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Abstract
This paper presents Aspen, a high-level programming language
that targets both high-productivity programming and runtime sup-
port for managing resources needed by a computation. Programs
in Aspen are represented as directed graphs, where the edges are
well-defined unidirectional communication channels and the nodes
are instances of computational modules that process the incoming
data. The resulting representation of a program closely resembles a
flow chart describing the flow of computation in a server applica-
tion and exposing the communication at a high level of abstraction.
This strategy for program composition naturally allows parallelism
and data sharing to be factored out of the core computational logic
of a program, facilitating a division of labor between parallelism
experts and application experts and also easing code development
and maintenance. Aspen automatically and transparently supports
task-level parallelism among module instances and data-level par-
allelism across different flows in an application or, in some cases,
across different work items within a flow. Aspen automatically and
adaptively allocates threads to modules according to the dynamic
workload seen at those modules.

Aspen is tested using a web server and a video-on-demand
(VoD) server. Both servers are compared to server applications
coded in other languages (such as C, C++, and Java). The Aspen
programs achieve the same functionality despite using 54–96%
fewer lines of user code. Nevertheless, the Aspen version always
performs competitively, with performance that is always similar to
or better than previous web server implementations and that sees
never more than a 10% performance degradation in the VoD server.
On the other hand, some workloads see superior performance with
Aspen: Aspen’s runtime thread allocation strategy allows the video-
on-demand server to support up to 36% more simultaneous 1 Mbps
video streams than a hand-tuned C++ version.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Parallel programming
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1. Introduction
As cost-effective and resource-efficient PC-based servers migrate
from uniprocessor architectures to multicore and multiprocessor
architectures, applications must exhibit substantial concurrency to
exploit the parallelism provided by the server. Unlike many appli-
cation domains, explicit parallelism is a natural way to express the
desired flow of computation in many network server applications.
For example, web servers, database servers, web caches, and other
related systems see nearly complete concurrency between the pro-
cessing of independent requests. However, actually exploiting that
concurrency efficiently can be difficult. Previous work has shown
that using a single thread or process per simultaneous client re-
quest (as in Apache 1.x) does not scale well, as excessive context
switching and thread management overheads saturate the CPU and
limit performance [26]. Multiplexing a single thread across many
requests in an event-driven fashion can be more efficient, but is
also more difficult to program and can yield poor performance in
the face of unexpected latencies such as file cache misses or page
faults [26, 37]. Some strategies have used hybrids that combine
event-driven execution and multithreading, but these are still lim-
ited by the difficulties of event-driven programming and the com-
plexities of efficiently allocating resources to the various concur-
rent tasks [23, 26, 34, 37].

The difficulties in designing efficient software for network ser-
vice applications are further compounded by limitations in exist-
ing parallelism models. A cornerstone of modern software engi-
neering is encapsulation, yet both shared-memory and message-
passing systems violate this goal. Current and proposed synchro-
nization mechanisms in shared memory require the cooperation
of all other code, while message-passing requires each process to
have low-level knowledge of the data layout, implementation, and
operational flow of other processes. Streaming software models
avoid these problems, but they focus on computation-bound appli-
cations [21, 32]. In contrast, network service applications depend
on operating system interactions with large and unpredictable laten-
cies, requiring large and variable levels of concurrency to achieve
high performance.

Modern programming languages also hinder the development
and maintenance of concurrent high-performance network service
applications. Interactions with the system such as network oper-
ations, thread creation, inter-thread communication, and resource
allocation are handled by library code rather than language prim-
itives. Consequently, the programmer must explicitly manage nu-
merous cumbersome details, such as binding threads to subtasks,
coordinating data movement, opening different kinds of network



connections, and load-balancing. Further, these library calls are
also intermingled with complex code that performs error handling,
scheduling and event handling, resource allocation, and the core
application logic. By obscuring the overall flow and intent of the
program, current programming languages make it difficult both for
the compiler to automate and optimize the actual process of execu-
tion and for the programmer to maintain code written by others or
not recently used. Such a design strategy is error-prone, and errors
can lead to poor performance, resource leaks, and applications that
are more prone to security violations.

This paper presents Aspen, a high-level programming language
that targets both high-productivity programming and runtime sup-
port for managing resources needed by the computation. Aspen
eschews shared memory in favor of a message-based interface,
but uses a highly abstract form of message passing that makes its
semantics clear to the Aspen programmer, compiler and runtime
system. Aspen requires the parallel structure of a program to be
specified independently of the computational logic of the program.
Specifically, Aspen allows communication graphs for an applica-
tion to be specified, where edges in the graph are well defined
communication channels and nodes are instances of modules that
specify computation to be performed on the communicated data. A
communication graph is akin to a flow chart describing the overall
flow of computation in a server application, and allows the commu-
nication to be cleanly specified at a high level of abstraction. As-
pen automatically and transparently supports data-level parallelism
across different flows in an application, and across different work
items, or elements, within a flow. Just as importantly, Aspen allows
the programmer of a function to be oblivious to the actual com-
munication mechanisms and the global communication structure,
and it allows the compiler to have sufficient information to gen-
erate efficient communication and calls into the Aspen runtime to
allow efficient management of resources. Aspen automatically and
adaptively allocates threads to modules according to the dynamic
workload seen at those modules.

Aspen is tested using a web server and a video-on-demand
(VoD) server. The web server tests have two components, which
test Aspen’s ability to serve static and dynamic requests. To test the
web server’s ability to serve dynamic requests, Aspen is compared
to Apache-2 using a workload based on the “support” portion
of the SPECweb2005 HTTP performance benchmark. The static
tests employ a subset of the SPECweb99 workload to compare
Aspen to the Flash and Haboob web servers and to a web server
constructed using the Flux programming language. The VoD server
is compared to a hand-tuned C++ server. The Aspen programs
achieve the same functionality as the other servers, despite using
54–96% fewer lines of user-written code. Nevertheless, the Aspen
servers always perform similar to or better than the other servers
for the web workloads and never see more than a 10% performance
degradation over the hand-tuned server for the VoD application.
On the other hand, some workloads see superior performance with
Aspen: Aspen’s runtime thread allocation strategy allows the video-
on-demand server to support 36% more simultaneous 1 Mbps video
streams than the hand-tuned C++ version and, at maximum load, to
serve 9% more bandwidth than the next application for the static
web server experiments.

