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Abstract

This paper explores the hardware and software mech-
anisms necessary for an efficient programmable 10 Giga-
bit Ethernet network interface card. Network interface pro-
cessing requires support for the following characteristics:
a large volume of frame data, frequently accessed frame
metadata, and high frame rate processing. This paper pro-
poses three mechanisms to improve programmable network
interface efficiency. First, a partitioned memory organiza-
tion enables low-latency access to control data and high-
bandwidth access to frame contents from a high-capacity
memory. Second, a novel distributed task-queue mecha-
nism enables parallelization of frame processing across
many low-frequency cores, while using software to main-
tain total frame ordering. Finally, the addition of two new
atomic read-modify-write instructions reduces frame order-
ing overheads by 50%. Combining these hardware and soft-
ware mechanisms enables a network interface card to satu-
rate a full-duplex 10 Gb/s Ethernet link by utilizing 6 pro-
cessor cores and 4 banks of on-chip SRAM operating at
166 MHz, along with external 500 MHz GDDR SDRAM.

1. Introduction

As Internet link speeds continue to grow exponen-
tially, network servers will soon have the opportunity to
utilize 10 Gb/s Ethernet to connect to the Internet. A pro-
grammable network interface card (NIC) would provide a
flexible interface to such high-bandwidth Ethernet links.
However, the design of a programmable NIC faces sev-
eral software and architectural challenges. These challenges
stem from the large volume of frame data, the require-
ment for low-latency access to frame metadata, and the
raw computational requirements for frame processing. Fur-
thermore, unlike a network interface in a router, a net-
work interface card in a server must also tolerate high
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latency communication with the system’s host proces-
sor for all incoming and outgoing frames. These challenges
must all be met subject to the constraints of a periph-
eral within the server, limiting the area and power con-
sumption of the NIC.

A 10 Gb/s programmable NIC must be able to support
at least 4.8 Gb/s of control data bandwidth and 39.5 Gb/s
of frame data bandwidth to achieve full-duplex line rates
for maximum-sized (1518 byte) Ethernet frames. The con-
trol data must be accessed by the processor cores in order
to process frames that have been received or are about to be
transmitted. On the other hand, the frame data must simply
be stored temporarily in either the transmit or receive buffer
as it waits to be transferred to the Ethernet or the system
host. Therefore, control data must be accessed with low la-
tency, so as not to disrupt performance, and frame data must
be accessed with high bandwidth, so as to maximize trans-
fer speeds. These two competing requirements motivate the
separation of control data and frame data.

Network interfaces tolerate the long latency of commu-
nication between the system host and the network inter-
face using an event mechanism. The event model enables
the NIC to exploit task-level parallelism to overlap differ-
ent stages of frame processing with high latency communi-
cations. However, task-level parallelism is not sufficientto
meet the computation rates of 10 Gb/s Ethernet. Instead, a
frame-parallel organization enables higher levels of paral-
lelism by permitting different frames in the same stage of
frame processing to proceed concurrently. However, a new
event-queue mechanism is required to control dispatching
of events among parallel processors.

This paper presents an efficient 10 Gb/s Ethernet net-
work interface controller architecture. Three mechanisms
improve programmable network interface efficiency. First,
a partitioned memory organization enables low-latency ac-
cess to control data and high-bandwidth access to frame
contents from a high-capacity memory. Second, a novel dis-
tributed task-queue mechanism enables parallelization of
frame processing across many low-frequency cores, while
using software to maintain total frame ordering. Finally,
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Figure 1. Steps involved in sending a packet.

the addition of two new atomic read-modify-write instruc-
tions reduces frame ordering overheads by 50%. Combin-
ing these hardware and software mechanisms enables a
simulated network interface card to saturate a full-duplex
10 Gb/s Ethernet link by utilizing 6 processor cores and 4
banks of on-chip SRAM operating at 166 MHz, along with
external 500 MHz GDDR SDRAM.

