an application to exploit instruction-level parallelism as
well as the interaction between the application and the
memory system architecture. A trace-driven simulation
methodology is developed that allows these parameters to
be generated over 100 times faster than with a detailed
execution-driven simulator.

Finally, this paper shows that the analytical model can
be used to gain insights into application performance and
to evaluate architectural design trade-offs.

1 Introduction

Shared memory multiprocessors are gaining wide popu-
larity as platforms for technical and commercial computing.
Computer architects have generally relied on simulation for
designing shared-memory systems. However, an architec-
tural simulator for shared-memory systems with processors
that aggressively exploit instruction-level parallelism (ILP)
requires several hours to simulate a few seconds of real ex-
ecution time with reasonable accuracy [6]. This severely
restricts the application and architectural design space that
can be explored.
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This paper takes an alternate, potentially complemen-
tary, approach. We develop and validate an analytic model
for evaluating architectural trade-offs for shared-memory
systems with ILP processors. The model validates ex-
tremely well against detailed execution-driven simulation
and produces each result in a few seconds. Thus, the model
can be a useful tool for culling the design space, and then
simulation can be used for further studies of the important
regions. In addition, the model input parameter values yield
insight into how particular applications (and current com-
piler technology) interact with the memory system.

One challenge in developing a high-fidelity analytical
model of a complex architecture is to create a tractable sys-
tem of equations that represents all of the system details that
have non-negligible impact on the predicted performance
measures. Another significant challenge is to create a model
that has a relatively small set of input parameters that are
easy to measure or estimate. A key question addressed in
this research is whether a highly accurate yet tractable sys-
tem of equations with fairly simple input parameters can be
created for complex parallel ILP-processor architectures.

We are aware of two previous analytical models of mul-
tiprocessors that have non-blocking caches [4, 27]. The
model by Albonesi and Koren [4] was not validated and
has at least two significant drawbacks: (1) the number of
memory reads that are issued before the next read blocks is
assumed to be fixed, whereas that number changes dynam-
ically for ILP processors, and (2) some of the fixed model
input parameters, such as the probability the write buffer
is full or the percent overlap between memory read latency
and computation, depend on the outputs the model is sup-
posed to compute. The model by Willick and Eager [27]
also assumes a fixed limit on the number of outstanding
memory requests (e.g., a hardware upper bound), and was
validated against a simulation that had statistical workload
assumptions similar to the analytical model. We extend the
Willick and Eager model in a number of significant ways,
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and we validate our model against detailed simulation of
applications on a modern architecture.

The key features of the model in this paper are:

� The ILP processor and its associated two-level cache
system are viewed as a black box that generates
requests to the memory system and intermittently
blocks after a dynamically changing number of re-
quests. Parameters that characterize this black box,
including the time between level two (L2) cache
misses, the distribution of the number of outstand-
ing requests before a processor blocks, and the ratio
of requests that are satisfied by the local vs. remote
memory, lead to insights into application behavior
(and current compiler technology) that are discussed
in Section 6.

� We iterate between two submodels. One submodel
computes the processor stall time due to load misses
that cannot be retired until the data returns from mem-
ory. The other submodel computes the stall time due
to the hardware constraint on the total number of out-
standing memory requests.

� In each submodel, the memory system is viewed as
a system of queues (e.g., the memory bus, DRAM
modules and associated directories, and network in-
terfaces) and delay centers (e.g., switches in the inter-
connection network). We create a set of intuitive cus-
tomized mean value analysis (CMVA) equations [26]
to obtain the estimates of processor stall time in each
submodel. The CMVA technique has proven to be
accurate in validation experiments for a number of
simpler architectural models [26, 5].

� We show that reasonable approximations of key input
parameters that characterize the application behavior
can be obtained from a high-level simulator, FastILP,
that runs two orders of magnitude faster than the de-
tailed simulation. Moreover, other input parameters
can also be obtained from very fast simulation or may
be varied within ranges that have been observed for
similar applications.

The analytic model estimates processor throughput
within 1-12% of the estimates from detailed simulation for
several complex applications and architectural configura-
tions. Although the input parameter values that character-
ize application behavior are obtained from simulation, the
model’s architectural parameters can be varied quickly and
easily using just the analytical model. We will illustrate the
use of the analytic model to cull the system design space in
Section 6.
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Figure 1. Parallel System Architecture

2 System Architecture

The architecture chosen for this study is a cache-
coherent, release consistent shared-memory multiprocessor
system where the processing nodes are connected by a mesh
interconnection network, as shown in Figure 1. The ar-
chitecture is modeled in RSIM [20], a detailed execution-
driven simulator for shared-memory multiprocessors with
ILP processors against which we validate our model. How-
ever, with fairly straightforward modifications, the model
can easily be applied to variations on this architecture (e.g.,
other cache coherence protocols, changes in the intercon-
nect or memory system organization, etc.)

The processor exploits ILP using features such as multi-
ple issue, out-of-order scheduling, non-blocking loads, and
speculative execution. Instructions are fetched into the in-
struction window, and they are issued to the functional units
when all of their dependences are satisfied. The instructions
are fetched into and retired from the window in program or-
der, but they may be issued to the functional units out of
program order. In particular, because the system is release
consistent, loads and stores can execute out of order.

To maintain precise interrupts, stores issue to the mem-
ory system only when they reach the top of the instruction
window. Release consistency allows a store to retire from
the instruction window even while it is not yet complete
(or even issued) in the memory system. Thus, stores do
not directly block the processor. Except for stores, an in-
struction can retire from the instruction window only after
it completes execution. An implication of this requirement
is that when a load reaches the top of the instruction win-
dow, retirement must stall if the value of the load has not
yet returned.