This paper makes the following contributions.

• It describes the Aspen language, and shows how Aspen’s high
level abstractions enable dynamic management of load-based
thread allocation and dynamic management of other resources
such as sockets;

• It describes the different forms of parallelism supported by
Aspen, and shows how Aspen’s high level abstractions aid in

the discovery of that parallelism, and explains how the Aspen
runtime aids in the efficient exploitation of that parallelism;

• It describes the Aspen runtime, explaining how much of the
complexity of managing system resources can be removed from
the programmer and placed onto the runtime system to enable
adaptive thread allocation;

• It provides experimental results showing that Aspen achieves
high performance, compact code, and code that is easy to aug-
ment with new functionality.

2. Forms of Concurrency in Networked
Applications

Networked applications have various types of concurrency. For ex-
ample, typical network servers consist of various tasks, and the pro-
cessing of different requests can be pipelined through these tasks.
Additionally, requests belonging to different TCP connections (or
other sorts of IP flows) may typically be satisfied in parallel. In
some situations, individual work elements coming from a single
connection may also be performed in parallel. The Aspen program-
ming language is designed to support each of these forms of con-
currency, which are termed task-level, flow-level, and element-level
parallelism, respectively.

Aspen programs are composed of a sequence of operations, ei-
ther built-in or user defined. Each operation is defined as a module,
which is similar (but not identical) to a class in an object oriented
language. Each module defines a data section, an init func-
tion, and a run function. Aspen programmers connect the different
modules into a task graph, as shown in Figure 1. Each occurrence of
a module in the task graph is a module instance. Module instances
are connected by queues, with each module having a single input
queue, and one or more named output queues. The Aspen program-
ming model treats each Aspen module instance as having a differ-
ent memory space from all other Aspen module instances – the data
specified with the module exists independently in each module in-
stance. Thus, Aspen supports a distributed memory programming
model at the level of module instances. Work elements arrive at
the module instance on its input queue, triggering an invocation of
the module’s run function (sometimes referred to as an invocation
of the module). The run function reads zero or more items from
the input queue, performs its computation, and then writes zero or
more items to any of the module’s output queues.

By specifying the task graph, the Aspen programmer explic-
itly specifies task-level parallelism in the Aspen program. The data
section can be used to store state in variables for a given mod-
ule instance. Any inter-instance data sharing must be explicitly
performed by sending messages on the output queues, allowing
for straightforward pipelining of request processing through con-
nected module instances and for concurrent execution of mod-
ule instances that are not connected. Aspen’s distributed memory
programming model makes this task parallelism trivial to exploit
since no synchronization is necessary between different module in-
stances. It is also natural to have programmers express task paral-
lelism explicitly since the programmer is already responsible for
writing the code for each task: explicit support for task parallelism
through a task graph more directly resembles a programmer’s own
flowchart than a convoluted sequence of function calls. Task paral-
lelism could be thwarted by sharing through files, which is harder to
detect. Conflicting file operations, i.e. having a file opened for write
by more than one instance, and having a file open for writing and
reading by different instances, is prohibited in Aspen. Because file
operations are relatively heavyweight, however, monitoring at run-
time the location of files that are opened will incur little overhead.
When it is discovered that a module instance is about to open a file
for reading (writing) that is already open for writing (reading or



writing) by another module that is executing with task parallelism,
an error can be issued. We note that, for example, a program could
use a single module instance to actually update and read from a file,
distributing the results of its reads to other modules and receiving
write requests from those other modules.

Aspen’s primary target applications are network service codes,
which usually operate on either TCP connections (or other ordered
flows) or unordered IP packets. The former includes examples such
as web server codes; the latter includes port-based firewalls. Sys-
tems such as network intrusion detection combine both categories.
In the first category, work elements from the same flow must be
processed in-order, but there are no dependences between work el-
ements from different flows. Applications in the second category
see no dependences at all between work elements. These types of
concurrency exemplify the flow-level and element-level parallelism
described above. A unique feature of Aspen is explicit support for
intra-flow sharing. If a variable is declared in the data section of the
module declaration with the keyword per-flow, then a separate
copy of this variable is automatically created for each data flow
that accesses this variable. (The implementation of this feature is
described in Section 3.) Aspen can exploit flow-level or element-
level parallelism under certain conditions, described below, based
on the state visible to an Aspen program.

The state of an Aspen program at some time t is composed of
three parts: the queues in the system, the variables in each module
instance, and any files or network connections that are open at time
t. Files or connections that were open prior to time t, but that
are no longer open, are no longer part of the program state (but
may, of course, have affected the state of variables, queues, and
other open files or network conditions). Automatic stack-allocated
variables are alive during the invocation of their creating function,
per-flow variables are alive while a given network flow exists, and
the instance-wide data variables are alive throughout the execution.

Data parallelism across flows can be utilized by Aspen within a
module instance when operations on each flow are independent.
More concretely, independent flows cannot share file pointers if
one flow may write to the file. As well, network connections, per-
flow variables, or instance variables cannot be shared. We note that
flows share per-flow variables by specifying another flow’s identi-
fier when accessing the variable, as described in Section 4. Thus,
when the computation on one flow cannot affect the computation
on another flow and when a given module instance has no instance-
wide data sharing, flow-level data parallelism can be exploited. As-
pen expresses this parallelism by allocating multiple threads to a
module instance, with the computation of one or more flows bound
to each thread at any given time. Binding flows to threads preserves
sequential processing of the data of a flow.