The following section explains the behavior of a network
interface, including its operation and its computation and
bandwidth requirements. Section 3 describes how network
interface firmware can be parallelized efficiently using an
event queue mechanism. Section 4 then describes the archi-
tecture of the proposed 10 Gigabit Ethernet controller. Sec-
tion 5 describes the methodology used to evaluate the archi-
tecture, and Section 6 evaluates the proposed architecture.
Section 7 describes previous work in the area, and Section 8
concludes the paper.

2. Background

The host operating system of a network server uses the
network interface to send and receive packets. The operat-
ing system stores and retrieves data directly to or from the
main memory, and the NIC transfers this data to or from its
own local transmit and receive buffers. Sending and receiv-
ing data is handled cooperatively by the NIC and the de-
vice driver in the operating system, which notify each other
when data is ready to be sent or has just been received.

2.1. Network Interface Processing

Sending a packet requires the steps shown in Figure 1.
In step 1, the device driver first creates abuffer descrip-
tor, which contains the starting memory address and length
of the packet that is to be sent, along with additional flags to
specify options or commands. If a packet consists of mul-
tiple non-contiguous regions of memory, the device driver
creates multiple buffer descriptors. The device driver then
writes to a memory-mapped register on the NIC with infor-
mation about the new buffer descriptors, in step 2. In step 3
of the figure, the NIC initiates one or more direct memory
access (DMA) transfers to retrieve the descriptors. Then, in
step 4, the NIC initiates one or more DMA transfers to move
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Figure 2. Steps involved in receiving a packet.

the actual packet data from the main memory into its trans-
mit buffer using the address and length information in the
buffer descriptors. After the packet is transferred, the NIC
sends the packet out onto the network through its medium
access control (MAC) unit in step 5. The MAC unit is re-
sponsible for implementing the link-level protocol for the
underlying network such as Ethernet. Finally, in step 6, the
NIC informs the device driver that the descriptor has been
processed, possibly by interrupting the CPU.

Receiving packets is analogous to sending them, but the
device driver must also preallocate a pool of main-memory
buffers for arriving packets. Because the system cannot an-
ticipate when packets will arrive or what their size will be,
the device driver continually allocates free buffers and and
notifies the NIC of buffer availability using buffer descrip-
tors. The notification and buffer-descriptor retrieval pro-
cesses happen just as in the send case, following steps 1
through 3 of Figure 1.

Figure 2 depicts the steps for receiving a packet from
the network into preallocated receive buffers. In step 1, a
packet arriving over the network is received by the MAC
unit and stored in the NIC’s local receive buffer. In step 2,
the NIC initiates a DMA transfer of the packet into a pre-
allocated main memory buffer. In step 3, the NIC produces
a buffer descriptor with the resulting address and length of
the received packet and initiates a DMA transfer of the de-
scriptor to the main memory, where it can be accessed by
the device driver. Finally, in step 4, the NIC notifies the de-
vice driver about the new packet and descriptor, typically
through an interrupt. The device driver may then check the
number of unused receive buffers in the main memory and
replenish the pool for future packets.

To send and receive frames, as described here, a pro-
grammable Ethernet controller would need one or more pro-
cessing cores and several specialized hardware assist units
that efficiently transfer data to and from the local intercon-
nect and the network. Table 1 shows the per-frame computa-
tion and memory requirements of such a programmable net-
work interface when carrying out the steps in Figure 1 and
Figure 2. The table’s fractional instruction and data-access
counts are artifacts of the way several frames are processed
with just one function call. The data shown is collected from
actual network interface firmware, but does not include any
implementation specific overheads such as parallelization



Function Instructions Data Accesses
Fetch Send BD 24.5 10.6
Send Frame 256.9 90.0
Fetch Receive BD 12.1 4.1
Receive Frame 241.0 80.8

Table 1. Average number of instructions and data
accesses to send and receive one Ethernet frame.

overheads. The Fetch Send BD and Fetch Receive BD tasks
fetch buffer descriptors from the main memory that specify
the location of frames to be sent or of preallocated receive
buffers (step 3 of Figure 1). Send Frame and Receive Frame
implement steps 4-6 of Figure 1 and 1-4 of Figure 2, re-
spectively. Note that Fetch Send BD and Fetch Receive BD
transfer multiple buffer descriptors (32 and 16 descriptors)
through a single DMA, and the instruction and data access
counts shown in the table are weighted to show the average
counts per frame. Furthermore, each sent frame typically re-
quires two buffer descriptors because the frame consists of
two discontiguous memory regions, one for the frame head-
ers and one for the payload.

