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Abstract
To achieve high-performance on multicore systems, shared-
memory parallel languages must efficiently implement atomic op-
erations. The commonly used and studied paradigms for atom-
icity are fine-grained locking, which is both difficult to program
and error-prone; optimistic software transactions, which require
substantial overhead to detect and recover from atomicity viola-
tions; and compiler-generation of locks from programmer-specified
atomic sections, which leads to serialization whenever imprecise
pointer analysis suggests the mere possibility of a conflicting op-
eration. This paper presents a new strategy for compiler-generated
locking that uses data structure knowledge to facilitate more precise
alias and lock generation analyses and reduce unnecessary serial-
ization. Implementing and evaluating these ideas in the Java lan-
guage shows that the new strategy achieves eight-thread speedups
of 0.83 to 5.9 for the five STAMP benchmarks studied, outperform-
ing software transactions on all but one benchmark, and nearly
matching programmer-specified fine-grained locks on all but one
benchmark. The results also indicate that compiler knowledge of
data structures improves the effectiveness of compiler analysis,
boosting eight-thread performance by up to 300%. Further, the
new analysis allows for software support of strong atomicity with
less than 1% overhead for two benchmarks and less than 20%
for three others.The strategy also nearly matches the performance
of programmer-specified fine-grained locks for the SPECjbb2000
benchmark, which has traditionally not been amenable to static
analyses.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Parallel programming

General Terms Algorithms, Performance, Design

Keywords Automatic lock generation, transactional memory, par-
allel programming

1. Introduction
The rise of multicore processor architectures has increased the need
for higher productivity development of parallel applications. Gen-
eral purpose multicore processors support shared memory hard-
ware, and are often targeted with a shared memory programming
model such as Pthreads, Java, or OpenMP. Concurrent and parallel
application development on shared memory systems requires sup-
port for mechanisms for controlling a thread’s access to shared data
values, and more specifically, to enforce atomic execution of a se-
quence of accesses to, and operations on, shared data. Three means
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of enforcing this atomicity are in widespread use or are areas of
intense research: (1) programmer-controlled locking, (2) transac-
tions that rely on speculative execution and roll back the execution
of the atomic section when necessary [9, 11, 18, 20, 21], and (3)
programmer-specified atomic sections, with locks generated by a
compiler [4, 6, 8, 12, 17, 24]. While these strategies make parallel
programming possible, and in some cases easier, all lead to signifi-
cant problems.

A programmer-controlled locking strategy requires a whole-
program locking protocol and sufficient programmer awareness
of what data needs to be protected by which locks. The locking
protocol typically must interact with third party code or standard
library code that is not available to the programmer. Failure to
properly follow the correct locking protocol can lead to deadlock
and races, and techniques to detect these failures form an active
area of research.

Transactions execute atomic sections speculatively to achieve
concurrency dynamically. Hardware transactional memory (HTM)
achieves this speculation with low overhead by exploiting the cache
coherence protocol and processor speculative state to detect and re-
cover from atomicity violations, but only very limited HTM has
been implemented in commercial processors [18]. Software trans-
actional memory (STM) adds instruction overhead to track which
threads are touching which data and to recover if needed. Fur-
ther, non-transactional code such as I/O and other system calls and
writes to volatile registers are problematic in transactions because
of the speculative nature of transactions.

Programmer-specified atomic sections that are enforced with
compiler-generated locks are non-speculative; thus, they avoid the
issues that HTMs and STMs encounter as a result of speculation.
High-performance implementation of atomic sections does depend,
however, on effective compiler analysis. In particular, conserva-
tiveness in alias or escape analyses can result in too many locks
or overly coarse-grained locks, as shown in [4, 8]. This conserva-
tiveness typically arises from complex pointer-chasing code of the
sort found in standard data structures like hashmaps, trees, lists,
and queues. Thus, while these atomic sections work well with rela-
tively simple code, their performance is often worse in the presence
of pointer-based data structures.

As a further limitation, most implementations of atomic sections
(whether enforced via lock inference or implemented using STMs)
do not provide strong atomicity – the ability to prevent races result-
ing from unsynchronized code in one thread containing accesses to
data guarded by synchronization in another thread. Strong atomic-
ity is important because it lets a function use locally placed atomic
sections to guarantee its correctness without any possible interfer-
ence from external code.

This paper describes a technique to enforce the semantics of
atomic sections using locks. It does so in the context of the Java
programming language. We have developed an efficient and effec-
tive algorithm to enable the insertion of locks to enforce atomic re-
gions. A major impediment to automatically generated locks to en-
force atomic regions occurs in code with pointer-based data struc-
tures such as hashmaps and linked lists. Our system uses the con-
cept of smart data structures, which are a library of concurrent
data structures whose internal aliasing semantics are exported to



the compiler, thus enabling less conservatism in our alias analysis
and allowing locks to be generated efficiently even in the presence
of complicated pointer-chasing code in libraries. Finally, this more
precise alias analysis allows strong atomicity to be enforced while
preserving scalability in the benchmarks we have studied.

This paper makes several key contributions.
• It illustrates how smart data structures sharpen alias analysis

and other pointer-based analyses.
• It explains our analysis and lock assignment algorithms as ap-

plied to Java programs, and how they interact with smart data
structures.

• It provides empirical evidence of the effectiveness of these al-
gorithms, achieving speedups of 0.83 to 5.9 on eight threads
(compared to a fully sequential version with no parallel con-
structs or synchronization) for the five STAMP benchmarks
studied, outperforming STM on all but one of the benchmarks,
and nearly matching the performance of programmer-specified
fine-grained locks on all but one of the benchmarks. The results
also indicate that compiler knowledge of data structures boosts
eight-thread performance by up to 300%. Our techniques allow
for software support of strong atomicity with less than 1% over-
head for two benchmarks and less than 20% for three others.
In addition, we present results from the SPECjbb2000 bench-
mark (which has traditionally not been amenable to static anal-
yses) showing performance nearly equal to that of programmer-
supplied fine-grained locking.

The paper is organized as follows. Section 2 makes explicit
the advantages of our smart data structure approach. Section 3
describes our extension of Soot’s SPARK analysis [16] to be smart
data structure aware, and Section 4 describes our lock generation
algorithm. Section 5 presents experimental results that show the
effectiveness of our technique. Finally Section 6 gives an overview
of related work, and Section 7 presents our conclusions.

2. A Case for Data Structure Aware Compilers
Multicore architectures have made the problem of how to synchro-
nize parallel programs much more widespread. Almost all appli-
cations run in a parallel hardware environment, and could benefit
from increased parallelism within the application. Concurrent and
parallel program development requires a means of enforcing the
atomicity of blocks of code - sequences of instructions which oper-
ate on shared data and which must appear to execute atomically. As
discussed in the introduction, the use of compiler-generated locks
to enforce programmer-specified atomic regions would overcome
the problems faced by other techniques if accurate compile-time
analysis of complicated pointer-based algorithms were possible.

The problems with compile-time analysis are of two kinds.
First, to bound the running times of alias and escape analyses, it
is necessary to “name” objects based on static program constructs.
A common technique is to name all objects by their allocation site
or type, thus treating all objects with the same allocation site (or
type) as the same object. Second, complicated control flow makes
it difficult to determine statically what object some reference is
actually pointing to. This in turn makes inferring what objects are
shared, and thus what objects must be locked, less precise. Note
that even relatively simple data structures can lead to conservative
decisions on aliasing. A simple linked list, for example, presents
problems to an analyzer ignorant of the nature of the underlying
data structure and the semantics of the operation being performed.
Consider the following fragment of code used to insert data into a
sorted linked list:

void insert(int data){
while(node.data < data)

node = node.next
// insert new node. . .

