
Automatic Atomic Region Identification
in Shared Memory SPMD Programs ∗

Gautam Upadhyaya, Samuel P. Midkiff and Vijay S. Pai
Purdue University

{gupadhya, smidkiff, vpai}@purdue.edu

Abstract
This paper presents TransFinder, a compile-time tool that
automatically determines which statements of an unsynchro-
nized multithreaded program must be enclosed in atomic
regions to enforce conflict-serializability. Unlike previous
tools, TransFinder requires no programmer input (beyond
the program) and is more efficient in both time and space.

Our implementation shows that the generated atomic re-
gions range from being identical to, or smaller than, the
programmer-specified transactions in the three Java Grande
benchmarks considered, and in five of the eight STAMP
benchmarks considered, while still providing identical syn-
chronization semantics and results. The generated atomic
regions are between 5 and 38 lines larger in the three re-
maining STAMP benchmarks. In the most conservative case,
TransFinder can, based on the program structure, success-
fully identify and suggest an alternative that conforms ex-
actly to the programmer-specified atomic regions. By gener-
ating small, highly-targeted, conflict-serializable atomic re-
gions, TransFinder allows the programmer to focus further
tuning efforts on only a small portion of the code (when fur-
ther tuning is needed).

Categories and Subject Descriptors D.1.3 [Programming
Techniques]: Parallel programming

General Terms Algorithms, Performance, Design

Keywords Automatic transactional region identification,
conflict-serializability, parallel programming

1. Introduction
A major difficulty when programming shared memory par-
allel machines is identifying shared variables (whose stor-
age is accessed by many threads), and controlling the ac-
cess to those variables across the threads. When writing

∗This work is supported in part by the National Science Foundation under
Grant Nos. CCF-0532448, CNS-072212,and CNS-0751153.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
OOPSLA/SPLASH’10, October 17–21, 2010, Reno/Tahoe, Nevada, USA.
Copyright c© 2010 ACM 978-1-4503-0203-6/10/10. . . $10.00

a parallel program, the programmer must both determine
the shared variables and analyze the interactions among
them to determine when sequences of shared memory ac-
cesses must execute as a single atomic region, when they
may execute as a sequence of atomic regions, or when
some (or all) of them can execute outside of any atomic re-
gion. Once the programmer identifies the code’s atomic re-
gions, they may be enforced using either transactions [18–
20, 26, 33, 34], user-generated locks, or locks automatically
generated from user-identified atomic regions or transac-
tions [7, 14, 17, 21, 25, 35, 41].

All of these techniques require the programmer to un-
derstand the interactions between different threads and the
flow of data across threads. Errors in generating atomic sec-
tions and locks can lead to non-determinate bugs that are ex-
tremely difficult to correct. This paper describes the Trans-
Finder tool that attacks these fundamental problems head-
on. TransFinder assumes that programmers desire operations
on shared data within a thread to be performed without inter-
ference from other threads; that is, without the values of the
shared data being read or written by other threads while the
operations are performed. Using compiler analyses, some of
which are inspired by concepts from database theory, Trans-
Finder automatically identifies regions in Java programs that
need to be executed as atomic regions to enforce the seman-
tics implied by the above constraint. TransFinder produces
as output a C++ program with the atomic regions marked.
Unlike the only other known attempt at automatically identi-
fying atomic regions in programs [37, 38], TransFinder does
not require user annotations of the code. This makes Trans-
Finder easy to use. The close match of atomic regions iden-
tified by TransFinder, and hand-inserted atomic regions in
our benchmark programs indicates that the semantics Trans-
Finder ascribes to multithreaded programs are valid over the
benchmarks examined, and useful.

The primary goal of TransFinder is to suggest atomic re-
gions to a programmer, and allow the programmer to de-
termine the final scope of the atomic regions. It does this
by analyzing cycles of conflicting operations and encapsu-
lating those cycles in atomic regions. In most cases stud-
ied, however, the atomic regions specified by TransFinder
are close enough to hand generated atomic regions to be
used unchanged. For certain program control flow structures
— loops in particular — TransFinder can suggest alterna-
tive atomic regions in cases where the first choice suggested
by TransFinder is too conservative. In one additional bench-

mark, this alternative was close enough to hand-generated
code to be used unchanged. Moreover, it is always the case
that the atomic regions suggested by TransFinder allow the
programmer to focus on a small subset of the program (less
than 7% of the code in the benchmarks studied) to evaluate
the atomic regions. TransFinder is conservative in that the
atomic regions specified include all variable references that
might need to be in some atomic region.

We use programs from two benchmarks suites: we use
the three multithreaded full-scale applications from the Java
Grande Benchmarks [15] and the STAMP benchmarks [6].
All of these benchmarks are characterized by having a sin-
gle thread type, of which multiple instances simultaneously
execute. Following the example of [22] we refer to these as
SPMD (Single Program, Multiple Data) programs. Our anal-
ysis can be applied to programs with multiple thread types.

Finally, TransFinder does not check for code within trans-
actions that might lead to deadlocks or similar behaviors as
discussed in [39, 42].

This paper’s contributions are as follows:
• It describes the TransFinder system that automatically

detects atomic regions in shared memory SPMD pro-
grams;

• It describes the correctness criteria used by TransFinder,
and its relationship to conflict-serializability;

• It describes the analyses used by TransFinder to enforce
these correctness criteria;

• It provides experimental data showing how close Trans-
Finder comes to hand-generated atomic regions in the
three full-scale applications among the multithreaded
Java Grande benchmarks [15] and in the STAMP
benchmarks [6]. It does this by both comparing lines
of code contained within atomic regions, and by mea-
suring the performance of programs using hand-coded
and automatically-generated atomic regions. Experimen-
tal results are provided for executions using versions of
the programs where the atomic regions are enforced us-
ing software transactional memory.

• It discusses extensions of the TransFinder technique to
non-SPMD shared memory programs.

The rest of the paper is organized as follows. Section 2
provides an overview of our approach. Section 3 describes
the theoretical underpinnings of our approach and the analy-
ses we use. Section 4 describes the implementation of these
principles in our system. Section 5 describes our evaluation
using the STAMP and Java Grande benchmark suites. Sec-
tions 6 and 7 describe related work and conclusions. Ap-
pendix A contains a detailed example.

2. Overview
In this section we introduce, at a fairly high level, our ap-
proach to identifying atomic regions in shared memory pro-
grams. We introduce the concepts and some useful defini-
tions, leaving the more formal analysis for Section 3.

Our analysis is built on the notion of serializability. Se-
rializability is a universally recognized correctness criterion
that has its roots in database theory. To motivate the rest of
this paper, we briefly explain the necessary definitions here.

A fuller exploration of some of these topics can be found
in [13].

A trace of a program involving multiple transactions is
called a schedule. A schedule is said to be serial if statements
in an individual transaction execute one after the other, with
no interference from any statements in other transactions. A
schedule is serializable if it is equivalent to a serial schedule
(the resultant database state is the same as that of some serial
schedule). Operations in different transactions are said to
conflict if they access the same memory location(s), and at
least one of the operations is a write.

Broadly speaking, there are two widely-used defini-
tions of serializability: view-serializability and conflict-
serializability. View-serializability matches the general def-
inition of serializability above. Conflict-serializability is a
conservative approximation to serializability that focuses on
the respective order of conflicting operations. In particular, a
schedule is conflict-serializable if the respective order of mu-
tually conflicting operations is the same as that of some se-
rial schedule (non-conflicting operations may be reordered).
We note that conflict-serializability is more restrictive than
serializability, in that any conflict-serializable schedule is
also serializable, but the converse does not necessarily hold.
In the rest of the paper, we will use the terms serializable and
conflict-serializable interchangeably.

For a schedule involving multiple transactions to be
conflict-serializable, therefore, only non-conflicting opera-
tions may be interleaved (here we consider an operation in
its entirety, and do not break it down into its constituent reads
and writes). This leads to the following insight:

If two transactions have multiple operations on a
given (shared) memory location, and if these oper-
ations mutually conflict, then all of the operations
within a given transaction which access that location
must be allowed to execute without the possibility of
an interleaving from statements in other transactions.

Intuitively, if such an interleaving were to be allowed
to exist (which ordered conflicting operations in a certain
manner), then it would also be possible for an alternate
interleaving to exist which ordered these operations in a
different manner. The end result would, by definition, not
be conflict-serializable. Adding synchronization constructs
eliminates the possibility of such an interleaving, and forces
a conflict-serializable schedule.

We note that conflict-serializability generally conforms to
a user’s definition of correctness: a sequence of operations
on shared storage within a thread generally should appear
to complete as if the sequence executed without interference
from other threads. Thus, shared variable state after such a
sequence should be the same as if there was no interference
from other threads.

When analyzing multithreaded shared memory programs,
the TransFinder compile-time tool initially considers each
possible runtime thread to correspond to a single, large trans-
action. In other words, the TransFinder tool assumes the
transaction is the entire thread. With these semantics, and
given our discussion so far, any interleavings of conflict-
ing operations can lead to non-conflict-serializable execution
runs. Clearly such interleavings may be avoided by forc-

Thread 1 Thread 2
x = 1 x = 2

y = x y = x

Thread 1 Thread 2
x = 1

x = 2
y = x

y = x

write xT1 � write xT2 � (read xT1 , write yT1)�
(read xT2 , write yT2)

(a) Program Fragment (b) Invalid Interleaving (c) Order of conflicting operations (Si � Sj

denotes Si executes before Sj)

Thread 1 Thread 2
begin atomic() begin atomic()

x = 1 x = 2
y = x y = x

end atomic() end atomic()

Thread 1 Thread 2
x = 1
y = x

x = 2
y = x

write xT1 � (read xT1 , write yT1)�
write xT2 � (read xT2 , write yT2)

(d) Synchronized Code (e) Serializable Schedule (f) Order of conflicting operations (Si � Sj

denotes Si executes before Sj)

Figure 1. Valid and invalid interleavings: x and y are variables shared by both threads.

ing the threads to execute sequentially. However, such an
arrangement would defeat the purpose of a multithreaded
program. In this work, our purpose is to protect against
only those interleavings which would lead to non-conflict-
serializable schedules. To do so, we first identify conflicting
operations, and then determine which interleavings of those
operations are disallowed. We then prevent the possibility
of such interleavings by synchronizing only the offending
blocks of code via atomic regions, and thus enforce conflict-
serializability.