A full-duplex 10 Gb/s link can deliver maximum-sized
1518-byte frames at the rate of 812,744 frames per second
in each direction. Hence, sending frames at this rate using
the tasks in Table 1 requires 229 million instructions per
second (MIPS) and 2.6 Gb/s of data bandwidth. Similarly,
receiving frames at the line rate requires 206 MIPS and
2.2 Gb/s of data bandwidth. Therefore, a full-duplex 10 Gi-
gabit Ethernet controller must be able to sustain 435 MIPS
and 4.8 Gb/s of data bandwidth. However, this does not in-
clude the bandwidth requirements for transferring the frame
data itself. Each sent or received frame must be first stored
into the local memory of the NIC and then read from the
memory. For example, to send a frame, the NIC first trans-
fers the frame from the main memory into the local mem-
ory, and then the MAC unit reads the frame from the lo-
cal memory. Thus, sending and receiving maximum-sized
frames at 10 Gb/s require 39.5 Gb/s of data bandwidth. This
is slightly less than the overall link bandwidth would sug-
gest (2*2*10 Gb/s) because data cannot be sent during the
Ethernet interframe gap.

2.2. Instruction-level Parallelism

Though the lower bound on raw computation established
in the previous section is useful, it provides little insight
into the most efficient processor architecture for network
interfaces. It is important to also understand how much
instruction-level parallelism can be exploited in such net-
work interface firmware. There are several factors that can
limit the obtainable instructions per cycle (IPC) of a partic-
ular processor running network interface firmware. The ma-
jor factors considered here are whether the processor issues

Issue Order Perfect Pipeline With Pipeline Stalls
and Width PBP No BP PBP PBP1 No BP
IO 1 1.00 1.00 0.87 0.87 0.87
IO 2 1.45 1.38 1.19 1.19 1.13
IO 4 1.73 1.45 1.34 1.33 1.17

OOO 1 1.00 1.00 1.00 1.00 0.88
OOO 2 1.98 1.49 1.96 1.74 1.21
OOO 4 2.97 1.69 2.65 2.00 1.29

IO: in-order issue
OOO: out-of-order issue
PBP: perfect branch prediction (an infinite number of

branches are correctly predicted every cycle)
PBP1: a single branch is predicted correctly each cycle
No BP: no branch prediction

Table 2. Theoretical peak IPCs of NIC firmware for
different processor configurations.

instructions in-order or out-of-order, the number of instruc-
tions that can be issued per cycle, whether or not branch
prediction is used, and the structure of the pipeline.

Table 2 gives the IPC of NIC firmware for different the-
oretical processor configurations. These figures were ob-
tained by performing an offline analysis of a dynamic in-
struction trace of idealized NIC firmware with paralleliza-
tion overheads removed. The firmware was compiled for a
MIPS R4000 processor, which features one branch delay
slot.

The table shows the IPC limits for both in-order and out-
of-order cores. For each type, these limits are shown for a
processor that has a perfect pipeline and for one that has
a pipeline that experiences dependence-based stalls. In the
perfect pipeline, all instructions complete in a single cy-
cle, so the only limit on IPC is that instructions that de-
pend on each other cannot issue during the same cycle. For
a more realistic limit on IPC, a typical five stage pipeline
with all forwarding paths is modeled. In this pipeline, load-
use sequences would cause a pipeline stall, and only one
memory operation can issue per cycle. In addition to these
pipeline configurations, three branch prediction strategies
are modeled. For the perfect branch predictor, any num-
ber of branches up to the issue width can be correctly pre-
dicted on every cycle. When there is no branch prediction, a
branch stops any further instructions from issuing until the
next cycle. The “PBP1” predictor simply allows only a sin-
gle branch per cycle to be perfectly predicted.