}
Given that the compiler cannot make any assumption about

where within the list the new node must be inserted, it must con-
servatively assume that every node is being modified. The resulting

lockset serializes access to the entire list, resulting in a severe per-
formance degradation.

Fortunately, in modern languages some of the most compli-
cated pointer-chasing code is found in standard library code. Stan-
dard libraries have allowed significant functionality to be added to
programs without complicating the base language. Moreover, in
languages like Java with well-defined naming conventions for li-
braries, a compiler can know what the semantics of a particular
library call is, and how this call will affect aliasing relationships.
Moreover, these libraries are typically thread safe, allowing a com-
piler to know that it need not be concerned with generating locks
for the internal “meta-data” of the library. This knowledge about
libraries can be exploited to allow efficient generation of locks by a
compiler using alias and/or escape analyses that are no more com-
plex than the current state-of-the-art. We refer to such concurrent
data structures with exportable aliasing semantics as smart data
structures. Section 4.4 describes how the library programmer spec-
ifies the semantics of the various smart data structures to the com-
piler. We note that the compiler does not check to ensure the thread-
safety of the various data structures, just as the Java programmer
trusts in the reentrancy of various structures in the standard library,
and does not explicitly check them.

Our compiler exploits information about these data structures
implemented as standard libraries to improve the quality of our
alias analysis, which is an enhanced form of the SPARK analysis
supplied by Soot. Because data structure knowledge enables supe-
rior alias information, we use a lock generation algorithm that is
simple to implement and maintain.

As an example of the performance gains that are possible (more
extensive results are provided in Section 5), we measured the per-
formance of a simple synthetic benchmark with a data structure-
aware and unaware analysis. The benchmark attempts to insert and
delete values to and from a concurrent linked list. The analyzer
which was aware of the semantics of the underlying concurrent
data structure could generate more aggressive locksets, leading to
marked performance gains (up to 700%).

3. Alias Analysis
Our alias analysis is based on the SPARK points-to set analy-
sis [16]. SPARK is a context and flow-insensitive, subset-based,
field-sensitive analysis that uses, and is distributed with, the Soot
optimization framework. We have changed SPARK in two signifi-
cant ways. First, SPARK “names” objects by their allocation site.
We “name” objects by the class static or threadable object construc-
tor argument that they may get their value from. In Java, only those
objects that are aliased to, or reachable from, a class static or thread
constructor may be accessed concurrently in multiple threads, i.e.
may thread-escape. For brevity we call this class of references es-
cape portals or EPs. Our analysis gives special treatment to EP ref-
erences. Secondly, we extend SPARK to provide a context-sensitive
(but flow-insensitive) points-to analysis.

Spark has two main phases: construction of the pointer assign-
ment graph (PAG) by initializing the graph with the effects of
individual references within the statements of a procedure (Sec-
tion 3.1), and an interprocedural propagation phase that allows
summarization of the interprocedural effects on the PAG (Sec-
tion 3.3).

3.1 Construction of the pointer assignment graph
The PAG, as its name suggests, summarizes the effects of assign-
ments between pointers, or references. The PAG is a tuple (N, V ),
where nodes represent reference variables that are the targets of as-
signments (i.e. nx is the node for reference variable x), and edges
e = (te, nx, ny), where te is the edge type (assignment, load and
store), nx is the left hand side of the expression for each type, and
ny is the right hand side. The three types of edges (assignment,
load and store) correspond to the assignments x = y, b1 = a.b
and a.b = b1, respectively. Their transfer functions (i.e. the rules
governing how the various points-to sets are propagated) are sum-
marized in Table 1.



allocation edge PointsTo(a)∪ = A
(a ⇐ newA())

assignment edge (x ⇐ y) PointsTo(x)∪ = PointsTo(y)

load edge (b1 ⇐ a.b)
∀ai ∈ PointsTo(a)
PointsTo(b1)∪ = PointsTo(ai.b)
read-set(PointsTo(ai.b))∪ = C

store edge (a.b ⇐ b1)
∀ai ∈ PointsTo(a)
PointsTo(ai.b)∪ = PointsTo(b1)
write-set(PointsTo(ai .b))∪ = C

smart data structure PUT ∀ωi ∈ PointsTo(ω)
(ω.put(a)) PointsTo(ωi.data)∪ = PointsTo(a)

write-set(ωi)∪ = C
smart data structure GET ∀ωi ∈ PointsTo(ω)

(a ⇐ ω.get(. . .)) PointsTo(a)∪ = PointsTo(ωi.data)
read-set(ωi)∪ = C

Table 1. Points-to set transfer functions for the various PAG edges;
C is the current context.

As in SPARK, the PAGs are always rooted at allocation sites
since multiple chains of references to allocated objects are what
indicate aliasing. However, only those allocation sites which are
reachable from a common EP object actually thread-escape, and
only those allocation sites are considered during lock generation.

SPARK is context insensitive: it does not differentiate, for ex-
ample, between multiple calls to the same method. In addition,
there is no provision within SPARK to recognize atomic sections.
To improve the accuracy of the alias analysis, we convert SPARK
into a context sensitive analysis. We do so in the standard way: by
converting the call graph into a call tree, as in, for example, [25]. In
addition, we incorporate support for atomic sections within SPARK
by creating a new context for each atomic section.

3.2 Transfer functions for smart concurrent data structures
We now provide some details about how smart data structures
interact with our compiler’s alias analysis. In this discussion, we
differentiate between operations that insert values into the data
structure (PUT operations) and operations that return objects from
the data structure (GET operations).

A data structure’s primary purpose is to serve as a repository
for data; the underlying repository may be an array, a linked list,
or something more esoteric. Regardless of the structure, every data
structure has a field (or a set of fields) that stores the data. We call
this field data and model it as an object, to be compatible with the
rest of the SPARK framework.

Let D be a smart data structure and let PointsTo(vi) be the
points-to set of a reference to object vi being inserted into D via a
PUT operation. At the end of the PUT, the points-to-set of the field
D.data updated by the PUT contains PointsTo(vi) , in addition to
its previous contents, i.e. PointsTo(D.data) ∪ = PointsTo(vi).
Let v1, v2, . . . , vN be the set of all objects which are added to
D via PUT operations. Then, at the end of this sequence of PUT
operations the set of all allocation sites in the points-to set for
D.data is PointsTo(D.data) =

Si=N
i=1 PointsTo(vi).

Let there be an assignment x = GETD , which returns a refer-
ence to some object v referenced from D.data. Then, because we
model GET operations as returning any possible data referenced in
D, the updated point-to set of x is found by unioning it with the
points-to set of v, which is PointsTo(D.data) from above, i.e.

PointsTo(x)∪ = PointsTo(D.data)

Table 1 gives the complete transfer functions of the points-to set
analysis.

3.3 Alias set propagation
Our enhanced algorithm, like the original SPARK algorithm, uses
a worklist to propagate alias information. However, unlike the orig-
inal SPARK algorithm, the worklist used in our algorithm is a per-
context worklist. The worklist is initialized with all allocation edges
contained within that context. The algorithm processes a node on
the worklist by inspecting all of its various edges and setting the

points-to, read, and write sets as summarized in Table 1. If this pro-
cessing changes the points-to set of any node, that node must then
be added to the worklist. The algorithm continues until the worklist
empties and every possible alias relationship has thus been deter-
mined.