The L1 cache is write-through, multiported, and non-
blocking. The L2 cache is writeback, write-allocate, non-
blocking, and fully pipelined. The caches use miss status
holding registers (MSHRs) to track the status of all out-
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parameter description value�
number of nodes� memory modules per node 4�����
number of MSHRs 8�	��
������� �
NI send occupancy for request 8�	��
 ������� �
NI send occupancy for data 8� ��
���� � �
NI receive occupancy for request 8� ��
 ��� � �
NI receive occupancy for data 8�������! "
bus occupancy for request 4�������! #
bus occupancy for data 12�	$&%'$
memory/directory (DRAM) access 40�)(�*,+
L2 tag check 4��� �)- (�. �
per-word network switch occupancy 8

Table 1. System Architecture Parameters

standing misses [14]. Misses to the same cache line are
coalesced in the MSHRs; only one memory request is gen-
erated for such coalesced misses.

The memory and directory are interleaved. Directory ac-
cesses are overlapped with memory accesses. The bus is
split transaction. All traffic out of the node goes through
the send network interface (NI) via the bus, and all traf-
fic into the node comes from the receive NI via the bus.
The mesh interconnection network uses wormhole-routing.
Separate request and reply networks are used for deadlock
avoidance.

Cache coherence is maintained by a fairly standard three-
state (MSI) directory-based invalidation protocol. The pro-
tocol supports cache-to-cache transfers in the case of a re-
quest for data that is dirty in a remote cache. For deadlock
avoidance, writebacks use the reply network and do not gen-
erate acknowledgments. Consequently, they do not reserve
MSHRs or other cache resources.

3 Model Parameters

Table 1 defines the system architecture parameters, in-
cluding the values that are used in the baseline architecture
in Section 5. Occupancies are in units of CPU cycles.

In any modeling study, defining a good set of appli-
cation or workload parameters poses a significant chal-
lenge. Table 2 summarizes the application parameters that
were developed with the following goals: (1) able to cap-
ture the principal performance-determining characteristics
of the workload for the intended applications of the model,
(2) relatively few and simple to measure (making the model
practically useful), and (3) insensitive to changes in the ar-
chitectural parameters that will be varied to cull the system
design space.

The first five parameters in Table 2 characterize the abil-
ity of the processor to overlap multiple memory requests

while running a given compiled application (or set of appli-
cations). These parameters, referred to as ILP parameters,
are discussed in more detail below. The other parameters
in the table are standard parameters for models of architec-
tures based on directory coherence protocols [1]. Further
description of those parameters is omitted due to space con-
straints.

Note that the parameters are defined for homogeneous
applications; that is, each processor has the same value for
each parameter in the table, and memory requests are as-
sumed to be equally distributed across the relevant memory
modules (local or remote) due to interleaving and effective
data layout. There is a natural extension of these parameters
for non-homogeneous applications, but for simplicity in the
model exposition we use the given parameters and validate
against homogeneous applications in Section 5.

The parameter / is the average time between requests
generated by the processor to the (main) memory subsys-
tem, not including the time that the processor is stalled or is
spin-waiting on a synchronization event such as a lock re-
lease, flag, or barrier completion. We also measure the co-
efficient of variation of / , 02143 . / is well-defined for simple
processors that block on each load and store, whereas the
notion that a complex modern processor is stalled has sev-
eral possible definitions. For the robust parameter / that is
needed for the model, the processor is defined to be stalled
when it is completely stalled; that is, the functional units
are completely idle, no further instructions can be retired or
issued until data returns from memory, and all outstanding
cache requests are waiting for data from main memory. The
fraction of time a processor is completely stalled is one of
the performance metrics estimated by the analytic model.
The parameter / does not include this time.

The 5 �'6879. �;:4� " - (�% parameter is the fraction of write re-
quests that are synchronous; that is, they are generated by
a read-modify-write request or they coalesce with at least
one later read miss. The significance of this parameter will
be discussed in Section 5. Read misses that coalesce with
earlier read requests are completely invisible to the model
because they do not generate any memory system traffic
and they do not cause any new blocking behavior. Thus,
a parameter for the frequency of read-read coalescing is
not needed. Likewise for writes that coalesce with previ-
ous transactions.

The set of parameters 59<>= �@?BA
, measured for a num-

ber of MSHRs larger than the maximum value that will be
evaluated with the model, are the fractions of processor stall
periods that have

�
MSHRs occupied with read misses.

Note that if a read miss occurs for a line that has a prior write
miss outstanding, then the miss is counted as a read miss
when measuring

�
. Also note that misspeculated reads are

counted in
�

. The 59< parameters are unique to a system
with non-blocking loads.
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Parameter Description/ Average time between read, write, or upgrade requests to memory, not counting the time when
the processor is completely stalled or is spin-waiting on a synchronization event021 3 Coefficient of Variation of /5 �6879. �;:4� " - (�% Fraction of write requests that are generated by atomic read-modify-write instructions or that
coalesce with at least one later read5 < Fraction of processor stalls that find

�
MSHRs with outstanding read requests� ",%'*8# = � � " - (�% = � ���8+�"!*8#�% Probability that a memory request is a read, write, or upgrade� � �

Probability that a read or write request causes a writeback of a cache block����� �
Probability directory is local for a type � transaction; � =read, write, upgrade, writeback� < � �  6
Probability home memory can supply the data for a type � =
	 request;
� =read, write; 	 =local home, remote home��� �� � � �� 7 � ( : $ %$ � "!6
Probability that a request of type � to a remote home is forwarded to a cache at a third node;
� =read,write�
Average number of network switches traversed by a packet�
Average number of invalidates caused by a write or upgrade to a clean line

Table 2. Application Parameters

We have verified that the application input parameters
are relatively insensitive to changes in the architectural pa-
rameters that can be varied in the model (e.g., the number
of MSHRs, the speed of the bus and interconnection net-
work switches, main memory configuration, etc.). However/ , 59< , and 5 �'6879. �;:4� " - (�% are sensitive to various parameters
of the processor and cache subsystem, such as the instruc-
tion window size. This is a key motivation for investigating
fast parameter estimation methods, as discussed next.