Parallelism between flows in a module instance is inhibited
only if the flows share state within the instance. This can occur
in four ways: (i) two invocations of the module instance processing
different flows write to the same shared instance variable; (ii) an
invocation of the module instance affects the per-flow variables
of a different flow than the flow of some element dequeued in
that invocation; (iii) state is shared through files; and (iv) there
are network accesses. The first can be conservatively checked by
determining if there are any writes to shared instance variables.
These are known statically (by declaration), and if this is not done,
(i) cannot be a reason to inhibit parallelism. If there are such writes,
the system may be able to determine if values to the variable
are always assigned within an invocation of a module instance
before use. If not, then flow parallelism will not be exploited for
this module instance. The second condition can be checked by
determining if, for every element dequeued in this invocation of
the module instance, the key to a read or write of a per-flow
variable is always the flow identifier. This can be done by a form

of constant propagation, where the flow key value on an input
queue item is considered a constant by the analysis if unchanged.
If more than one item is dequeued, then the flow key value can
conservatively be assumed to be non-constant. Having the same file
opened for both reading and writing within a given module instance
will disable flow parallelism. This can be checked more accurately
by using a combination of compile time dataflow analysis and
runtime checking. Specifically, at compile time the flow of file
names appearing in open statements, and the file handles of opened
files that cross modules (via queuing and dequeuing) and into per-
flow data values can be tracked via a live value dataflow analysis.
If at any time during the program execution the same file name
exists in a global module instance variable for more than one
flow, data parallelism across flows can not be utilized. Further,
if more than one flow can access a file name used in an open,
or a file handle, via a dequeue operation, data parallelism across
flows cannot be exploited. These two conditions can be checked by
monitoring, at runtime, the enqueue/dequeue operations and global
variable values identified by the dataflow analysis. Finally, a direct
network connection (but not a flow between a module and a built-in
Aspen network interface module, discussed later) will disable flow
parallelism.

Data parallelism within a flow can also be exploited by an Aspen
program. Intuitively, this element-level parallelism can be exploited
within a module instance when invocations of the instance are state-
less, i.e. when no state persists across invocations of the instance.
This is true when no files, network connections, per-flow variable
values, or instance-wide variable values are shared between two in-
vocations of a module instance. This can be conservatively checked
by noting the absence of file I/O operations in the module and of
assignments to or uses of instance or per-flow data variables. When
element parallelism is being exploited, the module instance oper-
ates in an almost side effect free manner; the only side effects are
elements removed from the input queue and placed on the output
queue. File and network access is handled as with flow-level paral-
lelism.

The lack of shared memory between module instances makes
the detection of parallelism in the absence of file I/O a purely lo-
cal problem. This has two important effects. First, because inter-
module whole program analyses are not necessary, data flow infor-
mation is likely to be more accurate, and the parallelism detection is
more likely to be successful. Second, the programmer is restrained
from coding the problem in a way that leads to dependences and
interference across module instances. Additionally, the use of per-
flow variables encourages the programmer to segregate the state
between flows, and allows the compiler to detect parallelism by
tracking the values of variables used as keys.

3. Design of the Aspen Language
Aspen was designed to allow programmers to specify concurrency
among tasks and data flows by allowing components to be com-
posed structurally with explicit communication queues represent-
ing the passing of information in the style of task flowcharts. This
allows system designers to program in the same way they would
draw the system on a whiteboard. Just as importantly, Aspen al-
lows the description of parallelism to be separated from the core
sequential computational logic that constitutes the nodes (module
instances) of the workflow graph. In Aspen, the programmer is not
required to explicitly manage the resources associated with con-
currency or inter-node communication. The actual management of
these resources is handled by the compiler-generated and library
code.

There is no sharing of data in Aspen across module instances.
This allows Aspen programmers to write modules whose data is en-
capsulated against changes caused by code in other modules. This



Figure 1. Flowchart for static-content Web Server
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Figure 2. Static structure of an Aspen program, showing the orga-
nization of different types of code modules

facilitates code reuse and encourages a compositional approach to
constructing parallel applications.

Application Structure. Aspen programs consist of modules
connected through queues. Figure 1 gives a flowchart for the pro-
cessing of a request in a static-content Web server. Such diagrams
are a conceptually easy way of describing concurrency in a net-
work service, and concurrency within and across requests or tasks
enables a network service to achieve good throughput and utiliza-
tion of the host machine.

An Aspen program is hierarchical, with a root defining the inter-
action between the various modules present in the system. Module
declarations are separated from their definitions and contain vari-
ous constraints that the programmer deems appropriate to the mod-
ule. The module definition contains the procedures that make up
the functionality of the module including the init procedure that
initializes the module, the run procedure that contains the code
to be executed as work flows through the system, and the data
section which specifies the variables associated with the module
instance and with specific flows passing through the module in-
stance. Other procedures may also be defined by the programmer.
The static structure of an Aspen application is shown in Figure 2.

One of the most valuable features in Aspen for programmers
targeting network service applications is language-level support for
per-flow data variables in a given module instance. Rather than
having to maintain explicit arrays or hash tables of per-flow data,
the programmer only needs to declare a single variable as being
per-flow and the compiler automatically privatizes the variable
for each flow. The current implementation converts accesses to
per-flow variables into accesses to a hash table indexed by flow
identifier. For each module instance, all per-flow variables for a
single flow are stored as a struct in a hash table indexed by the
flow identifier. Thus, one hash table reference per module instance
invocation can retrieve all the variables in the structure for a given
flow, allowing accesses to these variables to incur only a very low
overhead (shown in Section 6 to be approximately 1%).

An additional feature aimed at network applications is primi-
tive, language-level support for network communication. This sup-
port is provided with primitive modules called NetworkInput
and NetworkOutput that represent communication into and
out of a server application through a specific socket. These mod-
ules have special commands to accept and initiate connections, to
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Figure 3. The dynamic structure of an Aspen program showing
instances of modules, servlets, and their interaction via queues.