4. Lock DAG Generation and Lockset Generation
The lock DAG data structure is the key data structure used in our
analysis for assigning locks. A lock DAG is built for every EP
referenced in the program. Nodes in a lock DAG for an EP are the
classes, and fields of those classes, reachable from the EP. Using the
PointsTo sets computed during alias analysis, the nodes of the lock
DAG can be annotated with read and write operations performed
on the node, and the thread performing the operation. It is this
use of alias analysis that leads to poor performance in the presence
of overly-conservative alias information, and that enables superior
application performance when smart data structure information is
used to improve the alias information. The annotated lock DAG is
then used to determine which class fields point to objects involved
in races, and therefore which class fields require that locks be
generated to prevent those races.

In Section 4.1 the construction of the lock DAG is described.
Section 4.2 then shows how the lock DAG is used to generate and
optimize locksets.

4.1 Lock DAG creation
A lock DAG (or DAG for short) is constructed for each EP. Thus
a DAG is created for each class static variable and each object
reference variable that was initialized during the construction of
the object. Given an EP, a DAG is constructed by making the root
of the DAG a node whose type (T ) is the type of the EP. The
DAGs themselves are rooted at the nodes corresponding to the
various EPs. We then recursively follow the points-to sets of the
fields of references reachable from the various EPs and add DAG
edges to the nodes corresponding to their allocation sites. Naively
adding nodes to the DAG would lead to a DAG of unbounded size
when confronted with a recursive data structure. We handle this by
checking if a node corresponding to an allocation site to be added is
already present in the DAG. If it is, no action is taken for that node.
Figure 2 shows the pseudo-code for the lock DAG construction.

We now present an example of DAG construction. Figure 1(c)
shows the constructed lock DAG for a class static EP referenced
instance of the class Data (shown in Figure 1(a)). WTi next to
a node indicates a write-access by thread Ti to that node, while
RTi indicates a read-access. Thus, in Figure 1(c), node B is being
write-touched by thread T1, while node C is being read-touched by
thread T3. Figure 1(b) shows some pseudo-code illustrating how
thread T1 performs a write-access to a node; the pseudocode for
the other accesses is not shown, but the DAG in Figure 1(c) is
generated assuming that thread T1 has a read-access to node E,
thread T2 has a write-access to node D, thread T3 has a read-access
to node C, thread T4 has a write-access to node E and that thread
T5 has a write-access to node F . These thread-access annotations
are generated by the alias analysis and are copied over onto the lock
DAG during the construction of the DAG, as shown in Figure 2.

4.2 Generating Locksets from a lock DAG
After creating a lock DAG our algorithm generates an initial con-
servative set of locks for the atomic sections in the program.

The lockset generation is achieved by iterating through the lock
DAG and eliminating (or pruning) those nodes whose correspond-
ing operations are not involved in any data races. Once the locksets
for the different threads have been generated, a further round of op-
timizations attempts to reduce the total number of locks required.
We present the DAG-pruning and lockset optimization algorithms
below.

4.2.1 Lock DAG pruning and initial lockset generation
Before proceeding, we give some needed definitions.

DEFINITION 1. A node B is an ancestor of a node A if any path
from the root R of the lock DAG to A passes through B. The



class Data {
TypeB B;
TypeC C;

}

class TypeB {
int D;
char E;

}

class TypeC {
float F;

}

Class T extends Thread {
static Data A;. . .
atomic {

. . .
A.B = <. . .>

}
}
Class Main {

T1 = new T(); T2 = new . . .; . . .
T1.run(); T2.run(); . . .

}

  

A

B

D E

C

F

W
T1

W
T2 R

T1  
,W

T4

R
T3

W
T5

  

A

B

E

W
T1

R
T2

, R
T4

W
T4

R
T1

(a) Pseudo-code for accessed
data structures

(b) Pseudo-code to access
shared reference (c) Lock DAG before pruning (d) Lock DAG after pruning

Figure 1. Lock DAG example.

ancestor relationship node B is an ancestor of node A is written
A � B. By definition: A � A. Also, B is a strict ancestor of A if
A � B and B 6= A. This is is written A ≺ B.

As an example, consider the lock DAG shown in Figure 1(c). From
our definition, node B is an ancestor of D. This is because some path
from the root A to D must pass through B. It is also a strict ancestor,
and so we write D ≺ B.

DEFINITION 2. If thread TA accesses node A and thread TB ac-
cesses node B then TA � TB if and only if A � B.

Again, in Figure 1(c), the read-access by thread T3 to node C is an
ancestor of the write-access by thread T5 to node F, because C is
an ancestor of F. This relationship is represented as: T5 � T3.

DEFINITION 3. Two accesses are related by the may happen in
parallel (MHP) relation if the accesses are in separate thread in-
stances.

Since each of the accesses depicted in our example occur in sep-
arate threads, any access may happen in parallel with every other
access.

DEFINITION 4. A conflict exists if two or more concurrent accesses
occur to object references, the objects are aliased, and at least one
of those accesses is a write. If one of a pair of conflicting references
is not guarded by an atomic section, there is the potential of a race
at runtime. Only non-conflicting accesses can run concurrently,
without being guarded by atomic sections.

We note that every access to a node in the lock DAG implicitly
involves a read access to an ancestor. This is intuitively obvious
since, by the definition of the term, paths to a given node must tra-
verse through its ancestors. Given this observation, in Figure 1(c),
the write-access by thread T1 to node B conflicts with the write-
access by thread T4 to node E, because the write on node Ewould
also involve an implicit read of node B by thread T4. In addition,
thread T2 and thread T4 never conflict, because neither thread has
a write-access to a node being read or written by the other thread.

Pruning lock DAGs If an ancestor relationship exists between
accesses in two threads then the accesses need not be guarded by
critical sections if, and only if, the ancestor access is a read access.
If no ancestor relationship exists between the two accesses then
they are allowed to run in parallel.

Two accesses are allowed to run in parallel if and only if no data
race exists between them. An access to a node implies a read-
access to each of its strict ancestors. If one of those ancestors is
also being concurrently written-to in another thread, then a data
race exists between that pair of accesses and, by our definition,
the two threads cannot be allowed to run concurrently without
synchronization. Thus, if an ancestor relationship exists between

procedure constructLockDAG(EP , L)
input: EP : list of escape portals
input: L: list of all allocation sites
Map M = new Map()
for each l in L do

D = new DAGNode(l)
M.put(l, D)

end for
for each e in EP do

E = M.get(e)
call constructSubDAG(E, M, new List())

end for

procedure constructSubDAG(N, M, L)
input: N: current DAG node
input: M: Map of all DAG nodes
input: L: DAG nodes in current DAG
for each field f in N do

for each allocation site a ∈ points-to(f) do
R = READ-SET(a), W = WRITE-SET(a)
A = M.get(a)
Add R,W to A
Add edge from N to A
if A is NOT present in L then

Add A to L
call constructSubDAG(A, M, L)

end if
end for

end for

Figure 2. Lock DAG construction algorithm.

accesses that may be in two threads, and the ancestor access is
a write, the accesses must be locked. We say these accesses are
multi-touched. If every access to some subtree S of the lock DAG
can execute concurrently without locks, then that subtree can safely
be pruned away. Intuitively, locks are needed to guard against the
possibility of data races occurring between competing accesses to
some region of memory: they are not needed if data races cannot
occur. Figure 3 shows the complete lock DAG pruning algorithm.