Consider the example of Figure 1, where two threads at-
tempt to first write to a (shared) variable x, and then use the
value of x to update a different shared variable y. The in-
put to TransFinder consists of program source code with no
synchronization constructs. Executing such code could lead
to any and all interleavings, including those that may lead to
non-conflict-serializable schedules. Figure 1(b) shows one
such invalid interleaving of the statements in the program
fragment from Figure 1(a). The order of conflicting opera-
tions in the schedule is shown in Figure 1(c). Note that this
order is inconsistent with that of the serial schedule from
Figure 1(e), (shown in Figure 1(f)). In fact, the ordering
shown in Figure 1(c) is inconsistent with that of any se-
rial schedule. The invalid interleaving of Figure 1(b) can be
prohibited by enclosing the conflicting operations within an
atomic block, as shown in Figure 1(d). Doing so leads to
conflict-serializable schedules.

Intuitively, when the threads have finished executing the
program fragments shown, it might reasonably be expected
that the values assigned to x and y have been assigned in
a single thread. Enclosing the relevant operations in atomic
regions ensures this.

We now formalize the criteria we use for enclosing con-
flicting references within an atomic region.

DEFINITION 1. Two threads, Ti, Tj have a non-serializable
execution run if there exists some interleaving of the indi-
vidual memory operations of the two threads which is not
conflict-serializable.

Again, Figure 1(a) gives an example code fragment and
Figure 1(b) shows one possible invalid interleaving. The
interleaving is possible because of a lack of synchronization
on the two globally-scoped variables, x and y. Inserting
synchronization (Figure 1(d)) leads to a serializable schedule
(Figure 1(e)).

Conflict-serializability can be tested using a precedence
graph. A precedence graph of a schedule is a directed graph
with a node for each (completed) atomic region in the sched-
ule. An edge exists between two transactions, Xi and Xj

if an action of Xi precedes and conflicts with an action of
Xj . The following theorem illustrates the use of precedence
graphs to test the conflict-serializability of a schedule:

THEOREM 1. A schedule is conflict-serializable if, and only
if, its precedence graph is acyclic.

This theorem is a fundamental and well-known result [13].
Figure 2 shows the precedence graph for the schedule

shown in Figure 1(b). An edge exists from the node for
Thread 1 to the node for Thread 2 because the update of
the shared variable x occurs in Thread 1 before it occurs
in Thread 2. In addition, an edge exists from Thread 2 to
Thread 1 because the update of x by Thread 2 precedes and
conflicts with the read of x during the assignment to the
shared variable y by Thread 1. Therefore, a cycle exists, and
the schedule shown in Figure 1(b) is not conflict-serializable.

Thus, detection of non-serializable schedules is a matter
of cycle detection in the precedence graphs of shared mem-
ory parallel programs. Notice that the cycles in the graph
of Figure 2 could have been avoided by forcing one thread
to execute the relevant conflicting instructions in toto, with-
out any possibility of interference from the other thread.
Doing so forces a total ordering of the instructions in the
program fragment, and therefore disallows cycle formation.
Figure 1(d) shows correctly synchronized code (through the
use of an atomic region), and Figure 1(e) shows one possible
resultant schedule.

To summarize, we have the following observations:
• Cycles in a precedence graph of a schedule indicate a lack

of conflict-serializability.

X = 1

Y = X

X = 2

Y = X

Thread 1 Thread 2

Figure 2. The precedence graph of the schedule shown in
Figure 1(b). The cycle indicates a non-conflict-serializable
schedule.
• These cycles arise because conflicting operations in dif-

ferent threads may be interleaved with each other.
• Breaking these cycles (and therefore, ensuring conflict-

serializable execution runs) involves synchronizing code
to ensure that no such interleaving is possible.

In Section 3, we will demonstrate how to detect such
conflict cycles in multithreaded shared memory programs. In
addition, we will show how the cycle-detection process may
be optimized for a certain class of shared memory programs,
namely SPMD programs.

3. Serializability Analysis
This section defines the notion of conflict interleavings and
demonstrates their equivalence to cycles in the precedence
graph of a program. This section also shows how such con-
flict interleavings can be avoided through the proper ap-
plication of synchronization constructs, providing conflict-
serializability.

Our analysis makes the following assumptions: (a) that
the semantics of the program allow us to treat every thread
as a single transaction (as described in Section 2), and (b)
that every access to a shared memory location is atomic
(we enforce this assumption in our implementation). Sec-
tion 2 showed how conflict cycles indicate a lack of conflict-
serializability. Notice that enforcing the atomicity of the in-
dividual memory references does not protect against such
cycles, because such instruction-level atomicity enforcement
does not necessarily prevent interleavings of conflicting op-
erations among different threads. It is only when multiple
operations are synchronized that the edges in the precedence
graph are unidirectional. Accordingly, this work aims to de-
tect and protect against such illegal interleavings by enlarg-
ing the scope of atomic regions.

3.1 Conflict Interleavings and Serializability
We start with several key definitions:

DEFINITION 2. Two statements conflict if they access the
same (shared) memory location and at least one of the ac-
cesses is a write. The conflict relation Sx conflicts with Sy

is written: Sx ⇀↽ Sy .

Note that the conflict relation is symmetric, i.e if Sx ⇀↽ Sy

then Sy ⇀↽ Sx.

DEFINITION 3. A statement Sx may precede another state-
ment Sy if it is possible for Sx to execute before Sy in some
execution of the program. The precedence relationship Sx

may precede Sy is written: Sx � Sy . If the statements may
execute in parallel, then Sx � Sy and Sy � Sx and is writ-
ten Sx �� Sy .

DEFINITION 4. Two threads, Ti, Tj have an interleaving if
there exist statements Si,x, Si,z ∈ Ti and Sj,y ∈ Tj such
that Si,x � Si,z , Si,x � Sj,y and Sj,y � Si,z . The thread
interleaving relation is written: Ti ≺� Tj .

Given these definitions, we define a Conflict Interleaving
(CI) as follows:

DEFINITION 5. Threads T1, T2, . . . , TN have a Conflict In-
terleaving (CI) if the following condition holds:
• Let Si ≡ (Si,1, Si,2, . . . , Si,mi) be the set of state-

ments of each thread Ti, 1 ≤ i ≤ N , and let {Si,j �
Si,(j+1)}

j=(mi−1)
j=1 ∀Si. Then{
(S1,a � S2,b), (S1,a ⇀↽ S2,b),

(S2,c � S3,d), (S2,c ⇀↽ S3,d)|c ≥ b,

.

(SN,y � S1,z), (SN,y ⇀↽ S1,z)|z > a
}

The Conflict Interleaving relationship is written as:
T1 ≺⇀↽� T2 . . . ≺⇀↽� TN

Intuitively, threads have a conflict interleaving if there
exists some interleaving of the threads involving mutually
conflicting operations.

We next explore the role of conflict interleavings in de-
tecting non-conflict-serializable schedules. We then discuss
how to detect conflict interleavings in shared memory pro-
grams, with a special emphasis on SPMD programs — that
is, programs where all threads are of the same type. Finally,
we show how to insert atomic regions into SPMD programs
by eliminating conflict interleavings.

The following theorems illustrate how conflict interleav-
ings may be used to detect non-conflict-serializable execu-
tions.

THEOREM 2. In a shared memory program, any conflict in-
terleaving will result in a non-conflict-serializable execu-
tion.

Proof: Let the CI be between threads T1, T2 . . . TN , and
let Si ≡ (Si,1, Si,2, . . . , Si,mi) be the set of statements of
each thread Ti, where {Si,j � Si,(j+1)}

j=(mi−1)
j=1 ∀Si. Then,

from Definition 5, we have: (S1,a � S2,b), (S1,a ⇀↽ S2,b)
for some S1,a ∈ S1, S2,b ∈ S2. In the precedence graph
of the program, therefore, an edge exists from the ver-
tex corresponding to thread T1, to the vertex correspond-
ing to thread T2. Similarly, (S2,c � S3,d), (S2,c ⇀↽ S3,d) for
some S2,c ∈ S2 , S3,d ∈ S3, leading to an edge from
T2 to T3, and so on for all N threads. Finally, we have:
(SN,y � S1,z), (SN,y ⇀↽ S1,z), leading to an edge from TN

to T1, thus completing the cycle. From Theorem 1, therefore,
the schedule is non-serializable.

THEOREM 3. If an execution run is non-serializable then
there exists at least one conflict interleaving.

Proof: Let threads T1, T2, . . . , TN have a non-
serializable run, and let Si ≡ (Si,1, Si,2, . . . , Si,mi)
be the set of statements of each thread Ti, where
{Si,j � Si,(j+1)}

j=(mi−1)
j=1 ∀Si. Because the execu-

tion is non-serializable, there must exist a cycle in
the precedence graph of the program. Without loss
of generality, assume the path traced by the cycle is
[T1, T2, . . . , TN , T1] i.e., an edge exists from the vertex
corresponding to any thread Ti, to the vertex correspond-
ing to thread Ti+1. Furthermore, let there be statements
(S1,a, S1,z) ∈ S1, (S2,b, S2,c) ∈ S2, . . . , SN,y ∈ SN . Be-
cause an edge exists from T1 to T2, we have (S1,a � S2,b),
and because the only edges allowed in the precedence graph
are conflict edges, we have (S1,a ⇀↽ S2,b). Similarly, the
edge from T2 to T3 gives us: (S2,c � S3,d) , (S2,c ⇀↽ S3,d),
and so on for the other threads. And finally, the edge from
TN to T1 gives us: (SN,y � S1,z) , (SN,y ⇀↽ S1,z) (here we
assume, without loss of generality, that S1,a � S1,z). From
Definition 5, therefore, we have a conflict interleaving.

THEOREM 4. Threads, T1, T2, . . . , TN have a non-
serializable execution run if, and only if, there is a conflict
interleaving between them.

Proof: Follows from Theorems 2 and 3.

COROLLARY 1. Eliminating conflict interleavings in a
shared memory program will result in a conflict-serializable
execution.

Proof: Follows from Theorem 4.

3.2 Detecting Conflict Interleavings in general shared
memory programs

The previous section established the relationship between
cycles in the precedence graph of a program, and conflict in-
terleavings. The precedence graph is a runtime construct: it
depicts precedence orders between committed transactions.
As such, it is not directly usable in a static context because
it is impossible, in general to determine a priori in what
order the individual statements in a multithreaded program
will execute. TransFinder, on the other hand, is a tool that,
at compile-time, determines the synchronization constructs
necessary to achieve conflict-serializability. In order to al-
low TransFinder to achieve its goal, we require a construct
to statically represent the various possible (runtime) inter-
leavings in the program. This section introduces the Conflict
Graph, which is just such a construct.