The table shows two obvious and well-known trends.
For an in-order processor, it is more important to eliminate
pipeline hazards than to predict branches. Conversely, for
an out-of-order processor, it is more important to accurately
predict branches than to eliminate pipeline hazards. More
importantly, however, the table shows that the complex-
ity required to improve the processor’s performance may
not be worth the cost for an embedded system. For exam-
ple, consider an in-order processor with no branch predic-
tion and including pipeline stalls. Such a processor could



achieve an IPC of 0.87. In contrast, an out-of-order proces-
sor with an issue width of two and perfect branch predic-
tion of one branch per cycle could only achieve an IPC of
1.74. While this is twice the performance of the in-order
core, this core has significantly higher complexity. It would
need a wide issue window that must keep track of instruc-
tion dependencies and select two instructions per cycle. It
would also need a register renaming mechanism and a re-
order buffer to allow instructions to execute out-of-order.
And, it would require a fairly complex branch predictor to
approach the performance of a perfect branch predictor. All
of this complexity adds area, delay, and power dissipation
to the out-of-order core.

For an area- and power-constrained embedded system, it
is likely to be more efficient to try to capture parallelism
through the use of multiple processing cores, rather than
by more complex cores. If the out-of-order core costs twice
as much as the in-order core, and there is enough coarse-
grained parallelism, it makes more sense to use two simple
in-order cores. Furthermore, the table shows that increas-
ing the IPC significantly beyond the level achieved by the
two-wide out-of-order core requires significant additional
cost, such as predicting multiple branches per cycle or issu-
ing four instructions per cycle. This would further inflate the
area, delay, and power dissipation of the core, making mul-
tiple simple cores even more attractive.

Since the firmware for a network interface exhibits abun-
dant parallelism that can be exploited by multiple cores, this
data motivates the use of simple, single-issue, in-order pro-
cessing cores as the base processing element for a network
interface. This will minimize the complexity, and therefore
the area, delay, and power dissipation of the system.

2.3. Data Memory System Design

The combination of parallel cores and hardware assists
requires a multiprocessor memory system that allows the
simple processor cores to access their data and instructions
with low latency to avoid pipeline stalls while also allow-
ing frame data to be transferred at line rate. Since the frame
data is not accessed by the processing engines of the net-
work interface, it can be stored in a high-bandwidth off-chip
memory. However, the instructions and frame metadata ac-
cessed by the processor must be stored in a low-latency, ran-
dom access memory. Because instructions are read-only, ac-
cessed only by the processors, and have a small working
set, per-processor instruction caches are a natural solution
for low-latency instruction access. The frame metadata also
has a small working set, fitting entirely in 100 KB. How-
ever, the metadata must be read and written by both the pro-
cessors and the assists. Per-processor coherent caches area
well-known method for providing low-latency data access
in multiprocessor systems. Caches are also transparent to
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Figure 3. Cache hit ratio for 6-core configuration
with MESI coherence.

the programmer, enabling ease of programming. Each pro-
cessor and assist could have its own private cache for frame
metadata, with frame data set to bypass the caches in or-
der to avoid pollution.

Despite the advantages of coherent caches, these struc-
tures also have several disadvantages. Caches waste space
by requiring tag arrays in addition to the data arrays that
hold the actual content. Caching also wastes space by repli-
cating the same widely-read data across the private caches
of several processors. All coherence schemes add complex-
ity and resource occupancy at the controller. Finally, caches
are only effective given enough temporal or spatial local-
ity and given the absence of excessive read-write sharing.
To test the effectiveness of coherent caches with respect to
NIC processing, separate data access traces were collected
for each processor core and hardware assist in a 6-core con-
figuration. The traces were gathered while running the NIC
processing functions described in Section 2.1 and while us-
ing the parallelization mechanisms detailed in Section 3.3.
These traces were filtered to include only frame metadata
and then analyzed using SMPCache, a trace-driven cache
coherence simulator [23]. Since SMPCache can only model
a maximum of 8 per-processor caches, the DMA read and
write assist traces were interleaved to form a single trace,as
were the MAC transmit and receive traces.