3.1 Quickly Estimating Application Parameters

Application parameters other than / , 021 3 , 5;< , and the
part of 5 �'6879. �;:4� " - (�% that is due to writes coalescing with
later memory read requests, do not depend directly on ILP
features and can thus be measured using current fast simula-
tors for multiprocessors with simple single-issue processors
(e.g., [28]).

The remainder of this section provides an overview of
FastILP, a fast high-level simulator for quickly estimating
the ILP parameters / , 021 3 , 5;< , and 5 �6�79. �;:4� " - (�% . Since
FastILP does not need to measure the exact cycle count for
an execution, it can achieve very high performance by ab-
stracting both the ILP processor and the memory system,
and modeling only enough state to generate the required
ILP parameters. FastILP differs from conventional cycle
by cycle ILP-based multiprocessor simulators in three key
ways.

First, FastILP speeds up processor simulation using tech-
niques from DirectRSIM, a simulator designed for speed-
ing up accurate timing simulation of ILP-based multipro-
cessors [6]. Each instruction in FastILP sets the timestamp
of its destination register based on the completion time for
that instruction. For non-memory instructions, the comple-

tion time is determined by the timestamps of the source
registers of the instruction and the availability of the ap-
propriate functional unit. For memory instructions, the pro-
cessor keeps enough state information to simulate memory
disambiguation. The completion timestamp calculation for
a memory request is unique to FastILP, as described below.

Second, FastILP speeds up memory system simulation
by taking advantage of two observations: the ILP parame-
ters are not very sensitive to the exact latencies or configura-
tion of the memory system, and L2 cache misses have high
latencies that can be overlapped effectively only with other
memory misses [21]. Using these observations, FastILP
does not explicitly simulate any part of the memory system
beyond the cache hierarchy. FastILP divides simulated time
into distinct “eras,” which start when one or more mem-
ory replies unblock the processor and end when the proces-
sor blocks again waiting for a memory reply. No memory
replies return during an era. One or more replies return to-
gether at the beginning of each era, depending on whether
the processor has enough work to completely overlap the
time between incoming replies. For simplicity, in the exper-
iments in Section 5.2, we assume for a 64-element instruc-
tion window that memory responses return in the order that
the respective requests were generated, one at a time. For
a 128-element instruction window we assume that all mem-
ory requests outstanding at the end of an era return together
at the start of the next era (i.e., computation fully overlaps
the time between these responses in the real system).

The use of eras allows FastILP to compute timestamps
for load and store instructions, with each timestamp includ-
ing both the era in which the data returns, along with the
cycle within the era. The parameters / and 021 3 are calcu-
lated according to the points within each era at which misses
occur; 59< is measured by counting the read requests out-
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standing at the end of each era. In this fashion, FastILP
can process all instructions in-order, while still simulating
an out-of-order processor.

Third, FastILP further speeds up simulation time by us-
ing trace-driven (as opposed to execution-driven) simula-
tion and by simulating the trace of only one processor.
The use of trace-driven simulation is possible because pa-
rameters are estimated for homogeneous applications and
synchronization spin time is not measured in / . Further,
FastILP makes an approximation that mispredicted execu-
tion paths do not have a significant impact on the ILP pa-
rameters; this assumption is valid for the applications val-
idated in Section 5.2. FastILP assumes homogeneous ap-
plications, allowing it to use the trace of only a single pro-
cessor, where the trace provides information about memory
accesses known to be communication misses. As commu-
nication misses generally stem from application and data
set characteristics rather than processor microarchitecture
or system latencies, such traces can be quickly generated
by an appropriately instrumented fast simulator for multi-
processors with simple processors or by a multiprocessor
trace-generation utility.

Using the above optimizations, FastILP achieves two or-
ders of magnitude speedup over RSIM, and more than an
order of magnitude speedup over DirectRSIM.

4 The Analytic Model

The principal output measure computed by the model is
the system throughput, measured in instructions retired per
cycle (IPC). This throughput is computed as a function of
the input parameters that characterize the workload and the
memory architecture.

The baseline model defined in this section assumes that
the directory is implemented in DRAM and that the direc-
tory lookup is coupled with memory access, so a single
service time applies to the parallel memory and directory
lookup. Variations on this directory organization are mod-
eled in Section 6.

4.1 Model Overview

We use the term synchronous for read requests (and for
read-modify-write requests) because the data must return
before a load (or read-modify-write) instruction is retired
from the instruction window. Other requests (writes, up-
grades, writebacks, invalidates, and acknowledgments) are
asynchronous.

A key question in developing the analytic model is how
to compute throughput as a function of the dynamically
changing number of outstanding memory requests that can
be issued before the processor must stall waiting for data
to return from memory. We address this issue by iterating

between the following two submodels for each value of
�

,A � ��� � � �
:

� the synchronous blocking submodel (SB) that com-
putes the fraction of time the processor is stalled due
to load or read-modify-write instructions that cannot
be retired until the data returns from memory,

� the MSHR blocking submodel (MB) that computes
the additional fraction of time the processor is stalled
purely due to the MSHRs being full.

For
� � ��� �

, we compute throughput from a modi-
fied version of the MSHR-blocking submodel alone, as ex-
plained below. Once these throughputs are computed, we
compute the weighted sum of the throughputs, weighted by
the frequency of each throughput value that would be ob-
served for the number of MSHRs in the system. This fre-
quency can in turn be computed from the model input pa-
rameters, 59< . The remainder of this section gives the most
pertinent details of the two submodels as well as how slow-
down due to synchronization delays is computed; the full
set of equations for the submodels is given in [25].