We begin by stating some useful definitions:

DEFINITION 6. A Concurrent Shared Basic Block (CSBB)
is a basic block with the added constraint that there is at
most one occurrence, within the block, of a variable that
references shared memory locations.

We note that the shared variable within a CSBB may, over
time, reference different memory locations.

We define conflicting CSBBs as follows:

DEFINITION 7. Two Concurrent Shared Basic Blocks con-
flict if they contain statements that conflict with one an-
other. More precisely, let there be two CSBBs, Bi, Bj . Then
Bi ⇀↽ Bj if {∃Si ∈ Bi, Sj ∈ Bj |Si ⇀↽ Sj}. Moreover, a

class Thread
int []data
procedure Thread(int []d)

// Thread constructor
data = d

end procedure
procedure void run()

// run function for the thread
int x = d[0]
d[0] = 3
int y = d[1]
. . .

end procedure
end class
. . .
procedure main()

int []a = new int[10]
Thread T1 = new Thread(a), T2 = new Thread(a)
T1.run(); T2.run()

end procedure

Figure 3. A Typical SPMD program.

concurrent shared basic block Bi may precede another, Bj ,
if any statement in Bi may precede any statement in Bj , i.e.
Bi � Bj if {∃Si ∈ Bi, Sj ∈ Bj |Si � Sj}.

Note that we conservatively assume that if two CSBBs
may conflict then they do conflict.

We rely on the conflict graph (CG) to identify CIs in
multithreaded programs. The CG is closely related to the
Concurrent Control Flow Graph (CCFG) of Lee et al. [23].
A CG is defined as follows:

DEFINITION 8. A Conflict Graph (CG) is a directed graph
G = (V,E, Entry,Exit), where:

1. V is the set of vertices in G. Each vertex is a CSBB,
denoted B.

2. E = EF ∪ EC . EF is the set of control flow edges, in-
cluding transitive edges. EC is the set of conflict edges.
An undirected conflict edge exists between any two CS-
BBs that conflict. Only conflict edges may exist between
CSBBs in different threads.

3. Entry is the CSBB through which all control flow enters
the graph.

4. Exit is the CSBB through which all control flow leaves
the graph.

It is sometimes desirable to refer to the smallest subgraph
of a CG that contains a specific thread. We denote the sub-
graph of some CG that contains the nodes of thread Ti as
CG i.

Figure 3 gives an example of a typical SPMD program,
and Figure 4 shows the CG for the program of Figure 3. The
Thread Start and Thread Stop nodes indicate thread initial-
izations (one per outgoing edge) and destructions, respec-
tively. Thread run and Thread join are special nodes which
indicate where the thread starts and stops executing, respec-
tively. In what follows, we will assume the existence of the
Entry and Exit nodes and will generally omit mentioning
them. Figure 11 in the appendix contains a more detailed
example of a CG.

The CG can be analyzed to determine CIs by detecting
cycles involving control flow edges and inter-thread conflict
edges. In general, a conflict occurs because of multiple ac-
cesses to shared memory locations. These accesses are either

Entry

Exit

a = new int[10]
t1 = new Thread(a)
t2 = new Thread(a)

Thread
Start

Thread
Stop

T1

int x = d[0]

d[0] = 3

T1

T2

int x = d[0]

d[0] = 3

T2

Thread run

Thread join
Control flow
Conflict

int y = d[1]
...

int y = d[1]
...

Figure 4. The Conflict Graph of the SPMD program of
Figure 3.

read accesses or write accesses. We note that while individ-
ual CSBBs may contain a single access to any shared mem-
ory location, these accesses do not necessarily conflict with
the accesses from other CSBBs. To detect conflicts between
CSBBs, therefore, we must first detect the set of accesses to
shared memory locations. The read set of a CSBB Bi in the
conflict graph CG i for thread Ti is the set of shared memory
locations being read by the statements in Bi, and is denoted
Ri. Similarly, the write set, Wi, is the set of shared memory
locations being written by the statements in Bi. Two CSBBs,
Bi and Bj , conflict if any of the following conditions hold:
(a) Ri ∩ Wj 6= ∅, (b) Wi ∩ Rj 6= ∅ or (c) Wi ∩ Wj 6= ∅.
The read-write set of CSBB Bi is the set of shared memory
locations being read from or written to by the statements in
Bi, and is denoted RWi where RWi = Ri ∪Wi.

We are now ready to define a conflict cycle:

DEFINITION 9. Let Bi ≡ (Bi,1, Bi,2, . . . , Bi,mi) ∈ CGi

be the CSBBs of some thread Ti, and let {(Bi,j , Bi,(j+1)) ∈
EF }j=(mi−1)

j=1 ∀Bi. Then threads [T1, T2, . . . , TN] have a
conflict cycle if the following condition holds: there exists
a path [B1,a, B2,b, B2,c, B3,d, . . . , BN,y, B1,z] such that:{

(B1,a, B2,b) ∈ EC , B1,a �� B2,b

(B2,c, B3,d) ∈ EC |c ≥ b, B2,c �� B3,d,

.

(BN,y, B1,z) ∈ EC |z ≥ a,BN,y �� B1,z

}
Intuitively, a conflict cycle is a cycle in the CG involving

both control flow and conflict edges.

THEOREM 5. An inter-thread conflict cycle in a shared
memory program indicates a CI.

Proof: Let the inter-thread conflict cycle oc-
cur between threads [T1, T2, . . . , TN]. Let Bi ≡
(Bi,1, Bi,2, . . . , Bi,mi) ∈ CGi be the CSBBs of thread Ti,
and let {(Bi,j , Bi,(j+1)) ∈ EF }j=(mi−1)

j=1 ∀Bi. From Defini-
tion 9, we know that (B1,a, B2,b) ∈ EC , B1a

�� B2,b. But
(B1,a, B2,b) ∈ EC if B1,a ⇀↽ B2,b and, from Definition 3,
B1a �� B2,b if B1,a � B2,b and B1,a � B2,b. Similarly,
(B2,c, B3,d) ∈ EC if B2,c ⇀↽ B3,d, and B2,c �� B3,d

if B2,c � B3,d and B2,c � B3,d. Extending this to all N
threads gives us:

(B1,a � B2,b), (B1,a ⇀↽ B2,b),
(B2,c � B3,d), (B2,c ⇀↽ B3,d)|c ≥ b,

.

(BN,y � B1,z), (BN,y ⇀↽ B1,z)|z > a

which, from Definitions 5 and 7, is a conflict interleaving.

To detect conflict interleavings in multithreaded pro-
grams, then, we detect inter-thread conflict cycles in the con-
flict graph of the program.

3.3 Detecting Conflict Interleavings in SPMD
programs

In Section 3.2, we noted the equivalence of inter-thread con-
flict cycles with conflict interleavings. Detecting and remov-
ing conflict interleavings is therefore a matter of detecting
conflict cycles in the CG of the program. However, such cy-
cle detection can be resource-intensive (common techniques
for cycle detection are derived from Depth First Search
(DFS) algorithms, which have a worst case performance of
O(|V |+ |E|); for a large program with many conflicts, E →
V 2). It is possible to optimize this cycle detection process
for SPMD programs. This is done by projecting the effects
of every thread onto a single thread, and then identifying
the Strongly Connected Components of the resultant conflict
graph (the resulting time complexity is still O(|V | + |E|),
but the number of edges, |E|, is much smaller). To that end,
we first define a Projection Conflict Graph (PCG) and then
show how the PCG of an SPMD program enables conflict
interleaving detection.

DEFINITION 10. Two CSBBs, Bi, Bj ∈ CG are equivalent
(written Bi ≡ Bj) if they are isomorphic (contain the same
set of edges) and contain the same set of statements.

DEFINITION 11. Let Bx ∈ CGi and By ∈ CGj . If Bx ≡
By then the projection of By onto Bx is the vertex Bxy ∈
CGi, Bxy ≡ Bx, with RWxy = RWx ∪ RWy . More
precisely,

RWxy =
{

RWx ∪RWy if Bx ≡ By

RWx otherwise

Intuitively, the projection of By ∈ CGj onto Bx ∈ CGi

merges the read-write sets of the two nodes, but leaves CGi

structurally unchanged (i.e. Bxy ≡ Bx).
The projection of thread Tj onto thread Ti is the projec-

tion of the individual CSBBs of CGj onto CGi.

3.3.1 The Projection Conflict Graph (PCG)
DEFINITION 12. The Projection Conflict Graph, or PCG, of
an SPMD program with threads T1, T2 . . . , TN is the conflict
graph of any one thread, say T1, on which the conflict graphs
of the other N-1 threads have been projected.

Note that there can be only one PCG for any SPMD pro-
gram. To see why this is so, consider an SPMD program
with threads T1, T2 . . . , TN . Let the PCG for this program
be constructed by projecting every thread onto the CG of
thread T1. Call this graph PCG′. Note that, by definition,
PCG′ ≡ CG1. Construct another PCG by projecting the
conflict graphs of threads T1, T3 . . . TN onto the conflict
graph of thread T2 and call it PCG′′. Then PCG′′ ≡ CG2.
But, because this is an SPMD program, CG1 ≡ CG2 and
therefore PCG′ ≡ PCG′′. Thus, the resultant PCGs are
structurally equivalent. The equivalence of the read-write
sets may be demonstrated in a similar fashion.

We can use the PCG to detect conflict interleavings in the
program. The following theorems illustrate how inter-thread
conflict cycles in the CG have equivalent cycles in the PCG:

THEOREM 6. Every inter-thread conflict edge in the CG of
an SPMD program has an equivalent conflict edge in the
PCG for the program.

Proof: Let the inter-thread conflict edge occur between
nodes Bi ∈ CGi and Bj ∈ CGj (that is, (Bi, Bj) ∈ EC).
In other words, one or more of the following is true: (a)
Ri∩Wj 6= ∅, (b) Wi∩Rj 6= ∅ or (c) Wi∩Wj 6= ∅. Without
loss of generality, assume condition (a) above is true. Let
B′

i, B
′
j be the projections of Bi, Bj onto the PCG. Then, by

definition, Ri ⊆ R′i and Wj ⊆ W ′
j . Thus, if Ri ∩ Wj 6= ∅

then R′i ∩W ′
j 6= ∅, and therefore (B′

i, B
′
j) ∈ EC .