Lock DAG pruning example Figure 1 shows an example of a
lock DAG before and after pruning. Figure 1(c) shows the DAG
before pruning, with nodes labeled RTi and/or WTi to indicate
read/write touches by thread Ti. From the figure, the only nodes
being multi-touched are nodes B, C and E. Node B is being
multi-touched because thread T1 is writing to it, while threads T2

and T4 are reading from it (during the access of nodes D and E,
respectively). Node C is being multi-touched because threads T3

and T5 are reading it concurrently. Node E is being multi-touched
because thread T1 is reading from it, while thread T4 is writing
to it. In this example, the shared accesses all occur in separate
threads. If accesses occur in the same thread then the may happen



procedure lock-dag-prune(N )
input: N : current node
output: canBePruned: boolean value indicating whether N can be
pruned
canBePruned = true
if N is write-touched by thread Ti then

if N is read or write-touched by thread Tj then
// This node cannot be pruned
// if a data-race exists
canBePruned = false

end if
end if
for each child Ci of N do

pruneChild = lock-dag-prune(Ci)
if pruneChild == true then

remove child Ci
end if
// cannot prune this node if cannot prune all its children
canBePruned &= pruneChild

end for
return canBePruned

Figure 3. Lock DAG pruning algorithm.

in parallel rule (defined above) is applied first to determine whether
accesses occur concurrently. A recursive, depth-first application of
the pruning algorithm yields the following steps:
• Node D can be pruned because only thread T2 accesses it. It is

therefore pruned away. Node E cannot be pruned because there
are multiple accesses to it and at least one of those accesses is
a write: thread T4 has a write-access to it, while thread T1 has
a read-access to it. Node E is now the only leaf node with B as
an ancestor.

• Node B cannot be pruned because it has at least one child which
cannot be pruned. The subtree rooted at Node B is therefore
retained in the lock DAG.

• Node F can be pruned because only thread T5 accesses it. Node
F is therefore pruned away. Node C is now a leaf node.

• Node C can also be pruned because even though there are
multiple concurrent accesses to it (threads T3 and T5 both read
it), all of those accesses are read accesses. Per our algorithm,
therefore, no write access that is an ancestor to the subtree
rooted at C exists, and it can be safely pruned.

Figure 1(d) shows the lock DAG after applying the pruning algo-
rithm.

Lock Generation Algorithm The following algorithm is executed
once for every reference in an atomic section.

Input:

i. A: an access to a node N in the unpruned lock DAG repre-
sented as the path string P = R.f1.f2. . . . .fmN from the root
R of the unpruned lock DAG to N .

ii. The pruned lock DAG T ′. Let nfi represent a node in the lock
DAG for the type of some field fi.

Algorithm: Initially, α = R.

1. If α == N then if access A is a read emit readLock(A)
and exit the algorithm else emit writeLock(A) and exit the
algorithm.

2. If nα has a write access by some other thread to it then emit
readLock(α).

3. Let fi = next path component in P . If node nα does not have an
edge E = (nα, nfi) then exit the algorithm. If edge E exists
then set α = fi and goto step (1).

Continuing the example in Figure 1, assume that we wish to
generate the lockset for the write-access A.B.D by the thread T2.
The path P is given by the string P = A.B.D and the target node,
(N in the algorithm above), is set to D. The first component in

the path P is the node A, which is the root of the lock DAG. The
algorithm sets nα = nA. In step (1), the check if α == N fails,
as does the check in step (2) to see if any write-access to node nα

exists. The algorithm thus proceeds to step (3) where it extracts
the next component in the path, B. It determines that that the edge
E = (nA, nB) exists. The algorithm sets α = B and returns to
step (1). Again, in step (1), α 6= N and the algorithm proceeds to
step (2), where it determines that node nB has a write-access by a
different thread (T1) and so it emits a readLock(B) and proceeds
to step (3). At step (3) the algorithm extracts the next component
in the path (D), determines that the edge (B, D) does not exist
(having been pruned away) and so exits.

We emphasize that locking a node in a path involves
(read)locking every strict ancestor of that node. Thus, locking the
node C, in the path A.B.C implicitly involves locking nodes A
and B. More specifically, the readLock(B) generated in the ex-
ample above effectively induces a readLock(A) first (since A is
an ancestor of B in the path P = A.B.D). This path-locking is
generated automatically by the locking library.

The example given in Figure1 generates only a single lock call
per atomic section. In the more general case, a given atomic section
could be guarded by multiple lock calls. To prevent deadlock, we
use a strict two-phase locking protocol and, in addition, canonical-
ize lock strings lexicographically. The lock string is the complete
lock DAG path to the node being locked. Also, locks generated by
the inner atomic section(s) of nested atomic scopes are automati-
cally hoisted up to the outermost atomic scope.

It should be noted that this DAG traversal is performed at
compile-time, and is done once per shared reference in the pro-
gram.

4.2.2 Lockset optimization
The lock pruning algorithm may cause redundant locks to be gener-
ated, i.e. locks that enforce a weaker constraint than another already
generated lock. An example of this is generating a read and write
lock on the same object.

To eliminate such unnecessary lock calls, the compiler uses a
thread-local lockset optimization heuristic. This heuristic uses a
copy of the lock DAG from the alias analysis phase (from which all
read/write information has been removed) to determine if any read
or write lock calls are extraneous and can safely be discarded. Note
that this decision making is purely thread-local: no attempt is made
at any global lockset optimizations. Briefly, the heuristic makes
the following decisions: (i) A write lock to a node N obviates
the need to read/write lock any node that N is a strict ancestor
of, and (ii) A read or write lock to N obviates the need to read
lock any (strict) ancestor of N . To accomplish these objectives, the
lockset optimization procedure begins by first marking every node
that is read or write locked by the current thread. It then iterates,
in a depth-first fashion, over the nodes, checking them against the
heuristic. It prunes (i.e. removes) every descendent of a node that
is write locked. It also removes the read marking of every node
that is a (strict) ancestor of a node that is also read (or write)
locked. At the end of the procedure, the algorithm collects all of the
remaining read and write marked nodes and emits the new locksets.
Continuing the example in Figure 3(d), the write lock by thread T1

on node A.B obviates the need for T1 to read lock node A.B.E,
while the write lock by thread T4 on node A.B.E obviates the need
for T4 to read lock node A.B. Thus, the final locksets as emitted by
the optimization procedure are: (i) RT1 = {∅}, WT1 = {A.B}, (ii)
RT2 = {A.B}, WT2 = {∅}, (iii) RT3 = {∅}, WT3 = {∅}, (iv)
RT4 = {∅}, WT4 = {A.B.E} and (v) RT5 = {∅}, WT5 = {∅}

4.3 Refinements to the basic algorithm
4.3.1 Array accesses
SPARK labels allocation nodes based on their respective sites. In-
dividual elements of an array allocated within a loop, for exam-
ple, share a common allocation site and are effectively aliased to
each other (because their points-to sets contain the same allocation
node). As a consequence, accesses to different elements of an ar-
ray are treated as accesses to the common allocation node. This



can lead to overly conservative locksets. Our compiler differenti-
ates between such accesses by annotating array reads and writes
with the subscript expression used to index into the array. The an-
alyzer in turn uses this subscript expression to decide whether dif-
ferent accesses to the array are independent. In addition, during the
code generation phase, when at least one subscript expression for
an array is invariant in the atomic section, the compiler can perform
locking at a finer granularity than locking the entire array. In this
case, the analyzer creates an array of locks (lock-array), and maps
the subscript expression into the array of locks. We note that for
space efficiency the lock-array can be smaller than the array being
synchronized, or can be reused across several arrays, with a pos-
sible loss of concurrency. In our current implementation, the lock-
array is of a constant size (32 elements). The appendix contains an
example of a lock-array.