Each of the two submodels (SB and MB) contains the
same set of customized MVA equations [26] to compute the
delay for a transaction in the memory subsystem (see Sec-
tion 4.2). In the SB submodel, the number of customers
per processor is equal to the maximum number of read re-
quests that can be issued before the processor blocks (i.e.,
one of the observed values of

�
). The processor (and its

associated cache subsystem) is a FCFS queue that initially
has mean service time equal to / . Note that this queue is
only idle when

�
memory read requests are outstanding;

otherwise it is generating memory requests at rate
A�� / . If

the request is a write miss, the customer is routed immedi-
ately back to the processor while simultaneously forking an
asynchronous memory write or upgrade transaction, using
the technique proposed by Heidelberger and Trivedi [10].

In the MB submodel, the number of customers per pro-
cessor is equal to the number of MSHRs,

� � �
. MSHRs

can be occupied by read, write, or upgrade requests; how-
ever, for architectures with non-blocking stores and in-order
retirement of loads and for

��� � � �
, all of the blocking

time when MSHRs contain both read and write requests is
accounted for in the SB submodel. In this case, the addi-
tional blocking time that needs to be computed by the MB
model is for the case that all MSHRs are occupied by write
or upgrade memory transactions (or writebacks, if they oc-
cupy MSHRs in the architecture of interest). The customers
in the MB model thus represent the behavior of write and
upgrade memory transactions. When read misses occur,
these customers are immediately routed back to the proces-
sor (since the processor cannot stall on read misses in this
submodel) while simultaneously forking a read transaction
to the memory system, again using the technique in [10].
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The mean time that each customer occupies the proces-
sor in the MB model is equal to / adjusted to reflect the frac-
tion of time that the processor is stalled due to load or read-
modify-write instructions that cannot be retired (computed
from the SB model). That is, / < � � 3����� , where

��� � de-
notes the fraction of time the processor is not stalled in the
SB model. Once the measures are computed from the MB
model, the SB model is solved again using / � � � 3��	 � .
The alternating solution of the submodels is repeated until
the estimated throughputs converge. This approach is simi-
lar to the method of complementary delays [9, 13].

The SB and MB submodels are each similar to Willick
and Eager’s model [27] except that: (1) transaction routing
is according to the cache coherence protocol, (2) the switch-
ing network is configured as a two-dimensional mesh and
the delay per switch is modeled as an average quantity mea-
sured directly in the system or by simulating over a number
of applications, (3) contention for the memory bus and net-
work interface is modeled, (4) the service time at the proces-
sor node is inflated to account for the stall time estimated by
the other submodel, and (5) we use an approximation to ac-
count for high measured coefficient of variation in / , 021 3 ,
which is discussed in Section 5.

For the case that
� � � ���

, all processor stalls can be
attributed to full MSHRs. In this case, we solve a modified
MB model in which there are

� � �
customers per processor

and these customers represent the behavior of read, write
and upgrade memory system transactions. For any of these
memory requests, the customer leaves the processor and
visits the appropriate memory system resources. (Write-
backs are forked asynchronously for the base architecture
in RSIM).

Once throughput is computed from the weighted aver-
age of the value at each

�
, synchronization effects are

accounted for as follows. If there are any locks that have
significant contention, a separate simple queueing model is
used to estimate mean delay for each lock, using (1) the
number of processors that compete for the lock, (2) a mea-
sured average number of instructions between accesses to
the lock, and (3) the average lock holding time (in num-
ber of instructions). Finally, the throughput slowdown due
to barriers [3] is computed from the average number of in-
structions and lock delays between each barrier (for load-
balanced barriers) or the number of such instructions and
lock delays for each processor participating in the barrier
(unbalanced barriers), in addition to the estimated time to
execute a perfectly load-balanced barrier on the given mem-
ory architecture. Calculation of throughput slowdown due
to pairwise synchronization is beyond the scope of this pa-
per.

4.2 Model Equations

As mentioned above, the SB and MB submodels use a
set of customized MVA (CMVA) equations to compute the
mean delay for customers at the processor, local and remote
memory buses, directories (and associated memory mod-
ules), and network interfaces. Fixed delays are assumed
for resources that have negligible contention (e.g., cache tag
checks) and for the approximate average delay at each net-
work switch (observed during measurement or simulation
of several applications). 
 The CMVA equations, explained
in detail in [25], are briefly outlined below.

The total average round-trip time in either submodel is
the sum of the customer’s mean residence time at each of
the resources that it visits. Thus, the average round-trip time
for customers in the SB submodel has the form:

� � � ��� ��" � .%'� � � "� � �687 . ��&
 � � (  � �6879. �7 %�( ��� "��
 � �6�79. ��&
 - 7  � �6�79. ������  � �'6879. �# - " : *�79# : $&%'$ �� =

where
� �6879. �� is the total average residence time for a read

transaction at a (set of) memory system resource(s) � , and
�

is the total fixed delay for a read request. A similar equation
holds for the average round-trip time for customers in the
MB submodel. Furthermore, system throughput, measured
in number of read transactions retired per unit time, is equal
to
� ����� � .
To illustrate the calculation of

� �6879. �� , we show how� �6879. ��&
 � � ( is computed, where
���������

denotes the queues that
are used to transmit a message into the switching network.� �6879. ��&
 � � ( is the sum over all such queues of the total mean de-
lay for each type of synchronous transaction that can visit
the queue as either a short (request, � ) or long (data,  ) mes-
sage:

� �6879. ��&
 � � ( �"! 6�# � �687 . ��&
 � � (%$ �'&%( $ � ),� �  � �687 . ��&
 � � (%$ �'&%( $ � ),� ��*
 # �,+ A * ! 6�# � �687 . ��&
 � � ( �.-%/����0-� ),� �  � �6879. ���
 � � ( �'-1/����0-� ),� � *

The
�2+ A

factor in the remote terms represents the
�3+�A

remote NIs for any particular processor’s transactions. The
memory transactions, 	 , are defined in Tables 4 and 5.