1. Module WebServer requires
2. Module NetworkInput, parseRequest,
3. serveRequest, NetworkOutput {
4. void initialize( ) {
5. NetworkInput nI(Input is tcp:9877);
6. parseRequest pR;
7. serveRequest sR;
8. NetworkOutput nO;
9. flow: nI ||| pR ||| sR ||| nO;
10. flow: pR.altQueue ||| nI;
11. flow: nO.feed ||| pR;

}
}

Figure 4. Sample application code for an Aspen root module. This
acts as a communication specifier between module instances.

declare interest in receiving data from a connection, and to ac-
tually send data to a connection. The NetworkInput module
passes out newly accepted connections and received data, while the
NetworkOutputmodule has a feedback output queue to indicate
the completion of a transmission.

Aspen runtime support. The Aspen runtime is responsible for
ensuring messages are passed efficiently and quickly within the
system. It does so by using explicit message queues declared by the
programmer. Synchronized access to these queues is handled by the
runtime; the programmer merely states intentions of enqueuing or
dequeuing a message.

Figure 3 shows the dynamic structure of an Aspen program. Dy-
namically, the actions taken by module instances in Aspen are exe-
cuted by servlets — independent threads that share the same com-
munication sources and sinks. For module instances that support
flow-level or element-level parallelism, the Aspen runtime is re-
sponsible for adaptively allocating servlet threads based on the load
seen by each instance. Aspen’s adaptive thread allocation will dy-
namically tune the number of threads for each multithreaded mod-
ule by spawning or killing threads as necessary to satisfy varying
load levels. This thread allocation strategy makes use of a num-
ber of equations to make decisions quickly and efficiently and in-
cludes built-in precautions against extreme transient responses. For
modules with flow-level parallelism, the Aspen runtime is also re-
sponsible for insuring that multiple work elements from the same
flow are steered to the same servlet so that they will be processed
in-order. If a servlet completes the processing of all presently seen
work elements from a flow, that flow can be reassigned to a differ-
ent servlet once the next work element arrives. Flows must also be
reassigned under certain conditions when servlets are spawned or
killed; the details of this process are described in Section 4.

All socket descriptors are automatically garbage-collected in
Aspen. Aspen uses reference-counted smart pointers to encapsu-
late instances of such descriptors, closing them when no more ref-
erences to them exist anywhere in the Aspen system. This frees the
programmer from having to worry about when it is safe to close a
descriptor.



1. Module parseRequest {
2. void initialize() {
3. ... initialization code
4. return m1;

}
5. void run() {
6. QueueElement q1;

... other declarations
7. dequeue() >>> q1;
8. switch(GET_TYPE(q1)) {
9. case input_sock:

...
10. QueueElement(FILE(*m2)) >>> q1;
11. send q1;
12. break;

...
}

}
}

Figure 5. Sample action code for a web server module in Aspen.

Coding considerations. Figure 4 shows how the Aspen
Webserver root module is constructed. This root module sets up
the flow graph depicted in Figure 3. This module is only a com-
munication specifier; it contains no executable statements. Lines
1–3 declare the name of the module and list the modules that it de-
pends on — the names of the modules that are composed to form
the Aspen program. The internal workings of the required modules
remain hidden; only their interface queues are exposed. Lines 5–8
instantiate modules and bind them to identifiers, while lines 9–11
declare the flow of work between module instances. Each module
instance has associated with it a single input and one or more out-
put queues through which all inter-module communication occurs.
The Aspen pipe operator (“|||”) specifies the connections between
the default or named output queues of one module instance and
the input queue of another. The programmer need only specify a
handful of lines in the root module to instantiate modules and bind
the instances together; the actual data transfers are managed by the
runtime.

Because Aspen resources are largely managed by the runtime,
the resource specifiers for a module are quite simple. In particular,
a resource specifier can declare two types of resources: queues and
data elements (i.e., instance-wide and per-flow data variables).

Since modules may have multiple output queues, any output
queues beyond the default must be explicitly declared. Thus, the
text:

Declare Module parseRequest {
Output:

Output Queue is altQueue;

declares an output queue named altQueue associated with the
parseRequest module. Data elements are declared using essen-
tially a C/C++ notation. Special directives are also used to specify
which type of parallelism (task-level, flow-level, or element-level)
is supported by a module.

Executable code in modules. Figure 5 shows an action spec-
ifier for an Aspen module. Actions taken by Aspen modules are
coded in C++ with Aspen extensions. Every module includes an
init function that is analogous to a constructor for each module
instance. The run function is invoked whenever a new piece of
work arrives on the module’s input queue. Lines 7 and 10 show
a message being placed in a QueueElement data structure. Line
11 sends this structure on the default output queue; the programmer
would have used send q1 on name to send the queue element
on a named output queue. Aspen also provides a sending mecha-

nism called send and discard that informs the runtime that
the data referenced by the queue element will no longer be used
in this module invocation after the message is enqueued. In all of
these cases, the module programmer does not need to know the
functionality of the other module connected to the output queue or
the topology of data flow among modules. Thus, module program-
mers are insulated from the overall system design. This design sat-
isfies Aspen’s goal of separating the specification of concurrency
from the core application logic.

4. Prototype Implementation
The Aspen prototype compiler is a multi-pass source-to-source
translator written with ANTLR/JAVA. The input to the compiler
is a source file composed of the modules used in the program while
the output is the generated standard C++ code to implement the ap-
plication. Although compiler analysis could automatically discover
whether a given module has task-level, flow-level, or data element-
level parallelism by checking the conditions described in Section 2,
the prototype currently requires the programmer to specify that ex-
plicitly.

Module implementation. Modules in Aspen are implemented
as C++ classes. The constructor invokes the init function pro-
vided by the programmer, and the run function is invoked by
a system-level controller. Instance-wide variables specified in the
data section of the module declaration become ordinary class vari-
ables. Accesses to per-flow variables, however, are converted to
accesses to data stored in a common centralized hash table. The
Aspen compiler automatically adds a hash table lookup/insert op-
eration into the run function of a module with per-flow data vari-
ables. The hash table is indexed with the flow identifier, and the
stored data is a structure containing all the per-flow state.