COROLLARY 2. Every inter-thread conflict cycle in the CG
of an SPMD program has an equivalent conflict cycle in the
PCG for the program.

Proof: An inter-thread conflict cycle consists of control
flow edges and inter-thread conflict edges. Control flow
edges are always present in the PCG (because the PCG is
structurally equivalent to the CGs of the threads). From
Theorem 6, every inter-thread conflict edge in the CG has an
equivalent conflict edge in the PCG. Therefore, every edge
in the inter-thread conflict cycle has an equivalent edge in
the PCG, and the cycle itself is in the PCG.

Figure 5(a) shows the projection conflict graph of the
conflict graph depicted in Figure 4. Here, thread T2 has been
projected onto thread T1. The read-write sets have also been
shown: an RTi indicates a read by thread Ti, while a WTi

indicates a write by thread Ti.

3.4 Inserting atomic regions into SPMD programs
So far we have focused on detecting conflict interleav-

ings (CIs). Once CIs are detected, the next step is to insert
atomic regions that will ensure that the CIs cannot lead to
non-conflict serializable executions. In what follows, we as-
sume that the Projection Conflict Graph (PCG) has been con-
structed.

Entry

Exit

a = new int[10]
T1 = new Thread(a)
T2 = new Thread(a)

Thread
Start

Thread
Stop

T1

int x = d[0]

d[0] = 3

T1

int y = d[1]
...

RT1 , RT2

WT1 , WT2

RT1 , RT2

Entry

Exit

a = new int[10]
T1 = new Thread(a)
T2 = new Thread(a)

Thread
Start

Thread
Stop

T1

int x = d[0]
d[0] = 3

T1

RT1 , RT2
WT1 , WT2

Thread run

Thread join
Control flow

Conflict

int y = d[1]
... RT1 , RT2

(a) Projection Conflict Graph:
Thread T2 projected onto T1

(b) SCC contraction of PCG

Figure 5. The Projection Conflict Graph and SCC Contrac-
tion of the SPMD program of Figure 3.

class Thread
. . .
procedure void run()

// run function for the thread
atomic region begin()
{

// Generated transactional region
int x = d[0]
d[0] = 3

}
atomic region end()
int y = d[1]
. . .

end procedure
end class

Figure 6. Program with Atomic Regions Added.

We will first consider programs without loops, i.e. with-
out back-edges. Later we discuss how to insert atomic re-
gions into SPMD programs with loops.

Corollary 1 states that eliminating conflict interleavings
will lead to a conflict-serializable execution run, while The-
orem 5 shows that an inter-thread conflict cycle indicates
a conflict interleaving. Corollary 2 states that every inter-
thread conflict cycle in the CG has an equivalent conflict
cycle in the PCG. Consider one such conflict cycle in the
PCG. The cycle consists of control flow edges and conflict
edges. Intuitively, the conflict cycle exists because two nodes
that are transitively reachable via control flow edges are also

connected via a (by definition, bidirectional) conflict edge.
Eliminating these conflict edges will then eliminate the con-
flict cycle, and will lead to a serializable execution run.

Note that because conflict edges are bidirectional, any
node in the conflict cycle is reachable from every other node
in the cycle, thus creating a Strongly Connected Component
(SCC). Therefore, to eliminate the conflict cycle, we contract
the SCC into a single node. The contraction is accomplished
by merging the individual nodes in the SCC, with the merged
node containing every statement contained in the individual
nodes. The merged node also inherits the read-write sets (and
therefore, the conflict edges to nodes not contained in the
SCC) of the constituent nodes. Figure 5(b) shows the SCC
contraction of the PCG from Figure 5(a).

The contracted nodes now constitute the final atomic
regions in the program. Protecting against mutual access
across these regions (e.g., through the use of lock sets or
transactional memory implementations) will now prevent all
interleavings which could result in a non-serializable sched-
ule. Figure 6 shows the the input program from Figure 3
annotated with the (automatically generated) atomic region
boundary markers.

3.5 Using semantic information in our analysis

Commutative Operations By definition any interleaving
involving commutative operations leaves the program in
the same state (and is therefore serializable), regardless of
whether the memory accesses performed by the operations
conflict. Note that this is true only if we treat the operation
in toto and do not decompose the operation into its compo-
nent reads and writes (an increment of a shared variable may
first read the value of that variable and then write the incre-
mented value back into the variable). TransFinder supports
commutative operations in three ways (i) it detects commu-
tative operations on shared memory locations, (ii) it treats
such operations in their entirety (by merging the CSBBs
which contain the component reads and writes comprising
the operation) and (iii) it ensures that no conflict cycles can
form as a result of conflict edges between any two commuta-
tive operations by deleting such edges. We currently only de-
tect a small class of commutative operations (namely, arith-
metic increments and decrements). This is sufficient for our
purposes but support for detecting a larger class of such op-
erations (using, e.g., the commutativity analysis of Rinard
and Diniz [29]) could be added to TransFinder’s analysis, if
necessary.

Loops Loops have control flow back-edges. Thus, each
loop is a strongly connected component. To avoid detect-
ing and contracting these components, therefore, we avoid
traversing control flow back-edges. In addition, the read-
write sets of the nodes within a loop may contain accesses to
shared arrays whose subscript functions do not cause loop-
carried dependences, and other arrays and scalars that lead
to loop-carried dependences. These references lead to two
kinds of conflict cycles: (a) cross-iteration (or loop-carried)
cycles, where the conflict arises from accesses to shared
scalars or array references that have loop-carried depen-
dences, and (b) intra-iteration cycles on array references in-
volved in no loop-carried dependences. SCC detection and

contraction resolves intra-iteration conflict cycles. Cross-
iteration conflict cycles remain after SCC contraction; in
such cases, the generated atomic region boundary markers
are hoisted out of the loop so that the entire loop is in an
atomic region. This is because the conflicts are loop-carried
and TransFinder conservatively assumes every iteration is a
part of the conflict cycle.

Conditional Branches Conflict cycles occur because
nodes that are transitively reachable via control flow edges
are also connected by a conflict edge. The case of conditional
branches, such as if or switch statements, must be handled
carefully. If the conditional branch is not contained within
a loop, or the branch condition is invariant in all enclosing
loops, then when a thread executes statements in one clause
of the conditional branch it will never execute statements in
the other clauses of that instance of the conditional branch
since if one branch of the instance is taken then the other is
not. Thus, in the compile-time representation of the program
(the PCG), no strongly connected component is allowed to
form across multiple clauses of such a conditional branch
statement, and an atomic region will either span the entire
branch (because a statement external to the branch conflicts
with a statement contained within the branch) or will be con-
fined to the statements within the individual clauses. When
the conditional branch is within one or more loops and the
branch condition is not loop invariant, a thread may execute
different clauses of the conditional branch in different itera-
tions of the loop. In this case statements in different clauses
of a conditional branch are transitively reachable from each
other along control flow edges. To handle this case, Trans-
Finder allows the traversal of control flow back-edges of
the loop when detecting SCCs whenever the compiler can-
not guarantee the thread will execute only one clause of the
branch within the loop. Traversing the back-edge ensures
that every statement in the loop is transitively reachable from
every other statement, and allows statements in the different
clauses of the conditional branch to be reachable from one
another.

4. Implementation
The ideas presented in Section 3 have been implemented
in TransFinder and evaluated. TransFinder is a source-to-
source compiler whose input is an SPMD shared memory
Java program and whose output is C++ code that has been
annotated with atomic regions inserted using the analyses
and optimizations of Section 3. We now describe the imple-
mentation of TransFinder.

We first describe, in Section 4.1, the escape analysis that
TransFinder uses to conservatively determine what variable
references in the program are to storage that is accessed in
more than one thread, and how the results of this analysis
are combined with the results of Section 3 to build a PCG.
We then describe situations that lead to TransFinder insert-
ing atomic regions that are different than the hand-coded re-
gions, and how TransFinder can help the programmer gen-
erate better atomic regions in these cases.

4.1 Escape analysis and detecting atomic regions
The TransFinder compiler uses the points-to analysis and
code of [35], which builds upon the SPARK analysis [24]

procedure GenCG(CFG)
input CFG: Control Flow Graph for the program
returns cg: Conflict Graph
cg = new CG()
curr = new CSBB(), prev = NULL
for each Node Ni ∈ CFG do

if Ni does not contain a shared memory access then
add all statements in Ni to curr

else
add curr to cg
if prev 6= NULL then

add program edge (prev, curr) to cg
end if
prev = curr, curr = new CSBB()

end if
end for
return cg

end procedure

procedure ConstructCG(CFG, L, T)
input CFG: Control Flow Graph for the program
input L: List of allocation sites
input T: List of Threads
returns cg: Conflict Graph
cg = GenCG(CFG)
for each ai ∈ L do

TW = list of CSBBs in CG writing to ai
TR = list of CSBBs in CG reading from ai
for each wi ∈ TW do

for each ri ∈ TR do
add conflict edge (wi, ri) to cg

end for
end for

end for
return cg

end procedure

procedure ConstructPCG(CG, L)
input CG: Conflict Graph for the program
input L: List of Threads
returns pcg: Projection Conflict Graph of the program
CG1 = CG of thread T1
for each Thread Ti ∈ L, 1 < i ≤ N do

CGi = CG of thread Ti
for each CSBB Ni ∈ CGi do

Project Ni onto CG1
end for

end for
return CG1

end procedure

procedure doSCC(PCG)
input PCG: Projection Conflict Graph of program
// Perform SCC detection and contraction
stack = new Stack()
root = root of PCG
SCC = tarjan(stack, root, 0)
for each List L ∈ SCC do

// Merge all nodes into a single node
// This node is now the SCC contraction

end for
end procedure

procedure TransFind(CFG, L, T)
input CFG: Control Flow Graph of the program
input L: List of allocation sites
input T: List of threads
cg = ConstructCG(CFG, L, T)
pcg = ConstructPCG(cg, L)
doSCC(pcg)

end procedure

Figure 7. Algorithm to identify atomic regions in code.

found in Soot [36]. The points-to analysis annotates allo-
cation sites with the various contexts where they are read
or written. The TransFinder compiler uses these read-write
sets to perform an escape analysis as follows: if multiple
threads have entries in the read-write sets of an allocation
site then that site is considered to have thread-escaped. After
the compiler has determined thread-escaping locations, the
Conflict Graph (CG) is constructed from the Control Flow
Graph (CFG) by using the thread-escape and read-write in-
formation obtained from the earlier phases to construct con-
flict edges between the various Concurrent Shared Basic
Blocks (CSBBs). The Projection Conflict Graph (PCG) is
then constructed and SCC detection and contraction proceed
as described in Section 3.4. We use a modification of Tar-
jan’s algorithm to detect SCCs. We modify the algorithm
by considering only those previously visited successors of
a given node which are connected to the node via a con-
flict edge. Figure 7 gives the complete algorithm for iden-
tifying an atomic region (the modified Tarjan’s algorithm is
not shown). In the interest of brevity, we omit the special
cases mentioned in Section 3.5 from the algorithms.