Figure 3 shows the effectiveness of caches in this 6-
core configuration. All caches studied are fully-associative
with LRU replacement for optimistic results on caching.
Additionally, a line size of only 16 bytes is used to avoid
false sharing. The figure shows experiments varying the per-
processor cache sizes from 16 bytes to 32 KB with a MESI
protocol in all cases. The curve in Figure 3 shows the col-
lective cache hit ratio of all of the caches, which never goes



above 55%. The low hit ratio is not caused by excessive in-
validations; for each experiment, fewer than 1% of write ac-
cesses cause an invalidation in another cache. Rather, there
is little locality in network interface firmware, so cachingis
ineffective.

An alternative solution, commonly used in embed-
ded systems, is the use of a program-controlled scratchpad
memory. This is a small region of on-chip memory ded-
icated for low-latency accesses, but all contents must
be explicitly managed by the program. Such a scratch-
pad memory operating at 200 MHz with one 32-bit port
would provide 6.4 Gb/s of control data bandwidth, slightly
more than the required 4.8 Gb/s. However, simultane-
ous accesses from multiple processors would incur queue-
ing delays. These delays can be avoided by splitting the
scratchpad into multiple banks, providing excess band-
width to reduce latency. A banked scratchpad requires an
interconnection network between the processors and as-
sists on one side and the scratchpads on the other. Such net-
works yield a tradeoff between area and latency, with a
crossbar requiring at least an extra cycle of latency and sim-
pler networks requiring more. On the other hand, the
scratchpad avoids the waste, complexity, and replica-
tion of caches and coherence.

Since the processors do not need to access frame data,
frame data does not need to be stored in a low-latency mem-
ory structure. Furthermore, frame data is always accessed as
four 10 Gb/s sequential streams with each stream coming
from one assist unit. Current graphics DDR SDRAM can
provide sufficient bandwidth for all four of these streams.
The Micron MT44H8M32, for example, can operate at
speeds up to 600 MHz, yielding a peak bandwidth per
pin of 1.2 Gb/s [17]. Each of these SDRAMs has 32 data
pins; two of them together can provide a peak bandwidth
of 76.8 Gb/s. The streaming nature of the hardware assists
in this architecture also make it possible to achieve near
peak bandwidth from such SDRAM. By providing enough
buffering for two maximum-sized frames in each assist, data
can be transferred between the assists and the SDRAM up
to 1518 bytes at a time. These transfers are to consecutive
memory locations, so using an arbitration scheme that al-
lows the assists to sustain such bursts will incur very few
row activations in the SDRAM and allow peak bandwidth
to be achieved during these bursts.

3. Parallel Firmware

As discussed in the previous section, an efficient pro-
grammable 10 Gb/s network interface must use paral-
lel computation cores, per-processor instruction caches,
scratchpad memories for control data, and high-bandwidth
SDRAM for frame contents. In order to successfully uti-
lize such an architecture, however, the Ethernet firmware

running on the interface must be parallelized appropri-
ately. The traditional approach of parallelizing solely across
tasks is not scalable in this domain, so frame-level paral-
lelism is necessary to achieve 10 Gb/s rates.

3.1. Event-based Processing

As depicted in Figures 1 and 2, network interfaces expe-
rience significant latencies when carrying out the steps nec-
essary to send and receive frames; most of these latencies
stem from requests to access host memory via DMA. To
tolerate the long latencies of interactions with the host, NIC
firmware uses an event-based processing model in which
the steps outlined in Figures 1 and 2 map to separate events.
Upon the triggering of an event, the firmware runs a specific
event handlerfunction for that type of event. Events may be
triggered by hardware completion notifications (e.g., packet
arrival, DMA completion) or by other event handler func-
tions that wish to trigger a software event.

3.2. Task-level Parallel Firmware

Previous network interface firmware paralleliza-
tions leveraged the event model and Alteon’s Tigon-II event
notification mechanism to run different event handlers con-
currently [2, 13]. The Tigon-II Ethernet controller uses a
hardware-controlledevent registerto indicate which types
of events are pending. An event register is a bit vector in
which each bit corresponds to a type of event. A set bit in-
dicates that there are one or more events of that type that
need processing.