Primitive modules for networking. The NetworkInput
module uses the UNIX select call to check socket descriptors
for new data or connection establishment requests. It also accepts
messages from modules instructing it when to add to or remove
from the select descriptor sets. Upon accepting a new client, it
adds the (newly created) socket descriptor to the list of descriptors
it is selecting on. If it receives data on an existing socket, it encap-
sulates the data in a message and sends the message downstream to
the next module instance. The NetworkOutput module corre-
spondingly receives messages specifying data to be sent on specific
socket descriptors. The messages can either contain actual data or
a file descriptor and offset for use with the Unix sendfile call.

Inter-module communication. Aspen implements communi-
cation between module instances (e.g. “|||”) using queues. To en-
force the non-shared memory semantics of Aspen, a datum to be
enqueued is copied, and the copy is placed on the queue. The cur-
rent Aspen system is running on a shared memory system, so a
pointer to the copied data, rather than another copy, can be en-
queued. In the case of send and discard, Aspen does not
even need to make a copy; it can enqueue a pointer to the original
data since that data will no longer be used by the sending module
instance. Because the queues are part of the Aspen system code in-
stalled on a machine, queuing and dequeuing on a distributed mem-
ory machine can be implemented transparently to the programmer
and to the generated C++ code. The queues themselves are exten-
sions of the deque structure provided by the C++ Standard Tem-
plate Library (STL). To allow for multithreaded and multiproces-
sor execution, the queue manipulation functions are internally pro-
tected using Pthreads locks and condition variables.

Adaptive thread allocation. The system responds to an in-
creasing load on some module instance by creating additional
threads (servlets) to perform the work of the module instance, and
subsequently kills threads (by sending them to a per-module thread
pool) when the load reduces and they are no longer needed. This



adaptive thread allocation is done in a controlled fashion so that
large numbers of threads are not being continuously created and
killed. The system computes a desirable range for the number of
threads using the equations below, spawning or killing threads as
needed to remain in the range. To reduce the overhead associated
with this monitoring, a thread spawn/kill decision, and the associ-
ated computation, is only performed every k enqueues (10 in the
current system).

Inputs to the equation for computing the upper and lower
bounds for a range are:
• R: the arrival rate of work to the module instance’s queue,

averaged over the last k enqueues.
• S: the average service time per work item for the module

instance, averaged over the last 100 work items.
• LOW, HIGH: values that scale the range and therefore affect

the stability of the number of threads. As the difference between
low and high increases, the range of acceptable thread numbers
increases, and the number of threads created and destroyed goes
down. These values are set to 1.0 and 20.0, respectively, in the
system.

• νspawn, νkill are the global spawn viscosity and kill viscosity.
These provide the system with a mechanism to control the
rate of spawning or destroying threads by introducing a “drag”
or “viscosity” to those changes. These parameters influence
the system by temporarily increasing the acceptable range of
threads.
The range lower and upper bounds (L and U) are given by:

L =
R · S

LOW · νspawn

U = (R · S) × (HIGH · νkill)

Intuitively, as the amount of work being done by an instance in-
creases (or decreases) (R · S), the number of threads allocated to
that instance increases (or decreases), damped by the system-wide
viscosity factor. Every 100 ms a Monitor thread awakens and com-
putes the νspawn and νkill factors using the following equations:

∆ = | (totalThreads − averageThreads) |
ρ = sgn(totalThreads − averageThreads)

νspawn = e∆ρ

νkill = e∆−ρ

where totalThreads and averageThreads indicate the current
number of threads and average number of threads present in the
system, respectively. More detailed schedulers are a matter of fur-
ther research but could follow policies used in other contexts, such
as the IBM OS/390 Workload Manager [10].

Thread Pooling. When the scheduler determines that a thread
is no longer needed, it sends the thread to a (per-module) “thread
pool” instead of allowing it to die. Future requests for thread al-
location are first satisfied, if possible, from the per-module thread
pool. New threads are spawned only when the thread pool is empty.
This approach allows us to lower the cost of spawning or killing a
thread.

Additional features. All socket descriptors and strings are au-
tomatically garbage-collected in Aspen. Aspen uses smart pointers
to encapsulate instances of such descriptors and strings and dis-
allow manipulation of the “naked” descriptor (or string). This ap-
proach encounters some additional overhead in going through the
smart pointer whenever the referenced data is accessed. The com-
pensating benefit is that now the programmer (and indeed, the As-
pen system itself) is freed from the responsibility of knowing when
it is safe to close a descriptor or delete a string; such actions will

be performed automatically when the last reference to the smart
pointer is deleted.

5. Experimental Methodology
This section discusses the methodology used to test the Aspen pro-
totype implementation and compares it to existing design method-
ologies. The implementation is evaluated using a web server and a
video-on-demand (VoD) server.

5.1 Web Server
The web server portion of the evaluation consists of two separate
benchmarks. In the first, the workload is the “support” portion of
the SPECweb2005 HTTP performance benchmark, which includes
both static and dynamic content [30]. In the second, the workload is
based on the static portion of the SPECweb99 HTTP performance
benchmark [29]. Both workloads are described in greater detail
below.

5.1.1 SPECweb2005
Aspen is tested first by evaluating the performance of a web server,
with three different codes under test:

• the freely-available Apache 2.0 web server, which uses a com-
bination of events, threads and processes to achieve high con-
currency and low overhead, in conjunction with the “mod php”
Apache module to service PHP requests.

• the Apache 2.0 web server, in conjunction with an external PHP
server to service PHP requests. The servers communicate using
the FastCGI interface.

• a web server written in Aspen, in conjunction with an external
PHP server to service PHP requests. The servers communicate
using the FastCGI interface.

We use the “support” portion of the SPECweb2005 HTTP per-
formance benchmark. To mimic the behavior of real web sites,
SPECweb uses a Zipf-distribution URL popularity model; the fre-
quency of access to the document of rank r is proportional to r−α,
where α is termed the Zipf parameter. The default Zipf parameter
for SPECweb 2005 is 1.2, but we also test parameter values of 0.4
(less locality, broader working set) and 2.0 (more locality, smaller
working set). The client workload has numerous features to rep-
resent real web-browser behavior, including multiple simultaneous
user sessions, persistent connections, limited line speeds, and inter-
request think times. The test has 3 peak phases separated by idle
periods, with ramp-up and ramp-down between a peak phase and
an idle period. A more thorough discussion of the design of the
benchmark and of the “support” portion of the test appears in the
SPECweb2005 design document [30].