To compute
� �6�79. ��&
 � � ( $ �'&%( $ � )�� 4 , we multiply the average

number of visits that a synchronous type � message from
a type 	 transaction makes to the local NI, by the sum of the
average waiting and service times at the queue:

� �'6879. ��&
 � � (%$ �'&%( $ � ),� 4 �
5
Note that the model is validated in Section 5 against detailed simula-

tion of the contention at the network switches for each application, includ-
ing applications that were not used to estimate average switch delay.
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� 6 1
�6�79. ��&
 � � (%$ �'&1( $ � ),� 4 # � �&
 � � (%$ �'&%( $��� �&
 � � (� � *

The utilization of the local outgoing NI queue by type
� messages of a type 	 transaction is equal to the average
total number of visits for these messages (per round trip in
the SB model) times their service time (

� �&
 � � (� �
), divided

by the average round trip time of the transactions in the SB
model (

� � � ):

����&
 � � (%$ �'&�� ),� 4 � #�� )� * 1 ��&
�� $ �'&� )�� 4 �)�&
 � � (� �
Note that in the above equation, � denotes either the syn-

chronous (
�

) or the asynchronous ( 	 ) part of the type 	
transaction. This equation and the next two equations illus-
trate how the interference by the asynchronous transactions
is accounted for in the SB model.

The average waiting time at the outgoing local NI queue
due to traffic from remote nodes is equal to the sum over
all transaction types of the synchronous and asynchronous
traffic generated remotely that is seen at the queue:� "!%$ � (�%�&
 � � (%$ �'&%( $ � ! 6�# � "!%$ � (�%! 6 ��&
 � � (%$ �'&%( $  � "!%'$ � (�%! 6�
�&
 � � (%$ �'& *

The contribution to the waiting time at queue � of the local
NI by remote traffic of type 	 that is either synchronous or
asynchronous (depending on � ) is equal to the sum over all
message types � of the total number of remote customers
times the waiting time that their type 	 transactions (syn-
chronous or asynchronous) cause on local queue � . This
waiting time is equal to the time that a customer would wait
for those customers in the queue plus the time that the cus-
tomer would wait for the customer in service. The residual
life,

������ � 4� , assumes a deterministic service time at the NI.

� ",%$ � (�%! 6���&
 � � (%$ �'&%( $ � ! � # �3+�A * ���
# � � ��� ����� �.-%/����0-� ),� 4� + ����&
 � � ( �.-1/���� -'� ),� 4 * � �&
 � � (� �
 # ����&
�� �'-1/����0-� ),� 4 * # � ��� ������� 4� * �

5 Model Validations

In this section we present the results of validation exper-
iments that assess the accuracy of the analytic model and of
the FastILP parameter estimates. The validations were per-
formed against the RSIM execution-driven simulator [20].
Section 5.1 presents the applications used in the validations
and the model input parameters for those applications mea-
sured by RSIM. Section 5.2 compares the inputs generated
by FastILP to those obtained by RSIM, and Section 5.3
presents the results of the analytic model validations.

5.1 Applications Used in Model Validations

The validation experiments include the following ap-
plications: FFT, LU, and Radix from the SPLASH-2
suites [29], Water from the SPLASH suite [24], and Er-
lebacher from the Rice parallel compiler group [2].

�
We

also use versions of LU and of FFT (denoted by
��� �

) that
are optimized for ILP systems by applying loop interchange
to schedule read misses closer together, thus better overlap-
ping their latencies [21]. The optimization in FFTopt has
the side effect that all read requests overlapped at any given
time from a single processor go to the same memory bank.
This causes the effective number of memory modules per
node to be equal to one. Additionally, both versions of LU
are modified to achieve better load balance by using pair-
wise synchronization (implemented with flags) instead of
global barriers.

The RSIM-measured values of the first five model input
parameters for each of the applications, for various system
configurations (i.e., number of processors, n, and instruc-
tion window size, w), are shown in Table 3.

�
The input

sizes for FFT and Radix are greater than or equal to those
specified in the SPLASH/SPLASH2 distributions. The in-
put sizes for LU and Water are slightly smaller than recom-
mended due to the long time for running the RSIM sim-
ulations; however, the number of processors is appropri-
ately scaled down to ensure a reasonable speedup. The5 �687 . ��: � " - (�% parameter is omitted from the table since it
is very small except as noted below.