4.2 Program tuning and optimization
The goal of TransFinder is to facilitate the insertion of op-
timized atomic regions or locks by identifying sequences of
statements that must be protected against concurrent access
to ensure conflict-serializable execution runs. In this section

we discuss TransFinder’s utility when the identified regions
are different from those that a skilled programmer might
identify.

TransFinder’s atomic regions are smaller than manually
identified atomic regions In some programs TransFinder
identifies atomic regions that are too fine grained, leading to
too-large overheads from starting and committing the trans-
actions, or acquiring and releasing the locks used to enforce
the atomic region. In these situations, TransFinder assists
the programmer by focusing attention on the small percent-
age of program statements that likely should be protected by
atomic regions, allowing the programmer to incrementally
adjust and merge the suggested regions to create a correct
and efficient program.

TransFinder’s atomic regions are larger than manually
identified atomic regions TransFinder’s atomic regions
are sometimes larger than the hand-coded atomic regions,
particularly when memory accesses with inter-thread con-
flicts create loop carried dependences. In this case, Trans-
Finder will hoist the atomic region out of the loop and en-
close the entire loop in the atomic region, as described in
Section 3.5. The atomic regions can be overly conservative
for three reasons. First, the alias, escape and dependence
analysis used by TransFinder are, like all such analyses, con-
servative, and thus the loop-carried dependence may not ac-
tually exist. Second, the semantics of the computation real-
ized by the program may allow (or require) the accesses of

transaction begin()
{

for i = 1 to numOps do
op = opType[i]
if op == A then

// Perform op “A”
else

// Perform op “B”
end if

end for
}
transaction end()

for i = 1 to numOps do
op = opType[i]
if op == A then

transaction begin()
{

// Perform op “A”
}
transaction end()

else
transaction begin()
{

// Perform op “B”
}
transaction end()

end if
end for

(a) Atomic regions considering
back-edges

(b) Atomic regions ignoring back-
edges

Figure 8. Benchmark tuning example taken from the Vaca-
tion benchmark.

different iterations to be in different atomic regions. Third,
the computations performed by different iterations may be
commutative, but this commutativity may not be recognized
by TransFinder.

As a heuristic to give the programmer insights into the
behavior of the program, TransFinder first inserts atomic
regions into the entire program and presents the results to
the user. Next, TransFinder can optionally ignore the effects
of the loop back-edges, starting with the outermost loop,
then the outermost two loops, and so forth until all loops are
ignored. The programmer is then presented with the atomic
regions that result from each of these cases. By examining
the identified atomic regions the programmer can see the
effect that the different loops have on the atomic regions.
From these results, the programmer can either pick the set of
atomic regions that properly reflects the program semantics,
or can incrementally adjust the atomic regions using domain
specific semantic knowledge about the computation.

The Vacation benchmark in the STAMP benchmark
suite [6] exhibits this behavior. A succession of operations
on a database are simulated by a loop that picks, at random,
different operations on different data. Because the data in-
duces a loop-carried dependence, TransFinder initially gen-
erates an atomic section that encloses the entire loop, as
shown in Figure 8(a). By ignoring the back-edge for the
loop, the atomic regions in Figure 8(b) are produced, and
are exactly those present in the original, hand-transformed
code.

5. Experimental Evaluation
This section presents the experimental evaluation of Trans-
Finder, including the experimental methodology, quantita-
tive performance results, and detailed analysis.

5.1 Methodology
The strategies discussed in this paper are evaluated in two
ways: by comparing the similarity of the generated atomic
regions to hand-generated versions and by comparing the
performance of the programs using automatically-generated
atomic regions with respect to programs with hand-coded
atomic regions. We use the Stanford Transactional Applica-

tions for Multi-Processing (STAMP) benchmark suite and
the multithreaded version of the Java Grande benchmark
suite for our experiments [6, 15].

The STAMP suite is a set of benchmarks originally de-
signed to evaluate the efficacy of various transactional mem-
ory implementations. However, its use of atomic regions
provides an objective way to evaluate the ability of Trans-
Finder to identify atomic regions. The original STAMP
benchmarks are C programs synchronized with explicit
atomic regions. TransFinder, on the other hand, accepts as
input un-annotated Java code. Accordingly, we modify the
original STAMP benchmark programs by stripping out the
begin and end statements of the various atomic regions and
manually converting the code to Java, before feeding it to
TransFinder.

The STAMP benchmark suite consists of: (1) Genome,
a gene sequencing program; (2) Intruder, a network intru-
sion detection program; (3) Kmeans, a K-means clustering
program1; (4) Labyrinth, a maze routing program; (5) Va-
cation, a travel reservation program; (6) Bayes, a bayesian
network learning algorithm implementation2 (7) Yada, an
implementation of a Delauney mesh refinement algorithm
and (8) Ssca2, a program which implements Kernel 1 of the
Scalable Synthetic Compact Applications 2 (SSCA2) graph-
based benchmark [2].

The Java Grande benchmark suite is a collection of low-
level kernels and applications for scientific and numerical
computing. We use the suite’s three large-scale applica-
tions to test the applicability and performance of our sys-
tem on non-transactional programs. The three Java Grande
programs considered were: (1) Moldyn, a molecule dynam-
ics simulation; (2) Raytracer, a ray-tracing simulation and
(3) Montecarlo, a Monte Carlo simulation. The Moldyn and
Montecarlo codes do not use synchronized blocks, rely-
ing on a careful thread-local partitioning of data to ensure
conflict-serializability — we use these codes to determine if
TransFinder generates unnecessary atomic regions for large
codes. For Raytracer, we manually remove all synchronized
blocks and regions before inputting the code into Trans-
Finder, just as with the STAMP benchmarks.

Similarity of the TransFinder generated programs to the
original “Native” programs is measured in three ways. First,
we give the number of atomic regions that are present in
both forms of the program. Second, we give the total number
of lines contained within atomic regions in each program.
Third, we give the percentage of code, i.e. the percentage of
the lines of program code, within atomic regions. Only non-
comment lines of code are used in our measurements, and we
used the sclc line-counting tool [4] for measuring the non-
comment, source code size of the generated atomic regions
with respect to the original program. For the TransFinder
versions of the STAMP benchmarks, line number measure-
ments were conducted on the generated C++ code. For the
Java Grande benchmarks, we first analyzed the programs

1We converted the TL2 version of Kmeans to use double precision arithmetic
because of a bug in TL2 which caused spurious writes to successive float
array elements within tight loops.

2We use the CM DELAY contention manager for the TinySTM versions of
Bayes; the default contention manager caused an inordinate number of
conflicts in the TransFinder version of the benchmark.

Applications Program # static total lines in % of code in
Version atomic regions atomic regions atomic regions

Bayes Native 15 52 1.70
TransFinder 5 80 2.62

Genome Native 5 50 3.91
TransFinder 5 44 3.44

Intruder Native 3 8 0.63
TransFinder 2 13 1.02

Kmeans Native 3 14 2.26
TransFinder 4 12 1.94

Labyrinth Native 3 18 1.75
TransFinder 3 18 1.75

Ssca2 Native 3 21 0.61
TransFinder 5 18 0.53

Vacation-untuned Native 3 83 4.71
TransFinder 1 121 6.87

Vacation-tuned Native 3 83 4.71
TransFinder 3 83 4.71

Yada Native 6 11 0.69
TransFinder 6 9 0.57

Moldyn Native 0 0 0
TransFinder 0 0 0

Monte carlo Native 0 0 0
TransFinder 0 0 0

Raytracer Native 1 2 0.29
TransFinder 1 2 0.29

Table 1. Comparison of atomic regions generated by TransFinder to atomic regions in the original benchmarks.

with TransFinder and then manually mapped the indicated
atomic regions (if any) onto the original (Java) programs to
conduct line number measurements.

The performance tests in this paper use software trans-
actional memory (STM) as the concurrency control mech-
anism. We consider three such STM systems: the TL2 sys-
tem [11], the TinySTM system [16] and the SwissTM sys-
tem [12]. Each application that includes atomic regions is
evaluated with two different versions: a version that uses
the default atomic regions in the benchmarks (called “Na-
tive”) and a version that uses the atomic regions generated
by TransFinder (called “TransFinder”).

All experiments are performed on a Dell Poweredge 2950
server with two 1.8 GHz quad-core Intel Xeon E5320 pro-
cessors based on the Core 2 microarchitecture (8 cores to-
tal). This system has 16 GB of system RAM and 4 MB
L2 caches shared between pairs of processors. This sys-
tem runs Linux kernel 2.6.18 and GNU C library 2.3.6 with
the Native POSIX Threads Library in the Debian AMD64
distribution. All C/C++ programs were compiled using the
GNU gcc compiler at optimization level: -O3. We used
Java Grande Thread Version 1.0 and STAMP version 0.9.10
for the benchmarks. For the STM backends we used version
0.9.6 of the x86 port of TL2, version 0.9.9 of TinySTM and
version 2009-09-10 of SwissTM.