5.1.2 SPECweb99
The web server is also tested using an internal benchmark that is
similar to the static portion of the SPECweb99 HTTP performance
benchmark [29]; similar benchmarks have also been used by other
projects [6, 22, 37]. The Aspen web server is compared against
three other web servers:
• the Flash web server [26]
• a web server developed using the Flux programming lan-

guage [6]
• the Haboob web server [37]

Flash uses an asymmetric event-driven architecture (AMPED) to
multiplex between different connections. It makes uses of the mmap
UNIX system call to cache file contents and lazily munmap’s them
in a least-recently-used fashion. The web server developed using



the Flux language is a multithreaded web server using a fixed
pool of worker threads to multiplex between HTTP requests. The
Flux runtime allows event-driven, batched, and single-thread-per-
connection web servers to be developed as well, but we experienced
the best performance using a thread pool of size 50. The Haboob
web server is built on the SEDA software architecture [37]. SEDA
allows for the inclusion of resource controllers that allocate threads
to the various stages. These resource controllers must be specified
by the programmer explicitly, in contrast to Aspen’s adaptive sys-
tem. For this paper, we have used the default controllers provided
with the Haboob distribution. Flash, Flux, and Haboob were not
considered for the SPECweb2005-based workload because they do
not directly support FastCGI-based dynamic content generation. It
should be noted that of the four web servers being tested, Flash
and Haboob employ application-level caching to various degrees
while Flux and Aspen do not. The clients request web pages us-
ing a distribution specified by the SPECweb99 suite. Each client
closes the connection after 5 request-response pairs and opens a
new connection before continuing. The total size of the working-
set is approximately 3.3 GB, and files are requested according to
a Zipf popularity distribution with a Zipf parameter of 1.0. Due to
the probabilistic nature of the SPECweb99 workload, not all files
are likely to be requested within a given period of time. Thus, even
though the entire working-set may not fit in memory, application-
level caching is still effective because some pages are accessed far
more often than others.

5.2 Video-On-Demand
Aspen is also tested using a video-on-demand (VoD) server that
aims to deliver the maximum possible number of simultaneous in-
dependent streams at a specified bitrate. This workload is very disk-
intensive. The VoD server is tested with target bitrates of 1 Mbps
(iPod quality), 6 Mbps (DVD-quality), 12 Mbps, and 18 Mbps. The
performance of the Aspen code is compared against a C++ imple-
mentation that uses a single thread per connection to tolerate disk
latency. Unlike the web server, the VoD server has a quality-of-
service constraint. In our tests, the server sends roughly 1 minute
of content as an initial buffering phase; after that point, it repeat-
edly sends out chunks consisting of 5 seconds of data at the target
bitrate. The goal is for data delivery to remain ahead of the client’s
data consumption so that the client always has data ready to play.
The performance results report the maximum possible number of
simultaneous connections that can be supported without ever al-
lowing any client connection to run out of buffered data.

Both server applications run on a SunFire x4100 server with
two 2.2 Ghz dual-core AMD Opteron processors (four processors
total). The operating system is Linux kernel version 2.6.8-dol-03-
11-amd64-k8-smp as distributed by Debian for the x86-64 plat-
form. The system includes 4 GB of DRAM and four Gigabit Eth-
ernet network interfaces. The web server is always tested in a 4-
disk configuration, while the VoD server is tested with 1, 4, and 8
disks since performance is highly disk-dependent. The SPECweb
and VoD clients run on up to 3 independent PCs connected over a
Gigabit Ethernet switch to the server; the clients are never allowed
to be the bottleneck in our tests.

6. Experimental Results
This section discusses the results of experimentation with Aspen
using the web and VoD servers.

6.1 Web Server Performance
6.1.1 SPECweb2005
Effectiveness of the Aspen runtime. Figure 6 shows how
the Aspen adaptive thread allocation policy responds to the
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Figure 6. Effectiveness of adaptive thread allocation policy in Web
server under default SPECweb-based workload
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Figure 7. Performance comparison of web servers for various Zipf
parameters for the support section of SPECweb2005. A greater
Zipf parameter indicates more locality and a smaller working set;
the default SPECweb2005 parameter is 1.2

SPECweb2005-based workload on the web server. The X axis rep-
resents time elapsed since the start of the run. This chart plots the
instantaneous bandwidth of data delivered by the server, the in-
stantaneous number of threads used in the server, and the average
number of threads. The Y-axis for the thread curves represents the
number of threads, while the Y-axis for the bandwidth curve repre-
sents the bandwidth in Mbps. The peak bandwidth during the ex-
periment nears 3 Gbps at times. After the initial phase during which
the scheduler “learns” the prevalent system conditions, the number
of threads used by Aspen adjusts to support the sustained band-
width needs of the peak phases and to drop off between peaks. As
bandwidth ramps up between an idle phase and a peak phase, As-
pen responds within seconds by creating new threads (possibly by
allocating them from the per-module thread pools) to service the in-
creased workload. Nevertheless, the viscosity in the adaptive thread
allocation scheme allows Aspen to avoid spawning and killing with
every bandwidth variation, thus reducing the overhead of thread
management.