Tables 4 and 5 provide the RSIM-measured probabilities
of the various locations where read misses, write misses,
upgrades, and writebacks are serviced in the memory sys-
tem, for a system with a 64 entry window size. The stats are
nearly identical for the 128 entry window size configura-
tion. These probabilities are computed in a straightforward
way from the basic application memory request parameters
(see Table 2). Note that the probabilities (not including
writebacks) sum to one. Writebacks are additional asyn-
chronous transactions that are forked off from reads and
writes. Collectively, the input parameter values reflect a set
of applications with fairly diverse characteristics.�

We also attempted to validate the analytic model against MP3D, but
we discovered that MP3D has relatively minor but still significant non-
homogeneity in its memory access behavior, which led to approximately a
20% error in throughput predicted by the analytic model. Model modifi-
cations for non-homogeneous applications are straightforward but beyond
the scope of this paper. We therefore omit those results in the remainder of
this section.�

The baseline measures for the model input parameters used
the following processor/cache subsystem configuration: maximum
fetch/decode/retire rate = 4, instruction window size = 64, L1/L2 cache
size = 16KB/64KB (scaled based on application input sizes [29]), cache
line size = 64 bytes, L1/L2 associativity = 1/4, L1/L2 hit time = 1/13 cy-
cles, L1/L2 ports = 2/1. The measures with instruction window size of
128 entries also doubled the other processor resources (e.g., decode width)
compared to the baseline.
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app input size configuration � cVar( � )
� 5 � � � � ��� ��� ��� ��� ��	 
�����������

Erle 64x64x64 n16, w64 39.0 10.9 .65 .17 .09 .08 0 .01 0 0 0
n16, w128 26.9 5.0 .64 .11 .10 .10 .02 .01 .01 .01 .01

FFTopt 64K n16, w64 64.9 12.8 .42 .17 .03 .04 .35 0 0 0 0
n16, w128 37.6 11.8 .12 .28 .18 .03 .03 .03 .03 .03 .25

FFT 64K n16, w64 63.9 12.8 .53 .47 0 0 0 0 0 0 0
n16, w128 37.0 12.0 .12 .48 .39 0 0 0 0 0 0

LUopt 256x256 n8, w64 120.8 6.3 .12 .07 .06 .06 .06 .06 .06 .06 .45
LU 256x256 n8, w64 108.1 8.1 .51 .49 0 0 0 0 0 0 0

n8, w128 74.0 3.6 .10 .19 .70 .01 0 0 0 0 0
Radix 512K n8, w64 80.9 2.0 .99 .01 0 0 0 0 0 0 0
Water 343 n8, w64 593.2 2.5 .73 .25 .01 0 0 0 0 0 0

n8, w128 487.7 2.5 .49 .48 .01 .01 0 0 0 0 0

Table 3. Application Input Parameters

Reads Upgrades

local home remote home local remote
memory remote memory cache cache at

app config cache at home non-home

Erle n16 .49 0 .09 .04 .01 .23 .01
FFTopt n16 .30 0 .19 .04 0 .14 0
FFT n16 .30 0 .20 .04 0 .14 0
LUopt n8 .16 0 .47 .01 .02 .08 .25
LU n8 .16 0 .48 .01 .02 .08 .25
Radix n8 .29 .01 0 .01 0 .01 0
Water n8 .02 .12 .02 .11 .28 .11 .31

Table 4. Read and Upgrade Transactions

Writes Writebacks

local home remote home local remote
memory remote memory cache cache at

app config cache at home non-home

Erle n16 .13 0 0 0 0 .32 0
FFTopt n16 .32 0 0 0 0 .42 0
FFT n16 .32 0 0 0 0 .42 0
LUopt n8 0 0 .01 0 0 .08 .23
LU n8 0 0 0 0 0 .08 .23
Radix n8 .10 0 .58 0 0 .10 .57
Water n8 0 0 0 0 .03 0 0

Table 5. Write and Writeback Transactions

application config � ����� � 5 � � � � � � � � � � � � � 	 
�� � ������
% error

Erle n16, w64 42.1 10.7 .61 .18 .11 .08 0 .01 0 0 0 -1.1
n16, w128 23.2 9.6 .82 .02 0 .13 .02 0 0 .01 0 -0.5

FFTopt n16, w64 64.4 11.9 .42 .20 .03 .03 .33 0 0 0 0 0.7
n16, w128 31.2 12.6 .18 .43 .23 0 0 .08 0 0 .08 -6.2

FFT n16, w64 56.6 12.5 .50 .50 0 0 0 0 0 0 0 9.1
n16, w128 30.8 12.6 .14 .44 .43 0 0 0 0 0 0 -11.9

LUopt n8, w64 122.2 4.0 .12 .07 .06 .06 .06 .06 .06 .06 .47 -2.5
LU n8, w64 104.6 3.8 .53 .47 0 0 0 0 0 0 0 -0.1

n8, w128 78.6 3.4 .20 .06 .74 0 0 0 0 0 0 -8.6
Radix n8, w64 69.2 2.0 1.0 0 0 0 0 0 0 0 0 -6.8
Water n8, w64 418.8 3.1 .71 .26 .01 0 0 0 0 0 0 20.0

n8, w128 270.4 3.8 .05 .93 0 .01 0 0 0 0 0 59.5

Table 6. Accuracy of the FastILP Input Parameters

8



5.2 Accuracy of the FastILP Input Parameters

Table 6 gives the input parameters generated by FastILP
and the percentage error between the throughputs calculated
using these parameters versus the parameters generated by
RSIM. These results show that for all configurations stud-
ied and all applications except Water

�
, FastILP can gener-

ate parameters that lead to less than 12% error in throughput
relative to those generated by RSIM.

5.3 Accuracy of the Analytic Model

The experiments in which we compared the performance
predicted by the analytic model against the performance re-
ported by RSIM quickly revealed two additional behaviors
that needed to be captured in the model:

� Since the time between memory requests ( / ) has rel-
atively high variance (see Table 3), the standard ap-
proximate MVA equation estimates that a customer
arriving back to the processor waits, on average, a
fairly long time for the residual life of a customer that
is already in service.

�
However, since the average la-

tency for a memory transaction in the modeled sys-
tem is (in some cases, significantly) smaller than this
mean residual life, the customer arriving back to the
processor is not arriving at a random point in time rel-
ative to the service time at the processor. To produce
a more accurate estimate of processor residence time,
we approximate the residual life using an interpola-
tion [7] between / , which is the residual life when
the memory transaction takes zero time, and the MVA
residual life formula for a random arrival.