Figure 4 shows how task-level parallel firmware uses an
event register to detect a DMA read event and dispatch the
appropriate event handler. In step 1, the DMA hardware
indicates that some DMAs have completed by setting the
global DMA read event bit in every processors’ event regis-
ter. In step 2, processor 0 detects this bit becoming set and
dispatches the Process DMAs event handler. When DMAs
5 through 9 complete at the DMA read hardware at step 3,
the hardware again attempts to set the DMA read event bit,
but it is already set. In step 4, processor 0 marks its com-
pleted progress as it finishes processing DMAs 0 through
4. Since DMAs 5 through 9 are still outstanding, the DMA
read event bit is still set; at this point, either processor 0or
processor 1 could begin executing the Process DMAs han-
dler. Finally, in step 5, processor 0 again marks its progress
and clears the DMA read event bit, since no more DMAs
are outstanding.

Notice that even though DMAs become ready for pro-
cessing at step 3 and processor 1 is idle, no processor can
begin working on DMAs 5 through 9 until processor 0 fin-
ishes working on DMAs 0 through 4. This shortcoming is
an artifact of the event register mechanism. The event regis-



Figure 4. Task-level parallel firmware with an event
register.

ter only indicates that DMAs are ready, but it does not indi-
catewhichDMAs are ready. Therefore, so long as a proces-
sor is engaged in handling a specific type of event, no other
processor can simultaneously handle that same type of event
without significant overhead. Specifically, new mechanisms
would have to divide events into work units, and the proces-
sors and hardware assists would have to collaborate in some
manner to decide when to turn event bits on and off.

The straightforward parallelization method depicted in
Figure 4 prevents the idle time between steps 3 and 4 from
being exposed so long as the handlers are well-balanced
across the processors of a given architecture. However, pre-
vious studies show that the event handlers of a task-level
parallel firmware cannot be balanced across many proces-
sors [13].

3.3. Frame-level Parallel Firmware

A key observation of Figure 4 is that task-level paral-
lel firmware imposes artificial ordering constraints on frame
processing; the processing of DMAs 5 through 9 does not
depend on the processing of DMAs 0 through 4. Rather
than dividing work according to type and executing differ-
ent types in parallel, a frame-level parallel firmware divides
work into bundles of work units that need a certain type of
processing. Once divided, these work units (described by an
event data structure) can be executed in parallel, regardless
of the type of processing required. This frame-level paral-
lel organization enables higher levels of concurrency but re-
quires some additional overhead to build event data struc-
tures and maintain frame ordering. The task-processing
functions are based on those used in Revision 12.4.13 of Al-
teon Websystems’ Tigon-II firmware [3]. However, the code
has been extended to make the task processing functions re-

Figure 5. Frame-level parallel firmware using a dis-
tributed event queue.

entrant and to apply synchronization to all data shared be-
tween different tasks.

Figure 5 illustrates how a frame-level parallel firmware
processes the same sequence of DMAs previously illus-
trated in Figure 4. As DMAs complete, the DMA hardware
updates a pointer that marks its progress. In step 1, pro-
cessor 0 inspects this pointer, builds an event structure for
DMAs 0 through 4, and executes the Process DMAs han-
dler. In step 2, processor 1 notices the progress that indicates
DMAs 5 through 9 have completed, builds an event struc-
ture for DMAs 5 through 9, and executes the Process DMAs
handler. Notice that unlike the task-level parallel firmware
in Figure 4, two instances of the Process DMAs handler can
run concurrently. As a result, idle time only occurs when
there is no other work to be done.

As indicated by Figure 5, a frame-level parallel firmware
must inspect several different hardware-maintained pointers
to detect events. Furthermore, such a firmware must main-
tain a queue of event structures to facilitate software-raised
events and retries. Software-raised events signal the need
for more processing in another NIC-processing step, while
retries are necessary if an event handler temporarily ex-
hausts local NIC resources.