The analyzer treats locks generated on values derived from con-
current hashmap operations similarly, creating a lock-array for such
situations (after verifying that the key value used in the operation
is invariant over the atomic scope) and indexing into the lock-array
(with the hash value of the key as the subscript expression). If the
key value used is not in scope at the beginning of the atomic sec-
tion (or is not invariant over the atomic scope) then this special
fine-grained per-key locking optimization cannot take place and the
analyzer generates a coarse-grained lock on the entire hashmap.

4.3.2 Ensuring strong atomicity
The PAG building phase builds up information about which refer-
ences are being accessed. We augment this information-gathering
phase with line numbers and enclosing atomic scope information.
During the propagation phase, the analyzer tracks which of these
references are EP-reachable. Accesses to EP-reachable references
which fall outside of an atomic scope are tagged as such. A warn-
ing is emitted for every such reference, and lock/unlock function
calls are generated as required. Results comparing the net effect of
enforcing strong atomicity are given in Section 5.4.

4.3.3 Exploiting mutating smart data structures
Operations which return values from the data structure may do so
either by first removing the value from the data structure and then
returning it, or by leaving the underlying data structure unchanged.
We refer to the former as mutating GET operations and the latter as
non-mutating GET operations. Examples of mutating GET opera-
tions include concurrent stack pop operations, while non-mutating
GET operations would include stack peek and hashmap get op-
erations. Needless to say, having smart data structures greatly sim-
plifies the detection of mutating GET operations.

If it can be proven by the compiler that every datum added to the
data structure is unique, and that the GET is mutating, the compiler
knows that the objects returned by repeated GET operations are not
aliased, and accesses to them need not be synchronized with one
another. An example of when this can occur, and be detected by
compiler analysis, is the initialization of a data structure within a
loop where every data structure value (perhaps read from a file) is
placed in a unique object and PUT into the data structure. Bench-
mark results, presented in Section 5.3 show that substantial perfor-
mance improvements are possible with this optimization.

4.4 Extending the smart data structure library
In Section 3.2 we saw how the alias analyzer uses semantic knowl-
edge of concurrent data structures to propagate alias information.
The analyzer requires two critical pieces of information to do so.
First, it needs to know if a given reference is an instance of a smart
data structure. Second, it needs to know whether the operation be-
ing performed on the data structure is a GET or a PUT. Given these
two pieces of information, the analyzer can then propagate points-
to information by using the transfer functions of Table 1. In ad-
dition, Section 4.3.3 illustrated how certain optimizations can be
introduced for mutating GET operations. Because the fundamental
nature of operations (i.e. whether it inserts data into or removes data
from the data structure) is thread-agnostic (a stack push is seman-
tically a PUT operation, and a stack pop is semantically a mutating
GET operation, regardless of the number of threads accessing the

class⇒ class name (isArray)? methodList
name⇒ string
methodList⇒ (method)+
method⇒ method name methodSpec
methodSpec⇒ typeSpec mutatingSpec
typeSpec⇒ opType = GET | PUT
mutatingSpec⇒ isMutating = (true | false)

Figure 4. Concurrent Data Structure specification grammar.

class ConcurrentStack
method push opType = PUT isMutating = true
method pop opType = GET isMutating = true
method peek opType = GET isMutating = false

class ConcurrentQueue
method pushBack opType = PUT isMutating = true
method popFront opType = GET isMutating = true

class ConcurrentHashMap isArray
method put opType = PUT isMutating = true
method get opType = GET isMutating = false
method remove opType = GET isMutating = true

Figure 5. Example specification of some concurrent structures.

stack), the job of the system architect is reduced to merely provid-
ing the name of the concurrent data structure class, the names of the
various methods that perform its operations, and the semantic na-
ture of those operations (mutating/non-mutating GET or PUT). Fig-
ure 4 shows the grammar used to notify the analyzer of the presence
of various concurrent data structures, while Figure 5 gives an ex-
ample of the specification of some common current data structures.
The isArray qualifier tells the analyzer to maintain a per-index
list of references, and is commonly used in hashmaps and other
data structures which store data in <key , value> pairs. Omitting
this specifier will still lead to correct, if overly conservative, lock
allocations.

5. Experimental Evaluation
This section presents the experimental evaluation of the systems
studied, including the experimental methodology, quantitative per-
formance results, detailed analysis, and discussion.

5.1 Methodology
The strategies discussed in this paper are evaluated using five
benchmarks from the Stanford Transactional Applications for
Multi-Processing (STAMP) benchmark suite [2], the SPECjbb2000
benchmark [22] and a benchmark derived from Doug Lea’s
Bounded Buffer benchmark [15]. We have modified Soot to out-
put either C++ code or Java code, as required by the benchmark. In
what follows, we refer to the parser, alias analyzer and code gener-
ator as SmartLock.

The STAMP benchmarks were designed for transactional mem-
ory systems, but have also become popular as a benchmarking tool
for conservative concurrency control. The set of STAMP bench-
marks used in this evaluation is identical to that seen in the lock-
generation work of Cherem et al. [4], except that Intruder is used
instead of Bayes (Bayesian network learning); the STM implemen-
tation provided with the current distribution of Bayes experienced
a segmentation fault during this study. The five STAMP bench-
marks considered were: (1) genome: A gene sequencing program
using Hashmaps and Linkedlists, (2) intruder: A network intrusion
detection program using Hashmaps, FIFO queues, Linkedlists and
extensible Vectors, (3) kmeans: A K-means clustering program, (4)
labyrinth: A maze routing program using FIFO queues, Linkedlists
and Vectors and (5) vacation: A travel reservation program using
Hashmaps and Linkedlists.

The STAMP programs synchronize using explicit atomic sec-
tions. This paper evaluates four implementations of each program:
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Figure 7. Relative slowdowns in SPECjbb2000.

a C version using the TL2 software transactional memory system
(called STM) [5], a C version that implements all atomic sections
using a single global lock (Single-Lock), a C version in which
atomic sections are manually converted to fine-grained locks using
detailed analysis by the programmer (Multi-Lock), and a Smart-
Lock port of the C code. As discussed in Sections 2, 3 and 4, Smart-
Lock’s compiler analyzes the code to generate fine-grained locks
for the programmer-coded atomic sections, exploiting knowledge
of SmartLock’s memory model and primitive data structures for
efficiency.

The SPECjbb2000 benchmark [22] is a widely-used Java server
benchmark, consisting of several threads performing various trans-
actions on a backend database. This benchmark has been used pre-
viously in other works on transactional systems [3, 8]. Although the
benchmark itself is considered to be embarrassingly parallel [3],
its combination of a complex B-tree database structure and non-
conventional access patterns have been shown to be difficult to
analyze in a static context [8], and is a powerful example of how
compiler knowledge of data structures can greatly improve lockset
allocations. We evaluate four versions of the SPECjbb2000 bench-
mark: an unmodified, unanalyzed version which preserves the orig-
inal synchronized methods and blocks (Unprocessed), a SmartLock
version which uses coarse-grained atomic blocks (SmartLock-
Coarse), a SmartLock version which uses finer-grained atomic
blocks (SmartLock-Fine) and one which uses a single, global lock
to protect against concurrent accesses (Global).