5.2 Analysis Running Times
Table 2 details the analysis times for the TransFinder tool for
the eight STAMP benchmarks considered. The TransFinder-
specific phase of the analysis took a negligible amount of

Applications Alias Analysis TransFinder-specific
Time (secs) Time (secs)

Bayes 23.2777 5.772
Genome 12.21067 1.36233
Intruder 11.676033 0.488667
Kmeans 10.421033 0.370667
Labyrinth 16.48837 2.86633
Ssca2 13.8843 8.734
Vacation-untuned 22.171 6.36667
Vacation-tuned 15.89603 7.15667
Yada 15.20433 1.85067

Table 2. Analysis times for the TransFinder tool

time for the three Java Grande programs and they are not
presented here. The first column gives the name of the appli-
cation. The second column depicts the average time taken by
the alias analyser to perform the points-to analysis of [35],
while the last column shows the average time taken to per-
form the phases of the analysis specific to TransFinder (in-
cluding the construction of the PCG and the SCC detection
and contraction phases). As can be seen, the TransFinder-
specific phase of the analysis incurs only a minimal over-
head, ranging from a minimum of 0.37 seconds (Kmeans) to
a maximum of 7.16 seconds (Vacation Tuned). In addition,
the loop elision technique described in Section 4.2 adds an
average overhead of less than 1 second.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 1 2 4 8

T
im

e
(s

ec
s)

Threads

(a) Genome

 2

 4

 6

 8

 10

 12

 14

 16

 18

 1 2 4 8

T
im

e
(s

ec
s)

Threads

(b) Intruder

 0

 10

 20

 30

 40

 50

 60

 70

 1 2 4 8

T
im

e
(s

ec
s)

Threads

(c) Kmeans

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5
 5.5

 1 2 4 8

T
im

e
(s

ec
s)

Threads

(d) Labyrinth

 0

 1

 2

 3

 4

 5

 6

 7

 1 2 4 8

T
im

e
(s

ec
s)

Threads

(e) Vacation Tuned

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5
 5.5

 1 2 4 8

T
im

e
(s

ec
s)

Threads

(f) Yada

 5

 10

 15

 20

 25

 30

 35

 40

 45

 1 2 4 8

T
im

e
(s

ec
s)

Threads

(g) SSCA2

 0

 5

 10

 15

 20

 25

 30

 35

 1 2 4 8

T
im

e
(s

ec
s)

Threads

(h) Bayes

Native-TL2
TransFinder-TL2
Native-TinySTM

TransFinder-TinySTM
Native-SwissTM

TransFinder-SwissTM

(i) Legend

Figure 9. STAMP benchmark performance and scalability results of the various STM backends.

5.3 Code Quality Results
Table 1 gives a measure of the effectiveness of TransFinder
in determining atomic regions. The first two columns give
the name and version of the program for which metrics are
provided in the other columns. The “Native” version is the
original benchmark, and the “TransFinder” version is the
benchmark transformed by TransFinder. The “# static atomic
regions” column presents the number of atomic regions in
the Native and TransFinder versions of the programs. The
“total lines in atomic regions” column presents the total
number of non-comment source lines of code in the atomic
regions for each of the versions of the benchmark programs,
while the “% of code in atomic regions” column expresses
this number as a percentage of the total (non-library) lines of
code in the respective programs.

The three applications at the bottom present results for
the three Java Grande benchmarks considered. All three are
in 100% agreement with the original atomic regions. Among

the STAMP benchmarks, Labyrinth shows the best result,
with the TransFinder version of the benchmark having the
same number of atomic regions as the Native version. In
addition, each of these regions has exactly the same code
in both versions. The TransFinder version of Intruder, on
the other hand, generates a smaller number of larger atomic
blocks than are present in the Native version of the bench-
mark. A closer inspection reveals that conservatism in the
thread-escape analysis leads to an over-estimation of the size
of the generated atomic regions. Genome, Kmeans, Yada
and Ssca2 are interesting cases: the generated atomic regions
are, on average, actually smaller than those in the original
STAMP benchmarks. In the case of Genome, an atomic re-
gion which should properly contain only a single hashmap
insertion within a loop has been hoisted out of the loop
by the benchmark designers, presumably to minimize trans-
action startup and shutdown times. This pattern recurs in
Ssca2, where three separate atomic blocks containing code

accessing disjoint memory locations have been agglomer-
ated into a single atomic block, and in Yada, where atomic
blocks containing accesses to two disjoint memory locations
have been agglomerated into a single block. In Kmeans,
the original benchmark encloses an entire inner loop within
an atomic region, even though the shared memory accesses
in different loop iterations are independent of each other.
TransFinder, on the other hand, recognizes the iterations as
independent and thus generates atomic regions only large
enough to enclose the shared memory accesses within a sin-
gle iteration. As in the other benchmarks, the atomic regions
in the original benchmark version seem to have been coded
to reduce the transaction startup and shutdown time.

In the two remaining STAMP benchmarks, Vacation and
Bayes, the number of atomic regions indicated by Trans-
Finder was less than the number of such regions in the
original programs. Of these, the least similar was Vacation,
where the TransFinder version of the benchmark agglomer-
ated three separate atomic regions into a single block (al-
though even in this case, the absolute difference in the size
of the atomic regions between the two versions of the bench-
mark is only 38 lines). Vacation, however, is amenable to the
tuning techniques detailed in Section 4.2. Accordingly, we
present two results for Vacation: a version which uses atomic
regions generated after the outermost loop has been elided
using the methodology described in Section 4.2 (called Va-
cation Tuned) and a version which uses the atomic regions
generated without the benchmark tuning (called Vacation
Untuned). As we can see, TransFinder can properly iden-
tify benchmark artifacts that preclude correct identification
of independent atomic regions, and can suggest alternatives
with a high degree of accuracy: the tuned version of the
benchmark is 100% conformant with the STAMP version.
The number of atomic blocks in the TransFinder version of
the Bayes benchmark is a third of the number present in the
original benchmark. A closer inspection of the code reveals
the cause: two switch statements (with common case expres-
sions) cause multiple conflicting statements to be transitively
reachable from each other. This causes the SCC contraction
phase to agglomerate 11 different atomic regions into a sin-
gle, large atomic block, and serves to illustrate a shortcom-
ing in this, and indeed, any static analysis, namely, an in-
ability to incorporate complex semantic information in the
decision making process. The user-synchronized code, on
the other hand, takes advantage of application-specific in-
formation to break up the large block of code into multiple,
(semantically) independent chunks.

The differences in the Native and TransFinder versions
are also shown by providing the percentage of each version
of the program that is contained in atomic blocks. The per-
centages and the absolute number of lines in atomic blocks
show that even when TransFinder’s code differs from the
hand-tuned code, both the absolute and relative amount of
code that needs to be examined by the programmer when
doing performance tuning of atomic regions is small.

5.4 Performance Results
Figure 9 presents experimental results showing the perfor-
mance and scalability of the eight STAMP benchmarks un-
der each of the implementations described above. We do not

show the Java Grande benchmarks because, as discussed in
Section 5.3, the TransFinder code and original code are both
identical.

In each case, the X axis represents the number of threads
while the Y axis shows the execution time, in seconds, on
the given platform. We note that numbers for “Vacation Un-
tuned” are not presented: as discussed in Section 4.2, the
presence of loop-carried dependences results in a single, se-
rialized block. Accordingly, the results for Vacation use the
loop elision technique of Section 4.2, as described above. In
six of the benchmarks (Genome, Intruder, Labyrinth, Vaca-
tion, Yada, and Ssca2), the performance of the TransFinder
versions that use TinySTM and SwissTM for concurrency
control closely track that of the respective Native versions.
This is to be expected, since the generated atomic regions
have a high degree of conformity to the default atomic re-
gions in the original STAMP benchmarks (the least accurate,
Intruder, generates an atomic region which is only 5 lines
larger than the original). In addition, the TransFinder-TL2
version of the benchmark performs similarly to the Native
version for Intruder, Labyrinth, Vacation and Yada. In the
case of Genome and Ssca2, however, the TransFinder-TL2
version does not scale past 4 threads. A detailed analysis of
Genome revealed high overheads for a transaction contain-
ing a single hashmap insertion call within a loop: in the origi-
nal version of the benchmark the transaction is hoisted out of
the loop, thus minimizing transaction startup and shutdown
times. Similarly, an analysis of Ssca2 revealed higher over-
heads due to the added number of transaction startups and
shutdowns in the TransFinder generated code as discussed in
Section 5.3. The TransFinder versions of the Kmeans bench-
mark did not scale well because of the added overheads of
the extra transaction begin and end function calls (the Trans-
Finder versions execute 32 pairs of these calls for each pair
executed by the Native versions).

We do not present TL2 results for Bayes here: both
the Native-TL2, and the TransFinder-TL2 versions of the
benchmark terminated with a segmentation fault. Figure 9(h)
shows the results of the other versions of the benchmarks.
In general, the TransFinder versions of the benchmark run
slower than the corresponding native versions. This is likely
due to the agglomeration of multiple atomic regions into a
single, large atomic block, as described in Section 5.3: an
analysis revealed a large number of conflicts within this re-
gion. It should be noted, however, that the TransFinder ver-
sions follow the same trend as the Native versions of the
benchmark.

Where there are differences in either code quality or per-
formance between the results of TransFinder and the origi-
nal benchmarks, these differences stem primarily from situ-
ations where benchmarks have been tuned for performance
by using atomic regions that are not the minimal set of state-
ments that must be protected against concurrent access. In
these situations, TransFinder enables the programmers’ tun-
ing efforts to be focused on only the small part of the pro-
gram that must be covered by atomic regions. The program-
mer can then use additional semantic knowledge about the
program to determine if those generated atomic regions can
be altered without compromising correctness. These ideas
form the basis of the TransFinder approach to generating

atomic regions: first automatically producing atomic regions
with conflict-serializability, and then allowing the program-
mer to focus code tuning efforts only on those regions that
appear to be bottlenecks.

6. Related Work
Vechev et al. have also attempted to analyze shared mem-
ory programs with a view to enforcing whole-program cor-
rectness criteria [37, 38]. In [37] the authors parameterize
(finite-state) programs through the use of an n-tuple char-
acterized by the values of the various shared variables, and
the program counters of the various threads participating in
the program. The authors then enumerate all possible pro-
gram states and attempt to successively remove states which
would cause an incorrect program condition, for some (user-
defined) correctness criterion. The authors extend this ap-
proach in [38] by allowing infinite-state programs (pro-
grams which may iterate indefinitely). This work may be
viewed as a program verification tool which verifies pro-
grams under a (user-supplied) correctness criterion and, if
necessary, modifies programs (by introducing atomicity con-
straints) to conform to the correctness conditions. The ap-
proach is similar to their previous work in that programs are
represented as a set of states, and invalid transitions between
these states (more properly, transitions which may lead to in-
valid interleavings) are eliminated. However, there are some
significant differences: the program states are parameterized
through the use of various abstractions (more precisely, they
use abstract representations to parameterize the shared vari-
able values in the state tuples). This allows them to ver-
ify infinite-state programs. Moreover, at every stage, when
faced with a possibly invalid program state, the algorithm
chooses to either (a) remove the underlying interleaving by
adding atomicity constraints to an (evolving) atomicity for-
mula or (b) re-verify the program under a new, more refined
abstract representation.