Performance comparison. Figure 7 compares the maximum
number of simultaneous client sessions achieved by the Apache-
2 server with mod php, the Apache-2 server with FastCGI and
the Aspen server with FastCGI during the peak phase of the
SPECweb2005 Support workload. We report the number of si-
multaneous client sessions (instead of an alternate metric such as
latency) because that is the standard SPECweb2005 metric. The
default SPECweb test uses a URL popularity distribution with a
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servers for the static SPECweb99-like benchmark
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Figure 9. Performance comparison (average request completion
time) of various web servers for the static SPECweb99-like bench-
mark

Zipf parameter of 1.2, but the tests reported here also include Zipf
parameters of 0.4 and 2.0. The X-axis shows the Zipf parameter,
while the Y-axis gives the number of simultaneous sessions. There
are 3 bars for each Zipf parameter value, corresponding to Aspen,
Apache-2 with FastCGI and Apache-2 with mod php. As expected,
greater Zipf parameters allow greater locality and thus greater per-
formance. Aspen consistently outperforms Apache-2. It must be
noted that, at the highest values of simultaneous sessions, perfor-
mance is limited (in the FastCGI case for both Aspen and Apache-
2) by the PHP processes, which consume almost all of the CPU
resources. Even so, Aspen’s adaptive thread allocation strategy al-
lows it to outperform Apache-2 with FastCGI because it carefully
and adaptively selects the number of threads allocated to the web
server, allowing the maximum amount of remaining CPU resources
to be devoted to the PHP processes.

6.1.2 SPECweb99
Figure 8 compares the bandwidth served by the Flash, Haboob,
Flux and Aspen web servers for the static SPECweb99-like bench-
mark. The X-axis depicts the number of simultaneous clients used.
The Y-axis depicts the bandwidth served, in Mb/sec. As can be
seen, the Aspen web server is highly scalable, with performance
continuing to improve over the entire range of client numbers. In
contrast, while the Flash and Flux web servers ramp up faster than
Aspen, their performance levels peak before reaching a larger num-
ber of simultaneous clients. Haboob’s performance is substantially
lower for all test cases, confirming earlier results by others [6].

Figure 9 compares the average time elapsed between the send-
ing of a request and the reading of the response in its entirety for
each of the Flash, Haboob, Flux and Aspen web servers for the
static SPECweb99-like benchmark. The X-axis depicts the num-
ber of simultaneous clients used while the Y-axis depicts the aver-
age request completion time, in seconds. As shown, Aspen’s per-
formance is competitive with or slightly better than the other web
servers.

6.2 VOD Server Performance
Figure 10 shows the performance of the VoD server for a target
bitrate of 1 Mbps. The numbers on the X axis represent the number
of disks used in the configuration (1–8), while the numbers on the
Y axis represent the number of simultaneous client connections that
can be supported successfully. Each system configuration has a bar
for the Aspen version and a separate one for the hand-coded C++
version. The system with 1 disk sees similar performance for both
the Aspen and hand-coded versions. However, Aspen outperforms
the hand-coded version by 14% for the system with 4 disks and by
36% with 8 disks. This is because the operating system scheduler
cannot efficiently support the number of threads needed in the
hand-coded version and the CPU becomes saturated; recall that this
version uses a thread per connection to tolerate disk latencies. The
Aspen version uses far fewer threads because it only creates new
threads when needed. Thus, even though all connections still go to
disk, the requests can be time-multiplexed onto a smaller number
of threads.

Figure 11 compares the performance of the Aspen and hand-
coded C++ VoD servers for target bitrates of 6–18 Mbps, with test
configurations ranging from 1–8 disks. The Aspen and hand-coded
versions consistently perform within 10% of each other. Aspen
maintains a substantial advantage, however, by requiring far fewer
lines of code and by easing maintenance.

6.3 Impact of Aspen-Specific Actions on Program
Performance

To illustrate the impact on performance of Aspen’s queuing and
adaptive thread allocation decisions and flow-level concurrency
support, Table 1 shows the five most expensive functions in-
volved in those decisions, as reported by the oprofile Linux
system profiler. The “Percentage Time Spent” column documents
the percentage of the program execution time spent in the func-
tion “Function Name”. As we can see, the net effect of all of
Aspen’s extensive runtime support for adaptive thread alloca-
tion and flow-level parallelism is less than 9%. Having said that,
it is possible to lower this overhead still further. As an exam-
ple, we are looking into ways of reducing the time spent in the
Queue::setAverageParseTime(), which is what records
the service time required by each module. This function is expen-
sive for two reasons. First, it is called twice for every message de-
queued. Second, it involves arithmetic operations and a possible
iteration over a vector of C++ STL bitset instances. One pos-
sible optimization is to replace calls to this function with a simple
bit-toggling operation for all modules that have been declared to be
single threaded (via the use of the force SingleThreaded
Aspen scheduling primitive).

6.4 Language Usability
Table 2 reports the number of lines of code required to implement
the various high-performance web servers used in the benchmark
tests. (Apache is not included, but its code length is far greater.
Much of that code, however, relates to extensions not considered
in this paper.) These numbers are as reported by the sclc source-
code line counting tool and do not include whitespace or comment
lines [4]. Where possible, we report the lines of code present under



 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

 1300

 1400

841

Si
m

ul
ta

ne
ou

s 
C

lie
nt

 C
on

ne
ct

io
ns

Number of Disks

Aspen
Hand-Coded

Figure 10. VoD server throughput with target bitrate of 1
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Function Name Function Description Percentage Time Spent
Queue::setAverageParseTime Updates values used by the adaptive thread allocator 2.7441
Queue::putCheck Enqueue function 2.4875
Queue::waitingGet Blocking dequeue 1.7408
LockedMap::put Insertion into the hash map containing per-flow variables 0.7629
LockedMap::get Getting per-flow variable information from hash map 0.3398

Table 1. Impact of Aspen flow-control and queuing decisions on performance.

Server Program Language-Specific User System
Aspen (Web) 66 264 6014
Flash (Web) NA 7226 NA
Flux (Web) 10 571 3297

Haboob (Web) NA 2263 14100
Aspen (VoD) 88 339 5580
Hand (VoD) NA 809 NA

Table 2. Lines of code used in implementing high-performance
server applications described in Section 5, not counting white-
space or comments.

three categories: “Language-Specific” lines of code are those that
are part of the application but are unique to the implementation
language, “User” refers to code that the user has written in order to
implement the application (including language-specific portions),
and “System” includes libraries and header files that are present
with the application but are not part of a standard UNIX-like dis-
tribution. Of these categories, the “User” code is the most impor-
tant since these are the actual parts that the application programmer
must directly code. Note that Flash and Haboob do not have any
lines of code under the “Language-Specific” category because they
are written in C and Java, respectively. As seen, the web server writ-
ten in Aspen requires 54–96% fewer lines of user-written code but
still provides performance comparable to the others. Similarly, the
video-on-demand server written in Aspen requires approximately
58% fewer lines than the hand-coded server to achieve the same
functionality.