The benchmarks discussed above do not make use of mutating
operations. To showcase our mutating GET optimization strategy
(Section 4.3.3), therefore, we also include a benchmark derived
from Doug Lea’s Bounded Buffer program [15]. The benchmark
consists of a number of producer threads repeatedly inserting newly
allocated objects onto a bounded buffer, and a number of consumer
threads repeatedly modifying objects extracted from the buffer via
mutating reads. We compare the performance of a version which
uses the mutating GET optimization (Optimized) versus one that
does not (Unoptimized).

The experiments are all performed on a Dell Poweredge 2950
server with two 1.8 GHz quad-core Intel Xeon E5320 processors
based on the Core 2 microarchitecture (8 cores total). This system
has 16 GB of system RAM and 4 MB L2 caches shared between
pairs of processors. This system runs Linux kernel 2.6.18 and GNU
C library 2.3.6 with the Native POSIX Threads Library in the
Debian AMD64 distribution. All C/C++ programs were compiled
using the GNU gcc compiler at optimization level: -O3. We used
version 1.5.0 10 of the Sun JVM to run the Java versions of the
benchmarks.

5.2 Base results and analysis
Figure 6 presents experimental results showing the performance
and scalability of five STAMP benchmarks under each of the imple-
mentations described above. In each case, the X axis represents the
number of threads while the Y axis shows the execution time in sec-

onds on the given platform. Note that Labyrinth has no Multi-Lock
implementation as its irregular access patterns made its atomic sec-
tions unamenable to fine-grained locking.

Across all five benchmarks, STM has substantial overheads re-
lated to tracking read and write sets: these overheads degrade sin-
gle thread performance by a minimum of 27% (on Labyrinth) and
a maximum of 822% (on Vacation). STM does provide speedup in
all of the STAMP benchmarks studied. Single-Lock, on the other
hand, yields speedups only for Genome and Kmeans, and only up
to 4 threads in both cases. Multi-Lock provides the best perfor-
mance and scalability for each of the four applications for which it
applies. SmartLock achieves performance nearly identical to Multi-
Lock (and far better than STM) in Genome, Intruder, and Kmeans.
SmartLock’s performance lags Multi-Lock in Vacation, but still
exceeds Single-Lock and STM substantially. Since SmartLock’s
atomic sections are implemented using locks, it does not experience
the overheads of STM. In Labyrinth, however, the performance of
SmartLock matches Single-Lock exactly, and STM yields the best
performance since its speedups from dynamic concurrency com-
pensate for the overheads of data tracking.

Detailed analysis of these results shows that the behavior of
the different implementations depends largely on the data accessed
within the atomic sections. Genome and Intruder behave similarly
since the primary data structure accessed in the atomic sections is a
smart Hashmap, understood by the SmartLock compiler. Any given
atomic section operates on no more than one Hashmap, using no
more than one key, and doing either get or put (but not both).
The SmartLock compiler automatically assigns separate locks to
atomic sections using the Hashmap key to index into an array of
per-bucket locks. In this way, atomic sections based on different
Hashmap keys can execute concurrently since they are unrelated.

Kmeans does not use smart data structures, but it has short
atomic sections that access arrays. Each atomic section in the clus-
tering algorithm repeatedly accesses one row in each of two 2-D
arrays. Since the row-index is constant in any given atomic sec-
tion, SmartLock can lock only that row of each array as described
in Section 4.3.1. This allows the SmartLock version to outperform
the Single-Lock version at eight threads. The hand-coded Multi-
Lock version outperforms the SmartLock version, however, be-
cause the SmartLock version performs two locking operations per
atomic section (one per array), as opposed to the hand-coded ver-
sion, which only performs one. This is because the SmartLock an-
alyzer conservatively assigns a separate entry in the lock DAG for
each array, even though the row-index is common to both arrays
and the arrays are always used together. A lock optimization strat-
egy could detect such cases and help to optimize away one of the
locks [12].

The atomic sections of Labyrinth access data in an irregular
way that is not statically analyzable using the methods described in
Section 3 or by a detailed manual inspection of the code. Thus, the
only locking scheme used here is effectively Single-Lock, whether
in C or generated by the SmartLock compiler.

Vacation lies somewhere between the extremes of the other
benchmarks. Atomic sections in this code perform tasks such as
atomically getting one or more entries from one hashmap and
putting one or more entries into another. Unlike Labyrinth, the
code can be analyzed by a sufficiently sophisticated programmer
who must establish a canonical ordering among the different locks
used in the program and then acquire them in a particular order
to allow for a Multi-Locked implementation. Unlike Genome and
Intruder, however, the SmartLock compiler only has limited ana-
lytical success, as it must generally make conservative assumptions
about concurrent map gets and puts in certain atomic sections.
As a result, SmartLock can generate some fine-grained locks based
on analysis of concurrent map operations in some atomic sections,
but cannot exploit techniques like per-key locks in others.

In summary, SmartLock achieves nearly all of the performance
of the Multi-Locked implementation for three of the four bench-
marks that have a Multi-Locked version, but does this while allow-
ing the programmer to specify only atomic sections rather than fine-
grained locks. Conservative synchronization allows SmartLock to
avoid the overhead of access tracking associated with STM. Con-
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Figure 6. STAMP benchmark performance and scalability results.
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Figure 8. Impact of data structure knowledge on STAMP benchmarks.

sequently, the SmartLock solution also outperforms STM for four
out of five benchmarks (and substantially so for three of them).
This is despite the fact that these benchmarks were drawn from a
suite specifically designed to showcase algorithms appropriate for
transactional memory systems.

Figure 7 presents the results from the SPECjbb2000 benchmark,
under each of the implementations described above. The X axis
represents the number of threads, while the Y axis depicts nor-
malized slowdowns against the unprocessed implementation. The
coarse grained implementation features atomic blocks around the
outermost transactions and, as such, cannot take advantage of the
SmartLock’s ability to use per-key locking for smart maps, leading
to a reduction in concurrency and loss of performance. The finer
grained implementation, on the other hand, places atomic blocks
within the various transactions themselves, bringing into scope the
various map gets and puts and allowing SmartLock to optimize
locksets using an in depth knowledge of the smart data structures
used. It consequently nearly matches the performance of the un-
processed implementation. The global locked implementation uses
a single, global lock around each of the transactions and performs
better than the coarse grained implementation due to lower lock-
ing overheads on the locks themselves (the coarse grained locking

scheme uses a lock DAG while the global locked implementation
does not).

5.3 Impact of data structure knowledge
Although previous work has also performed automatic lock gener-
ation from atomic sections, none has achieved performance supe-
rior to both Single-Lock and STM for STAMP benchmarks [4]. In
contrast, SmartLock does so for four out of the five benchmarks
considered – including two in which Single-Lock alone performs
much worse than STM as the number of threads increases. This
section explores why this happens, focusing on SmartLock’s use of
data structure knowledge.

Figure 8 shows the three benchmarks for which data structure
knowledge played any role: Genome, Intruder, and Vacation. The
graphs for Genome and Intruder show structure-aware and un-
aware versions of the SmartLock compiler, along with the STM
performance results for comparison. In both of these cases, hav-
ing a compiler that understands data structure implementations
contributes substantially to the scalability of SmartLock’s locking
scheme. In Genome, automatic lock generation without data struc-
ture knowledge performs 170% worse than STM for eight threads.
Without detailed knowledge of the Hashmap implementation, gets
or puts to the underlying structure are conservatively considered
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Figure 9. Relative speedups in Bounded Buffer benchmark
demonstrating effectiveness of mutating GET optimizations.

related. Even with interprocedural analysis, the compiler cannot
make sense of the highly non-linear hashing function or the pointer-
chasing as the Hashmap get and put methods traverse the hash
buckets. For the same reason, the structure-unaware version of the
SmartLock compiler also leads to code that is 55% slower than
the structure-aware version for Intruder; however, this is still 56%
faster than the STM version. In both cases, however, knowledge
of data structure implementations provided substantial scalability
advantages.