�

� Water (and MP3D) has a non-negligible value for5 �6�79. �;:4� " - (�% , the fraction of write requests that are
generated by read-modify-write instructions or that
coalesce with at least one later read miss. More de-
tailed measures show that nearly all of these are due
to read-modify-write instructions. Thus, the SB and
MB submodels must be adjusted so that, with prob-
ability 5 �'6879. �;:4� " - (�% , a write request itself visits the
memory system rather than forking a memory trans-
action in the SB submodel. Analogously, and with
the same probability, the write request forks a mem-
ory transaction in the MB submodel rather than con-
tributing directly to processor stall time.

�
FastILP underpredicts � for Water because rollbacks of misspeculated

loads, triggered by disambiguating stores, are not yet accurately modeled.�
The estimated mean residual life equals the second moment of service

time divided by ��� [17].�
Note that the standard formula for mean residual life is assumed at all

other queues in the model. Since the variance in service time at the bus,
memory modules, and other memory system resources is low, the standard
MVA approximation can be expected to perform well.

model RSIM %
benchmark config IPC IPC error
Erle n16, w64 1.38* 1.45 -4.8

n16, w128 1.95* 1.83 6.6
n16, w64, slbus 1.04* 1.08 -3.7
n16, w64, sldir 0.96* 0.94 2.1
n16, w64, 1GHz 1.03* 0.92 12.0

FFTopt n16, w64 1.60 1.58 1.2
n16, w128 2.42 2.29 5.7
n16, w64, 1GHz 1.16 1.07 8.4

FFT n16, w64 1.41 1.39 1.4
n16, w64, slbus 1.10 1.01 8.9
n16, w128 2.26 2.06 9.7

LUopt n8, w64 2.59* 2.41 7.4
LU n8, w64 1.90* 1.91 -0.5

n8, w64, slbus 1.62* 1.58 2.5
n8, w128 2.86* 2.93 -2.4

Radix n8, w64 1.75 1.64 6.7
n8, w64, sldir 1.41 1.43 -1.3

Water n8, w64 1.85 1.74 6.3
n8, w64, slbus 1.75 1.62 8.0
n8, w128 2.11 2.13 -0.9

Table 7. Model Accuracy for Homogeneous
Applications

Investigations of further discrepancies between the pre-
dicted throughputs for RSIM and the analytic model sug-
gested two useful modifications in the simulated system:
(1) more efficient layout of the data structures in Water
(and MP3D) to increase the uniformity of memory access
among the processors, and (2) a second bus queue was
added to the processor so that requests to the local direc-
tory are never blocked behind requests blocked on a full NI
buffer. The second modification ensures that system behav-
ior is more commensurate with the model (since the analytic
model does not include the blocking behavior of a single bus
queue).

After making the changes to the model and the simulated
system, we obtained the validation results shown in Table 7.
Configurations denoted by slbus and sldir indicate that the
occupancy of the bus (directory) is increased by a factor of
three, in order to produce additional contention to stress the
model. For the 1GHz configuration, the latencies for the L2
cache, main memory, and network are increased by a factor
of two, reflecting a faster processor.

The results show that the model estimates throughput
extremely well for the diverse set of applications, predict-
ing application throughputs that range from 0.88 to 2.93 in-
structions retired per cycle with under 10% relative error.
We believe that the model is a reasonably accurate represen-
tation of the system under study, although testing the model
on further applications and for more system configurations
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will also increase confidence in its fidelity.
The analytic throughput estimates for Erle, LU, and LU-

opt are marked with an asterisk because the estimates in-
clude the RSIM-measured pair-wise synchronization delay
(i.e., flag spinning time) in / , rather than explicitly calculat-
ing the synchronization delay in the model. Extending the
model to compute pairwise synchronization delay is beyond
the scope of the paper. The model does accurately compute
the effects of synchronization delay for locks and for the
global barriers in all of the applications.

Note that, strictly speaking, when the SB submodel is
computed for a given

� � �
, a particular processor for

which throughput is computed should have
�

customers
while other nodes should perhaps have a time-varying num-
ber of customers dictated by the 5 < parameters. However,
the simpler implementation of the SB model appears to be
adequate for the experiments reported in this paper. We will
explore this issue further in future work.

6 Applications of the Model

There are many possible applications of the model de-
veloped in this paper, ranging from gaining insight into ap-
plication behavior and current compiler technology to ex-
amining architectural design issues. Below we illustrate a
few of these applications.

6.1 Insights into Application Behavior

Insight into application behavior can be gained from
studying the transaction frequencies shown in tables 3, 4,
and 5. Looking at 5 < , we observe that the ILP-optimized
versions of LU and FFT (LUopt and FFTopt) have signifi-
cantly greater mass at higher values of

�
than the original

versions. In contrast, the 5 < values for Radix and Water
reveal considerably less ability to exploit ILP hardware to
overlap read memory requests. Erlebacher shows moder-
ate ability for overlap. These observations were also noted
in [21].

Regarding the estimated throughput (IPC) of the baseline
configuration (w64) for each application, it appears that per-
formance of Erlebacher and of each version of FFT is lim-
ited by frequent misses (low / ), whereas the performance
of each version of LU is limited by a high probability that
read misses must obtain the data from remote memory. The
throughput for Water is limited by a high fraction of read
misses that require a three hop transaction, and the perfor-
mance of Radix is limited by the lack of parallelism in the
memory system transactions ( 5 
 � A

). These observations
may suggest future improvements in application designs.