Our approach differs from these works in the follow-
ing, significant ways: (1) they use a user-supplied correct-
ness condition, whereas we rely on conflict-serializability as
our (fixed) consistency criterion and (2) they use an enu-
meration of program states, each characterized via the use
of an abstract representation, whereas we rely on cycles in
a Conflict Graph to determine violations of serializability.
Providing a user-supplied whole-program correctness con-
dition has the advantage of generality: their approach works
equally well whether analyzing the program with a view to-
wards enforcing serializability, or some other correctness
condition. However, the specific benefits to this approach
are, in our opinion, somewhat muted by the fact that the
onus of responsibility for providing the (sometimes convo-
luted) correctness criteria now falls on the end-users. Indeed,
[38] cites cases where these conditions were too “long and
tedious” to reproduce. Also, using a set of program states
allows them to exercise greater control over the granular-
ity of the various correctness criteria, but leads to a larger
search space of invalid interleavings (possibly exponential
in the number of shared variables and threads), whereas our
Projection Conflict Graph approach takes up no more space
than is required to express the control flow of a single thread.
In addition, these works target numerical programs, whereas

our approach applies to general shared memory parallel pro-
grams.

The problem of serializability-preserving transaction op-
timization has received much attention in the database com-
munity [1, 3, 5, 31, 40]. Of these, the work most relevant to
this paper is the transaction chopping approach of Shasha et
al. [31], in which the authors attempt to reduce (or “chop”)
the individual transactions in a database program while guar-
anteeing serializable executions. They do so by identify-
ing a set of primitive database operations, by determining
the resultant connected components and then by enforcing a
precedence order to determine the final chopping. However,
their work, unlike ours, targets database transactions and not
general shared memory programs. Also, their tool operates
on programs with known transactional regions, unlike ours.
Finally, their work is predicated on the assumption that the
user of the tool can characterize all of the transactions that
may run in some time interval, whereas we make no such
assumption (indeed, it can be argued that the problem of a
priori transactional region identification in shared memory
parallel programs is hard precisely because of the lack of
such semantic information).

There exists a rich body of work exploring the problem
of concurrency control in shared memory programs. Given
some user-identified atomic scopes, researchers have pro-
posed solutions to efficiently guard against concurrent mod-
ifications in those sections, either by providing mutual ex-
clusion (compiler-directed lock generation [7, 14, 17, 21,
25, 35, 41]) or by using optimistic techniques (transactional
memory [18–20, 26, 33, 34]). We view these approaches as
being complementary to ours: the techniques discussed in
this paper may be used to identify the atomic regions that
must be guarded by the various concurrency control mecha-
nisms.

Shasha and Snir [32] provide a qualitative graph-based
analysis of the requirements for enforcing sequential con-
sistency in shared memory programs under a given set of
atomicity constraints. Given a shared memory program, their
work attempts to define the set of delays and locks which
must be used to enforce sequential consistency. Krishna-
murthy and Yelick [22] present a set of optimizations for
SPMD programs that extend the delay set analysis of Shasha
and Snir by incorporating synchronization analysis and op-
timizing the resultant cycle analysis for SPMD programs.
Both of these works detect violations of sequential consis-
tency in shared memory programs by detecting cycles in
their underlying conflict graphs. In addition, Krishnamurthy
and Yelick improve the accuracy of the delay set analysis
by incorporating additional information from an analysis of
the synchronization constructs in the program. They, like us,
are optimizing based on a conflict graph of a shared mem-
ory SPMD program. We differ in two significant ways: first,
they project all threads onto two, rather than one, thread, and
second, their goal is to detect violations of sequential consis-
tency, which is a weaker correctness criterion than conflict-
serializability. Moreover, they rely on user-supplied transac-
tional boundary information rather than attempting to auto-
matically discover this information.

Data race detection tools [8, 9, 25, 27, 28, 30] analyze
programs to determine data races: unsynchronized accesses

to the same memory location by more than one thread, where
at least one access is a write. They do so by using static
analyses, at runtime, or both. Unlike our work, none of these
tools attempts to enforce any whole-program correctness
criteria such as serializability.

Our use of the conflict graph is inspired by the Concurrent
Control Flow Graph of Lee et al. [23]. In that work, the
authors present a mechanism for extending the SSA form
of Cytron et al. [10] to parallel shared memory programs.
They then show how the resultant Concurrent Static Single
Assignment (CSSA) form can be used for optimizations
such as constant propagation in parallel programs. They do
not, however, optimize the flow graph for SPMD programs.
Nor do they attempt to discover atomic regions in the code.

7. Conclusions
This paper presented an effective method for identifying
atomic regions in multithreaded SPMD programs. The pa-
per systematically mapped the conflict-serializability prob-
lem onto the space of multithreaded programs by qualita-
tively demonstrating the equivalence of conflict graphs and
precedence graphs. It then presented optimizations of con-
flict graphs for SPMD programs and demonstrated how, in
this special case, it is possible to project the effects of multi-
ple threads onto a single thread, thus reducing the space and
time requirements for the atomic region identification pro-
cess. Implementing these ideas allowed us to reproduce the
atomic regions with 100% accuracy in the three Java Grande
benchmarks considered. The generated atomic regions were
also either equal to or smaller than the default atomic re-
gions in a majority of the STAMP benchmarks, and were
never more than 38 lines larger in the remaining STAMP
benchmarks. In addition, this paper also presented a method-
ology to aid in benchmark tuning via the use of iterative
loop elision and demonstrated how this technique is partic-
ularly helpful in situations where benchmark design dictates
the placement of multiple independent atomic regions within
large loops.

In general, atomic region identification will always in-
volve some programmer effort due to the semantic nature of
the problem. However, we have demonstrated, for the first
time, how it is possible to automatically identify atomic re-
gions in multithreaded SPMD programs, using only an un-
annotated program as input, with a surprising degree of ac-
curacy for a varied class of benchmarks. Much work still
needs to be done in this area but we believe that, with the
ideas mentioned in this paper, we have provided an impor-
tant stepping stone in the process.

References
[1] D. Agrawal, J. L. Bruno, A. El Abbadi, and V. Krishnaswamy.

Relative serializability (extended abstract): an approach for
relaxing the atomicity of transactions. In PODS ’94: Pro-
ceedings of the ACM Symposium on Principles of Database
Systems, pages 139–149, New York, NY, USA, 1994. ACM.

[2] D. A. Bader and K. Madduri. Design and implementation of
the hpcs graph analysis benchmark on symmetric multipro-
cessors. In HiPC ’05: Proceedings of the High Performance
Computing Conference, pages 465–476, 2005.

[3] R. Bayer. Consistency of transactions and random batch. ACM
Transactions on Database Systems, 11(4):397–404, 1986.

[4] Brad Appleton. Sclc and Cdiff: Perl scripts for
ClearCase. At http://www.cmcrossroads.com/
broadapp/clearperl/sclc-cdiff.html.

[5] M. J. Cahill, U. Röhm, and A. D. Fekete. Serializable isolation
for snapshot databases. In SIGMOD ’08: Proceedings of
the ACM International Conference on Management of Data,
pages 729–738, New York, NY, USA, 2008. ACM.

[6] C. Cao Minh, J. Chung, C. Kozyrakis, and K. Oluko-
tun. STAMP: Stanford transactional applications for multi-
processing. In IISWC ’08: Proceedings of The IEEE Interna-
tional Symposium on Workload Characterization, September
2008.

[7] S. Cherem, T. M. Chilimbi, and S. Gulwani. Inferring locks
for atomic sections. In PLDI ’08: Proceedings of the ACM
Conference on Programming Language Design and Imple-
mentation, pages 304–315, 2008.

[8] J.-D. Choi, K. Lee, A. Loginov, R. O’Callahan, V. Sarkar, and
M. Sridharan. Efficient and precise datarace detection for
multithreaded object-oriented programs. In PLDI ’02: Pro-
ceedings of the ACM Conference on Programming Language
Design and Implementation, pages 258–269, New York, NY,
USA, 2002. ACM.

[9] M. Christiaens and K. De Bosschere. Trade, a topological
approach to on-the-fly race detection in Java programs. In
JVM’01: Proceedings of the 2001 Symposium on JavaTM
Virtual Machine Research and Technology Symposium, pages
15–15, Berkeley, CA, USA, 2001. USENIX Association.

[10] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K.
Zadeck. Efficiently computing static single assignment form
and the control dependence graph. ACM Transactions on
Programming Languages and Systems, 13(4):451–490, 1991.

[11] D. Dice, O. Shalev, and N. Shavit. Transactional Locking II.
In Proceedings of the International Symposium on Distributed
Computing, pages 194–208, 2006.

[12] A. Dragojević, R. Guerraoui, and M. Kapalka. Stretching
transactional memory. In PLDI ’09: Proceedings of the ACM
Conference on Programming Language Design and Imple-
mentation, pages 155–165, New York, NY, USA, 2009. ACM.

[13] R. Elmasri and S. B. Navathe. Fundamentals of Database
Systems (5th Edition). Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 2006.

[14] M. Emmi, J. S. Fischer, R. Jhala, and R. Majumdar. Lock
allocation. In POPL ’07: Proceedings of the ACM Symposium
on Principles of Programming Languages, pages 291–296,
New York, NY, USA, 2007. ACM.

[15] EPCC. The Java Grande Forum Benchmark Suite. At
http://www.epcc.ed.ac.uk/research/java-grande/. Last ac-
cessed March 24, 2010.

[16] P. Felber, C. Fetzer, and T. Riegel. Dynamic performance tun-
ing of word-based software transactional memory. In PPoPP
’08: Proceedings of the ACM Symposium on Principles and
Practice of Parallel Programming, pages 237–246, New York,
NY, USA, 2008. ACM.

[17] R. L. Halpert, C. J. Pickett, and C. Verbrugge. Component-
based lock allocation. In PACT ’07: Proceedings of the In-
ternational Conference on Parallel Architectures and Compi-
lation Techniques, pages 353–364, Los Alamitos, CA, USA,
2007. IEEE Computer Society.

[18] T. Harris, S. Marlow, S. Peyton-Jones, and M. Herlihy. Com-
posable memory transactions. In PPoPP ’05: Proceedings of
the Tenth ACM SIGPLAN Symposium on Principles and Prac-
tice of Parallel Programming, pages 48–60, New York, NY,
USA, 2005. ACM Press.