As discussed earlier, these benefits were muted in Vacation;
although SmartLock outperforms the Single-Lock implementation
of atomic sections, it does not use data structure knowledge for
any performance-critical atomic sections. Both versions generated
from the SmartLock code, however, substantially outperform the
STM implementation (140% faster than STM at eight threads). We
note that the STM line is not shown to make the range of the Y axis
small enough to allow differences between the structure-aware and
unaware versions to be discerned.

Figure 9 presents results showing the performance improve-
ments that are enabled by a deeper semantic understanding of the
operations being conducted on concurrent data structures. The X
axis depicts the number of consumer threads repeatedly perform-
ing destructive reads on a bounded buffer, while the Y axis depicts
normalized speedups of the implementations described above, rel-
ative to the unoptimized implementation. The unoptimized version
does not differentiate between mutating and non-mutating GET op-
erations, as discussed in Section 4.3.3 and consequently generates
locks for unique values retrieved from the buffer. The optimized
version, on the other hand, uses an in depth semantic understand-
ing of the mutating nature of the GET operations being performed
on the buffer and optimizes away locks derived from values be-
ing stored in the buffer, leading to dramatic performance improve-
ments.

5.4 Strong Atomicity
All of the previous discussion assumes weak atomicity, just as in
most current software transactional memory systems (including
TL2) as well as current locking implementations. Hardware TM
systems and some software TM systems, however, support strong
atomicity. In weak atomicity, accesses are only guaranteed to be
atomic relative to those that are also marked in other atomic sec-
tions (or, in the case of fine-grained locks, to those that are pro-
tected by the same lock). In strong atomicity, however, accesses
within an atomic section must appear atomic relative to all other
code.

As discussed in Section 4.3.2, the SmartLock compiler can also
support strong atomicity by tracking any references that might
derive from EPs. Analysis of the Vacation benchmark found no EP
references outside of atomic sections. Although Labyrinth did have
some EP accesses outside of atomic sections, none of them were in
portions of the code that affected performance by more than 1%.

 0

 5

 10

 15

 20

 25

 1  2  4  8

%
 S

lo
w

do
w

n

# Threads

KMEANS
GENOME

LABYRINTH
INTRUDER

Figure 10. Performance impact of strong atomicity on STAMP
benchmarks.

Figure 10 shows the performance impact of maintaining strong
atomicity for the remaining codes: Genome, Intruder, and Kmeans.
The implementations compared are both generated from the same
SmartLock code, with one having the compiler generate weakly-
atomic code and the other having the compiler perform the ex-
tra analysis required to generate strongly-atomic code. In each of
these cases, maintaining strong atomicity causes the insertion of a
small number of extra locks as certain values are found to be reach-
able from EPs. The performance impact of these locks is relatively
greater as the number of threads increases, but is never more than
20% slower than the weakly-atomic version of SmartLock. Further,
even with strong atomicity, each of these three benchmarks contin-
ues to scale, and the system still does not see the tracking overhead
of STM.

These results show that SmartLock can provide strong atom-
icity in a conservative fashion by using only atomic sections and
compiler-generated locks. Support for strong atomicity degrades
application execution time by less than 1% for two benchmarks and
by less than 20% for the others. SmartLock can thus support func-
tionality that is fundamentally different from the STM and locking
schemes considered without encountering undue overheads or bur-
dening the programmer.

Note that in all of these benchmarks, there are no actual opera-
tions outside of atomic sections that race with protected operations;
however, the compiler must make conservative assumptions if it
cannot positively identify that two accesses are definitely to differ-
ent addresses. Thus, a more precise analysis should help to further
reduce the overhead of supporting strong atomicity, by generating
fewer “false positives” and thereby adding fewer additional locks.

6. Related Work
Previous research has indicated that naively transactionalizing code
which uses fine-grained locking may lead to deadlocks where none
previously existed [13]. Our work is predicated on the assumption
that the code being analyzed has correctly been transactionalized.

The field of conservative implementations of atomic sections
has been receiving much attention of late ([4, 6, 8, 12, 17, 24],
amongst others). This is motivated, at least in part, by the shortcom-
ings of software transactional memory systems: a high per-access
memory tracking overhead and an inability to handle I/O.

Cherem et al. provide a formal framework for reasoning about
locks, and provide a lock inference tool which is parameterized on
a locking scheme [4]. They implement one such scheme. Like with
our system, they use a multi-granularity locking protocol to imple-
ment deadlock-freedom. However, unlike our system, their use of
intention locks borrows from the database community [7]; this al-
lows them to potentially extend their multi-granularity locking ab-
straction to handle lock-lattices. While our multi-granularity lock
DAG is powerful enough to handle all of our benchmarks, further
work would be needed for efficient implementations of some more
general cases. Unlike us, they do not make any guarantees about



strong atomicity, nor do they support a compiler-aware data struc-
ture library to refine their analysis. As a consequence, their perfor-
mance results are, on average, no better than using a single global
lock to protect all critical sections.

McCloskey et al. require the programmer to provide man-
ual lock annotations [17]. Their tool then ensures composabil-
ity and deadlock freedom. They provide some support for multi-
granularity locks. However, they do not support strong atomicity.
In addition, their requirement of programmer-supplied lock anno-
tations improves the performance of the final program, but also im-
poses an additional burden on programmers.

Emmi et al. and Hicks et al. do not require manual lock anno-
tations [6, 12]. These works prove that the lock allocation deci-
sion problem is NP-complete and that the minimum lock allocation
problem is NP-hard, respectively. Both attempt to first generate a
lock allocation and to then optimize the allocation: Emmi et al. by
modeling the lock allocation problem as a 0-1 ILP and Hicks et
al. by coalescing locksets. We believe their work is complemen-
tary to ours, because our system could use their lock optimization
strategies. Unlike us, they do not support strong atomicity, and they
do not use data structure understanding to improve their analysis
results.

Boyapati et al. provide a type-based system which requires the
programmer to specify a partial order amongst equivalence classes
of locks [1]. Their system then ensures that the order does not result
in a deadlock. Unlike their work, our approach allows individual
objects of some type to be shared or not shared, and does not require
any programmer involvement in the lock allocation decision.

Zhang et al. model the problem of lock allocation using a con-
currency graph abstraction [24]. They then successively produce a
solution by first solving one subset of the graph via graph coloring
and then other subsets by handling special cases and propagating
that information onto the main graph. Halpert et al. attempt to infer
lock assignments by building a critical section interference graph
(which is initially fully-connected) and then successively refining
it through a series of analyses [8]. They then assign locks based on
which components of the graph are connected. Neither approach
ensures strong atomicity, since both approaches rely on the inter-
fering relationship between critical sections to determine lock allo-
cations. In addition, neither approach uses compiler-awareness of
data structures to refine analysis results.

In conclusion, none of the previous works on conservative atom-
icity enable high performance by using compiler awareness of data
structure semantics while at the same time ensuring strong atomic-
ity.

Software transactional memory (STM) systems rely on opti-
mistic concurrency ([9, 11, 20, 21], amongst many others). They
speculatively execute potentially conflicting operations and rely
on sophisticated, and expensive, memory-tracking mechanisms to
detect and recover from conflicts that occur at runtime. Conflict-
ing accesses may be rolled back to preserve system consistency.
STM systems almost uniformly suffer from high overheads due
to the memory tracking requirements, and fail in the face of non-
reversible operations (such as I/O). In addition, while there have
been some STM systems with strong atomicity guarantees, they
still suffer from the high tracking overheads inherent to all STM
systems [3, 19, 21].