The model and application parameter values can be used
to guide the design of future systems and applications. For
example, high values of 021 3 indicate a high degree of

0.0 2.0 4.0 6.0 8.0
number of MSHRs

0.5

1.0

1.5

2.0

IP
C

writebacks not in MSHRs
writebacks in MSHRs

Radix (N=8)

Figure 2. Varying Number of MSHRs (
� � �

)

burstiness, suggesting that the system should provide good
buffering capabilities for various types of memory system
transactions. The model can also be used to determine
the degree to which throughput is slowed down by MSHR
blocking. As another example, poor performance and an
unusually high fraction of reads to remote memory suggests
that the data structures are not laid out efficiently; in fact, it
was this type of data that led to the discovery of the load
imbalances in Water and MP3D mentioned in Section 5.

6.2 Varying the Number and Content of MSHRs

Models are useful for predicting the effects of changes
in the system hardware configuration. As an example, we
evaluate the impact of changing the number of MSHRs in
the system, and the impact of modifying the system such
that writebacks occupy MSHRs. Figure 2 shows the impact
of varying

� � �
for Radix, both with and without including

writebacks in the MSHRs. Radix was chosen for this eval-
uation because it exhibits a significant percentage of time
(25%) stalled due to write and upgrade requests occupy-
ing all MSHRs and it has a high probability of writeback
(70%). The results show that performance does not drop
significantly until

� ���
is decreased below 4. The results

are qualitatively similar for LU (not shown), an application
which frequently uses all of its MSHRs for read requests.

If this is the case for most applications of interest, then
system designers could consider smaller sets of MSHRs to
reduce both cost and MSHR lookup latency. Similar re-
sults have been obtained by Farkas, et al. [8] and Pai, et
al. [21] using extensive simulation. Our analytic model (to-
gether with FastILP) is capable of obtaining the same results
quickly over a wide range of applications.

6.3 Alternative Directory Configurations

The memories and directories at each node in the shared
memory architecture may be coupled or decoupled. In the
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decoupled case, a transaction that requires just one of these
two resources does not occupy both.

0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0
Smem (in CPU cycles)

2.50

2.55

2.60

2.65

2.70

IP
C

baseline coupled
decoupled, SRAM dir
optimized coupled

LU (N=8)

Figure 3. Impact of Directory Configuration

Figure 3 shows the relative performance of the baseline
architecture with a coupled memory and directory against
two optimized configurations: (1) a decoupled node archi-
tecture with an SRAM directory (8-cycle occupancy), and
(2) a coupled directory/memory with a fast path to and from
the NI. The latter optimization allows remote transactions to
bypass the memory bus. (The SGI Origin 2000 effectively
provides such a fast path [16].) We easily adapted the model
to represent these different architectures.

The results are shown for LU, an application whose read
misses are primarily remote; results for FFT (not shown)
are qualitatively similar although requests in FFT are more
often local. As can be seen in the figure, the coupled ar-
chitecture with a fast path between the NI and the direc-
tory outperforms the other two architectures until memory
latency becomes prohibitive for coupled designs. The esti-
mated performance advantage, for LU or other applications,
can be traded off against cost considerations.

6.4 Programmable Coherence Controllers

Several recent commercial and research multiprocessor
systems [18, 15, 22] have employed programmable coher-
ence controllers to reduce design time and/or support mul-
tiple protocols. However, the flexibility and generality of a
programmable controller leads to slower coherence proto-
col execution, which in turn increases controller occupancy
and memory latency [11]. The extent to which this degrades
application performance has been the subject of several de-
tailed simulation studies [12, 23, 19]. The analytic model
can quickly assess the impact of higher controller occu-
pancy.

We evaluate the impact of programmable controllers by
modeling a decoupled node architecture with increased di-

0.0 50.0 100.0 150.0 200.0
network occupancy

1.0

1.2

1.4

1.6

1.8

2.0

IP
C

fft, baseline
fft, prog controller
water, baseline
water, prog controller

Figure 4. IPC vs Network Occupancy

rectory occupancy (i.e., 80 cycles). Figure 4 plots through-
put (IPC) versus network occupancy for two applications
(Water and FFT), for this architecture as well as for a cou-
pled node architecture with the baseline memory/directory
occupancy (i.e., 40 cycles). The results show that the perfor-
mance differential is only on the order of 2-7%, depending
on network occupancy, for the given applications.

7 Conclusions

This paper develops and validates a tractable analytic
model with a relatively simple and robust set of input pa-
rameters for evaluating various types of architectural alter-
natives for shared-memory systems with processors that ag-
gressively exploit instruction-level parallelism (ILP). The
analytical model was compared with detailed simulation for
a set of applications and system configurations that have
diverse values of the model input parameters. The model
yields estimates within 12% of the simulator estimates in
seconds, as compared with hours for each simulation result.
The study also shows that the analytical model can be used
to gain insights into application performance and to evalu-
ate architectural design trade-offs.

This paper also presents FastILP, a simulator for esti-
mating the key ILP input parameters of the model, two
orders of magnitude faster than possible with a detailed
execution-driven simulator. FastILP achieves this speedup
by being trace-driven and by abstracting out a large part of
the complexity of both the memory system and the proces-
sor. The input parameters generated by FastILP yield cal-
culated throughputs within 12% of those computed with in-
puts from a detailed execution-driven simulator for all con-
figurations of all but one application studied.

Ongoing research includes extending the model to han-
dle non-homogeneous applications, non-uniform memory
access behavior, and slowdowns due to other types of syn-
chronization such as the producer-consumer flags in LU.
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One of the key conclusions of our initial validation experi-
ments is that modeling non-homogeneity may be important
for more applications than previously thought. Even MP3D,
which appears on the surface to be a homogeneous appli-
cation, has some non-homogeneous behavior that must be
captured for the model to be highly accurate. We are also
applying the analytic model to new applications and archi-
tectural issues. Extending the capabilities of FastILP is also
an important topic for further research.
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