[19] M. Herlihy, V. Luchangco, M. Moir, and W. N. Scherer. Soft-
ware transactional memory for dynamic-sized data structures.
In PODC ’03: Proceedings of the Symposium on Principles of
Distributed Computing, pages 92–101, New York, NY, USA,
2003. ACM Press.

[20] M. Herlihy, J. E. B. Moss, J. Eliot, and B. Moss. Transactional
memory: Architectural support for lock-free data structures.
In Proceedings of the 20th Annual International Symposium
on Computer Architecture, pages 289–300, 1993.

[21] M. Hicks, J. S. Foster, and P. Prattikakis. Lock inference for
atomic sections. In Proceedings of the First ACM SIGPLAN
Workshop on Languages, Compilers, and Hardware Support
for Transactional Computing, June 2006.

[22] A. Krishnamurthy and K. Yelick. Analyses and optimizations
for shared address space programs. Journal of Parallel and
Distributed Computing, 38(2):130–144, 1996.

[23] J. Lee, D. A. Padua, and S. P. Midkiff. Basic compiler algo-
rithms for parallel programs. In PPoPP ’99: Proceedings of
the ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, pages 1–12, 1999.

[24] O. Lhoták and L. Hendren. Scaling Java points-to analysis
using Spark. In G. Hedin, editor, Proceedings of the Interna-
tional Conference on Compiler Construction, volume 2622 of
LNCS, pages 153–169, Warsaw, Poland, April 2003. Springer.

[25] B. McCloskey, F. Zhou, D. Gay, and E. Brewer. Autolocker:
synchronization inference for atomic sections. In POPL ’06:
Proceedings of the ACM Symposium on Principles of Pro-
gramming Languages, pages 346–358, New York, NY, USA,
2006. ACM.

[26] M. Moir, K. Moore, and D. Nussbaum. The adaptive trans-
actional memory test platform: a tool for experimenting with
transactional code for rock (poster). In SPAA ’08: Proceedings
of the Symposium on Parallelism in Algorithms and Architec-
tures, pages 362–362, 2008.

[27] M. Naik, A. Aiken, and J. Whaley. Effective static race detec-
tion for java. In PLDI ’06: Proceedings of the ACM Confer-
ence on Programming Language Design and Implementation,
pages 308–319, New York, NY, USA, 2006. ACM.

[28] R. O’Callahan and J.-D. Choi. Hybrid dynamic data race
detection. In PPoPP ’03: Proceedings of the ACM Symposium
on Principles and Practice of Parallel Programming, pages
167–178, New York, NY, USA, 2003. ACM.

[29] M. C. Rinard and P. C. Diniz. Commutativity analysis: A new
analysis technique for parallelizing compilers. ACM Transac-
tions on Programming Languages and Systems, 19(6):1–47,
1997.

[30] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. An-
derson. Eraser: a dynamic data race detector for multi-
threaded programs. ACM Transactions on Computer Systems,
15(4):391–411, 1997.

[31] D. Shasha, F. Llirbat, E. Simon, and P. Valduriez. Transaction
chopping: algorithms and performance studies. ACM Trans-
actions on Database Systems, 20(3):325–363, 1995.

[32] D. Shasha and M. Snir. Efficient and correct execution of
parallel programs that share memory. ACM Transactions on
Programming Languages and Systems, 10(2):282–312, April
1988.

[33] N. Shavit and D. Touitou. Software transactional memory. In
Proceedings of the Symposium on Principles of Distributed
Computing, pages 204–213, 1995.

[34] T. Shpeisman, V. Menon, A.-R. Adl-Tabatabai, S. Balensiefer,
D. Grossman, R. L. Hudson, K. F. Moore, and B. Saha. En-
forcing isolation and ordering in STM. In PLDI ’07: Proceed-
ings of the ACM Conference on Programming Language De-
sign and Implementation, pages 78–88, New York, NY, USA,
2007.

[35] G. Upadhyaya, S. P. Midkiff, and V. S. Pai. Using data
structure knowledge for efficient lock generation and strong
atomicity. In PPoPP ’10: Proceedings of the ACM Symposium
on Principles and Practice Of Parallel Programming, pages
281–292, 2010.

[36] R. Vallee-Rai, E. Gagnon, L. J. Hendren, P. Lam, P. Pom-
inville, and V. Sundaresan. Optimizing Java bytecode using
the Soot framework: Is it feasible? In Proceedings of the In-

ternational Conference on Compiler Construction (CC ’09),
pages 18–34, 2000.

[37] M. T. Vechev, E. Yahav, and G. Yorsh. Inferring synchro-
nization under limited observability. In TACAS ’09: Proceed-
ings of the International Conference on Tools and Algorithms
for the Construction and Analysis of Systems, pages 139–154,
2009.

[38] M. T. Vechev, E. Yahav, and G. Yorsh. Abstraction-guided
synthesis of synchronization. In POPL ’10: Proceegings of the
ACM Symposium on Principles of Programming Languages,
pages 327–338, 2010.

[39] H. Volos, N. Goyal, and M. Swift. Pathological in-
teraction of locks with transactional memory. In
Proceedings of the ACM Workshop on Transactional
Computing (TRANSACT) ’08, 2008. article avail-
able at http://www.unine.ch/transact08/papers/Volos-
Pathological.pdf. URL last checked on Nov. 19, 2009.

[40] O. Wolfson. The virtues of locking by symbolic names.
Journal of Algorithms, 8(4):536–556, 1987.

[41] Y. Zhang, V. C. Sreedhar, W. Zhu, V. Sarkar, and G. R. Gao.
Minimum lock assignment: A method for exploiting concur-
rency among critical sections. In Proceedings of the 21st
Annual Workshop on Languages and Compilers for Parallel
Computing (LCPC ’08), 2008.

[42] L. Ziarek, A. Welc, A.-R. Adl-Tabatabai, V. Menon, T. Shpeis-
man, and S. Jagannathan. A uniform transactional execution
environment for Java. In ECOOP ’08: Proceedings of the Eu-
ropean Conference on Object-Oriented Programming, pages
129–154, 2008.

A. Example
This section presents a more detailed example of an

SPMD program, and its associated conflict and projection
conflict graphs. Figure 10(a) shows a code fragment adapted
from the Kmeans benchmark in the STAMP transactional
memory benchmark suite [6] (shared variables in the fig-
ure have been annotated for clarity; the code analyzed by
TransFinder does not contain any annotations). Figure 11
shows the resultant Conflict Graph (CG). Figure 12(a) shows
the Projection Conflict Graph (PCG), with Thread T2 pro-
jected onto Thread T1, and Figure 12(b) shows the result af-
ter SCC contraction. The CSBBs with a dashed outline rep-
resent atomic regions. Blue dashes indicate CSBBs which
were formed as a result of an SCC contraction, while red
dashes indicate CSBBs which were carried over unchanged
from the PCG. Figure 10(b) shows the code fragment from
Figure 10(a) with the appropriate atomic synchronization
constructs added (only the run procedure is shown).

class Thread
// Constructor and members elided
procedure void run()

// Local variable declarations elided
while start < npoints do

int stop = . . .
for i = start to stop do

index = foo(. . .)
if shared mem[i] 6= index then

delta ++
end if
shared mem[i] = index
shared arr1[index][0] =

shared arr1[index][0] + 1
for j = 0 to nfeatures do

shared arr2[index][j] =
shared arr2[index][j] +
shared feat[i][j]

end for
end for
start = shared i
shared i = start + CHUNK

end while
shared delta = shared delta + delta

end procedure
end class
. . .
procedure main()

// Initialization code elided
Thread T1 = new Thread(. . .)
Thread T2 = new Thread(. . .)
T1.run(); T2.run()

end procedure

procedure void run()
// Local variable declarations elided
while start < npoints do

int stop = . . .
for i = start to stop do

index = foo(. . .)
atomic {

if shared mem[i] 6= index then
delta ++

end if
shared mem[i] = index

} // end atomic
atomic {

shared arr1[index][0] =
shared arr1[index][0] + 1

} // end atomic
for j = 0 to nfeatures do

atomic {
shared arr2[index][j] =
shared arr2[index][j] +
shared feat[i][j]

} // end atomic
end for

end for
atomic {

start = shared i
shared i = start + CHUNK

} // end atomic
end while
atomic {

shared delta = shared delta + delta
} // end atomic

end procedure
. . .

(a) Original Code (b) Synchronized Code

Figure 10. Kmeans benchmark code: globally-scoped variables are annotated with shared .

start >= npoints
shared_delta =
shared_delta +

delta

T

stop = ...
i = start

i >= stop start = shared_i

shared_i =
shared_i +

CHUNK

shared_mem[i]
== index

delta++

shared_mem[i]
 = index

T

T

F

F

F

shared_arr1[index][i]++

j = 0

j >= nfeatures

shared_arr2[index][j]++

j++

F

i++
T

T1

T1

start >= npoints
shared_delta =
shared_delta +

delta

T

stop = ...
i = start

i >= stopstart = shared_i

shared_i =
shared_i +

CHUNK

shared_mem[i]
== index

delta++

shared_mem[i]
 = index

T

T

F

F

shared_arr1[index][i]++

j = 0

j >= nfeatures

shared_arr2[index][j]++

j++

F

i++

T

T2

T2

Thread Start

T1 = new Thread(...)

T2 = new Thread(...)

Entry

F

Figure 11. Conflict Graph of program fragment from Figure 10. The Thread Stop and Exit nodes are not shown.

start >= npoints
shared_delta =
shared_delta +

delta

T

stop = ...
i = start

i >= stop start = shared_i

shared_i =
shared_i +

CHUNK

shared_mem[i]
== index

delta++

shared_mem[i]
 = index

T

T

F

F

F

shared_arr1[index][i]++

j = 0

j >= nfeatures

shared_arr2[index][j]++

j++

F

i++
T

T1

T1

Thread Start

T1 = new Thread(...)

T2 = new Thread(...)

Entry

(a) Projection Conflict Graph of CG shown in Figure 11.

start >= npoints
shared_delta =
shared_delta +

delta

T

stop = ...
i = start

i >= stop start = shared_i

shared_i =
shared_i + CHUNK

shared_mem[i]
== index

delta++

shared_mem[i]
 = index

T

F

F

shared_arr1[index][i]++

j = 0

j >= nfeatures

shared_arr2[index][j]++

j++

F

i++
T

T1

T1

Thread Start

T1 = new Thread(...)

T2 = new Thread(...)

Entry

(b) SCC Contraction of the PCG for the kmeans example

Figure 12. PCG and SCC contraction.