Transactional boosting, proposed by Herlihy et al., is a relatively
new methodology which seeks to improve the throughput of ex-
isting, concurrent data structures using a combination of abstract
locks, transactional conflict resolution and function inverses [10].
Unlike our technique, it doesn’t interact with the compiler, provide
strong atomicity to general accesses outside the data structure in
question, or enable the use of data structure knowledge to improve
analysis in the remainder of the code. It is, however, a useful tool
to develop data structures to be targeted by our compiler.

The use of smart data structures was inspired by magic functions
in the Jikes RVM and the use of semantic inlining in the Ninja
numerically intensive Java project [14, 23]. These efforts utilized
knowledge of data structures to implement functionality that is not
expressible in Java and to enable better dependence analysis by
enabling multi-dimensional arrays in Java.

7. Conclusions
This paper shows that a combination of compiler understanding of
standard data structure semantics and a restricted sharing model
allows effective and efficient compiler generation of locks, eas-
ier programmer understanding of what data may be shared, and
the ability to have low-overhead strong atomicity and compiler
warnings when potentially escaping values are not locked by the
programmer. The implementation of these ideas allows compiler-
generated locking to outperform software transactional memory
(STM) for four out of five benchmarks, achieving speedups of
0.83 to 5.9. This performance nearly matches the performance of
manually-inserted fine-grained locks while allowing the program-
mer to merely specify atomic sections; compared to STM, our ap-
proach avoids overhead related to tracking and recovery from con-
flicts and also enables atomic sections to include I/O and other op-
erations that cannot be safely speculated. Our compiler’s advanced
compiler analysis also allows for strong atomicity to further im-
prove encapsulation of atomic sections. In addition, incorporating
data structure semantics into the compiler allows us to success-
fully analyze benchmarks which were previously difficult to ana-
lyze statically.

While properly synchronizing parallel programs will always
take some programmer effort, that effort can be minimized with
the right combination of programming language features and
high-performance implementations of atomicity. While this paper
demonstrates significant progress towards reducing the complexity
of writing high-performance parallel programs, this is not a solved
area. It is clear, however, that just as structured programming and
type safe languages led to programs that were easier for program-
mers to understand and maintain, easier for compilers to analyze
and optimize, and provide good performance, changes in language
semantics and exploiting the known semantics of standard libraries
can help to achieve those same goals for parallel programs.
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A. Example
In the interests of completeness, we present here a more concrete
example to illustrate how code is generated for a sample program.
Figure 11 shows a sample input program. Figure 12 shows the code
generated (including the calls to the locking library). The main
function is shown here for completeness.

As mentioned in Section 3.1, the alias analysis is initiated at
allocation sites, which are regions of the program where new heap-
space is allocated (typically via the new operator). Allocation sites
allocate PAG nodes, called allocation nodes (or AllocNodes). Al-
locNodes are propagated via simple allocation edges of the form:
a = newA().

Consider Figure 11. Initially, the allocation edges in lines [7 –
9] are handled. AllocNodes corresponding to each of those sites
are created, and the points-to sets of the variables being assigned
to are populated. The AllocNodes are labelled by their respective
allocation sites. We model these sites by their relative order. Thus,

1: class Memory
2: var int []a
3: var SmartMap map
4: end class
5: class Main
6: procedure main()
7: Memory m1 = new Memory()
8: m1.a = new int[10]
9: m1.map = new SmartMap()

10: MyThread t1 = new MyThread(m1), t2 = new MyThread(m1)
11: t1.run(); t2.run();
12: end procedure
13: end class
14: class MyThread extends Thread
15: var Memory mem
16: procedure MyThread(Memory m)
17: // Thread constructor, “m” is (possibly) thread-escaping
18: mem = m
19: end procedure
20: procedure run()
21: // Thread run function
22: int i=0, j=3
23: int []a1
24: atomic {
25: // Atomic Section A1
26: a1 = mem.a
27: a1[i] = j
28: } // end atomic
29: atomic {
30: // Atomic Section A2
31: mem.map.put(i, a1)
32: } // end atomic
33: end procedure
34: end class

Figure 11. Input Program

1: class MyThread extends Thread
2: . . .
3: procedure run()
4: . . .
5: {
6: // lock index i in lock-array
7: array-write-lock(Mem.a, i)
8: {
9: a1 = mem.a

10: a1[i] = j
11: }
12: array-write-unlock(Mem.a, i)
13: }
14: // No locks needed for smart map insertion
15: // because the map handles locking internally
16: {
17: mem.map.put(i, a1)
18: }
19: end procedure
20: end class

Figure 12. Generated Code

the first AllocNode (at line 7) is called AllocNode-1, the second
(at line 8) is AllocNode-2 and so on.

Within the run function, the individual edges are traversed and
the points-to sets are updated according to the transfer functions
defined in Table 1. In addition to the points-to sets, the read/write
sets are populated as follows: in atomic section A1 in Figure 11,
line 26 involves a read of mem.a, while line 27 involves a write to
subscript i of array a1, which points to AllocNode-2. Accordingly,
the write-set of AllocNode-2 is updated with the current context.
The analyzer also records the subscript expression used in this write
to enable the lock-array optimizations described in Section 4.3.1.
Line 31, in atomic section A2, involves a put operation on a smart
hashmap which, as described in Section 3.2, involves a write to the
underlying data field. Because a hashmap is inherently an array-
based data structure, the compiler again notes the key value passed
to the function. Table 2 details the individual steps discussed above.



Line # Action
7 PointsTo(m1) = AllocNode-1
8 PointsTo(m1.a) = AllocNode-2
9 PointsTo(m1.map) = AllocNode-3
18 PointsTo(mem) = AllocNode-1

26 PointsTo(a1) = AllocNode-2
read-set(AllocNode-2) = [26]

27 write-set(AllocNode-2[i]) = [27]

31 PointsTo(AllocNode3.data) = AllocNode-2
write-set(AllocNode3[i]) = [31]

Table 2. Table of actions

Mem

a map

a[0] a[1] a[31]...

RT1, 
RT2

WT1, 
WT2

Figure 13. Lock DAG

In the interests of brevity, contexts are represented by the respective
line numbers.

Figure 13 shows the lock DAG structure created for the program
given in Figure 11. As explained in Section 4.1, a WTi next to
a node indicates a write access to that node by thread Ti, while
an RTi indicates a read. The square nodes are the (internal) lock-
array nodes. Figure 12 shows the code generated after the lock
DAG creation and optimization phases of Section 4.1 and 4.2.1.
Lines 7 and 12 contain the lock and unlock calls. The calls take
two arguments: a path in the lock DAG and an index into the lock-
array. We emphasize that write-locking a node in a path implicitly
read-locks every ancestor of that node in the path. Thus, the array
write-lock call of node Mem.a at line 7 first read-locks node Mem
and then write-locks lock-array node a[0].

The comments on lines [14 – 15] in Figure 12 describe another
advantage of incorporating data structure information into the com-
plier: lock generation. In this scenario, the compiler knows that the
smart hashmap is internally protected against concurrent accesses
(using the specifications detailed in Section 4.4 and Figure 4, and
illustrated in Figure 5). Thus, isolated reads and writes to these
data structures need not be externally protected via any concur-
rency control mechanism, and no locks are generated for the atomic
section.