7. Related Work
As an infrastructure for efficient software engineering, Aspen re-
lates to various domain-specific languages. The most closely re-
lated projects are Liberty, StreamIt, and Ptolemy [5, 32, 33], as all
of these systems compose programs from concurrent modules that
interact through explicit communication channels. StreamIt targets
streaming media applications, Liberty targets architectural simula-
tors, and Ptolemy targets hardware/software co-design of embed-

ded communication systems. Modules in these systems react to
events on their communication channels, as in Aspen. Aspen targets
operating system-intensive codes and server applications running
on general-purpose processors. Consequently, Aspen includes fea-
tures not supported by those systems, such as dynamically-created
copies of modules or the use of a hybrid event-driven/threaded ex-
ecution model.

Burns et al. designed the Flux programming language, explicitly
targeting server applications [6]. Flux expresses servers as graphs
of action modules connected by well-defined interfaces, similar to
Aspen’s root modules. Flux also provides explicit support for atom-
icity and deadlock-avoidance in shared-address space programs;
Flux consequently does not allow graphs with back edges. Aspen
differs from Flux by providing language-level support for the action
modules themselves. Further, since Aspen does not target programs
with inter-module state-sharing, there is no support for atomicity
nor any restriction on back edges in the graph.

Welsh et al. introduced the SEDA software architecture, which
expresses a software system as a sequence of stages that commu-
nicate via queues [37]. SEDA also allows for the inclusion of re-
source controllers that allocate threads to the various stages. There
are three major differences between the SEDA architecture and
Aspen. First, SEDA is a methodology for program creation rather
than a language; although SEDA can be applied to any language,
none of those languages are naturally designed to provide support
for concurrency and networking as Aspen is. Second, the resource
controllers in SEDA are explicitly configured using programmer
knowledge, whereas resource allocation in Aspen is automated us-
ing continuous inspection of load levels by the Aspen runtime. Fi-
nally, the individual stages in SEDA must be programmed in an
event-driven fashion, whereas the modules in Aspen are written
as straight-line serial code. Von Behren et al. observed that event-
driven programming of SEDA stages was often difficult for their
target applications [34]. In contrast, any event-driven interactions
in Aspen are automatically managed by the Aspen runtime.

A variety of research has focused on the performance benefits
of event-driven programming in network servers, with many works
also integrating forms of multithreading [8, 25, 26]. However, the



models proposed by these works focus narrowly on operating sys-
tem and library support for client-server applications, whereas As-
pen integrates language support and allows more general commu-
nication mechanisms for applications based on message-passing or
other communication schemes. The Capriccio project introduces
the notion of logical threads, which expose a threaded interface
to the programmer but internally utilize an event-driven schedul-
ing loop created with the assistance of an intelligent compiler [35].
Unlike Aspen, though, that work does not provide language-level
support for programmer productivity and only targets single CPU
architectures.

Various domain-specific languages have targeted problems in
the software engineering of networked services. Click [24] targets
software routers, WebCaL [16] targets cache and communication
policies for web caches, nesC [12] targets event-driven interac-
tions in embedded sensor networks, and the Shangri-La and Nova
projects target the efficient programming of the Intel IXP network
processors [9, 13]. Wash/CGI provides a front-end to Haskell for
safe programming of server-side web scripts [31]. These languages
differ significantly in domain from Aspen and have correspond-
ingly different structures, primitives, and runtime systems. For ex-
ample, none of these languages deal with high-latency operating-
system interactions or have any system for dynamic thread alloca-
tion.

Data and work-flow support at various levels has been pro-
posed by others. Among the earliest of these are the Burroughs
Work Flow Languages [7] and the IBM JCL [20]. These lan-
guages targeted a single family of proprietary systems, and only
interactions of programs with external resources. Languages such
as C&Co [1] operate on an explicitly transaction model and do
not support Aspen’s abstractions. Dataflow languages and lan-
guages for distributed computing target the expression of paral-
lelism (e.g. [19, 17, 2, 18] or communication across processes
(e.g. [19, 36, 27] but do not address the issues of changing com-
munication primitives to accommodate and optimize for different
execution environments, and of completely abstracting the commu-
nication structure from the logic of the program. Moreover, none of
these languages have Aspen’s support for storing independent flow
state via associative memory, and none of these have Aspen’s sup-
port for automatic thread allocation and destruction.

Libraries for coordination have been proposed, such as
CORBA [3], MeldC [11] and Arjuna [28]. These, along with grid
services provided by the Globus Grid Toolkit [15] and Globus Re-
source Specification Language RSL v1.0 [14] can be viewed as
primitives targeted by the Aspen code generator.

8. Conclusions
Network services applications lend themselves well to task-level
parallelism, but programming them can be very difficult because
current programming languages are inherently sequential. This
work introduces Aspen, a programming language that represents
an application as a diagram of independent work-entities connected
by explicit message queues, analogous to a flow chart. Aspen also
includes primitives to support basic network services and includes
a runtime that handles the intricacies of message communication
between the modules. Aspen’s runtime enables high performance
by adaptively allocating servlet threads to module instances as re-
quired by varying load levels. Moreover, Aspen’s unique features,
such as per-flow variables, are shown to be useful and to incur al-
most no runtime overhead.

Aspen is tested using a web server and a Video-On-Demand
(VoD) server application. These servers require far less user code
than counterparts written using other programming methodolo-
gies or traditional languages, but nevertheless achieve performance
comparable to or slightly better than those other servers. Aspen’s

adaptive thread allocation strategy allows superior performance in
some cases because Aspen only allocates threads when they are
needed, allowing servers written in Aspen to tolerate disk latencies
without using an excessive number of threads.
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