A side effect of concurrent event processing is that
frames may complete their processing out-of-order with re-
spect to their arrival order. However, in-order frame
delivery must be ensured to avoid the performance degra-
dation associated with out-of-order TCP packet delivery,
such as duplicate ACKs and the fast retransmit algo-
rithm [1]. To facilitate this, the firmware maintains several
status buffers where the intermediate results of network in-
terface processing may be written. The firmware’s dis-
patch loop inspects the final-stage results in-order for
a “done” status and commits all subsequent, consecu-
tive frames. The task of committing a frame may not
be run concurrently, but committing a frame only re-
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Figure 6. 10 Gb/s Ethernet Controller Architecture.

quires a pointer update.
Though the event queue can leverage the proposed archi-

tecture’s parallel resources, ensuring in-order frame deliv-
ery can impose significant computation and memory over-
head. As frames progress from one step of processing to
the next, status flags become set that indicate one stage of
processing has completed and another is ready to begin.
However, operations such as hardware pointer updates re-
quire that a consecutive range of frames is ready. To deter-
mine if a range is ready and update the appropriate pointer,
the firmware processors must synchronize, check for con-
secutive set flags, clear the flags, update pointers as neces-
sary, and then finally release synchronization. These syn-
chronized, looping memory accesses represent a significant
source of overhead.

4. 10 Gigabit NIC Architecture

Figure 6 shows the proposed computation and mem-
ory architecture. The controller architecture includes par-
allel processing cores, a partitioned memory system, and
hardware assist units for performing DMA transfers across
the host interconnect bus and for performing Ethernet data
sends and receives according to the MAC policy. In addi-
tion to being solely responsible for all frame data trans-
fers, these assist units are also involved with some control
data accesses as they share information with the processors
about which frame contents are to be or have been trans-
ferred.

Each processing core is a single-issue, 5-stage pipelined
processor that implements a subset of the MIPS R4000 in-
struction set. To allow stores to proceed without stalling
the processor, a single store may be buffered in the MEM

stage; loads requiring more than one cycle force the proces-
sor to stall. To facilitate the manipulation of the status flags
for the event queue mechanism, each processor also imple-
ments two atomic read-modify-write operations,set and
update. Set takes an index into a bit array in memory as
an argument and atomically sets only that corresponding bit.
Update examines the bit array and looks for consecutive
bits that have been set since the lastupdate, examining
at most one aligned 32-bit word.Update atomically clears
the consecutive set bits and returns a pointer indicating the
offset at which the last cleared bit was found. Firmware run-
ning on these processors can use these instructions to com-
municate “done” status information between computation
phases and eliminate the synchronization, looping, and flag-
update overheads discussed in Section 3.3.

Instructions are stored in a single 128 KB instruc-
tion memory which feeds per-processor instruction caches.
Firmware and assist control data is stored in the on-chip
scratchpad, which has a capacity of 256 KB and is sepa-
rated intoS independent banks. The scratchpad is glob-
ally visible to all processors and hardware assist units. This
provides the necessary communication between the pro-
cessors and the assists as the assists read and update de-
scriptors about the packets they process. The scratchpad
also enables low-latency data sharing between proces-
sors.

The processors and each of the four hardware assists
connect to the scratchpads through a crossbar as in a dance-
hall architecture. There is also a crossbar connection to al-
low the processors to connect to the external memory in-
terface; the assists access the external memory interface di-
rectly. The crossbar is 32 bits wide and allows one trans-
action to each scratchpad bank and to the external mem-
ory bus interface per cycle with round-robin arbitration for
each resource. Accessing any scratchpad bank requires a
latency of 2 cycles: one to request and traverse the cross-
bar and another to access the memory and return requested
data. Hence, the processors must always stall at least one
cycle for loads, but store buffering avoids any stalling for
stores. If each core had its own private scratchpad, the ac-
cess latency could be reduced to a single cycle by elimi-
nating the crossbar. However, each core would then be lim-
ited to only accessing its local scratchpad or would require
a much higher latency to access a remote location.

The processor cores and scratchpad banks operate at the
CPU clock frequency, which could reasonably be 200 MHz
in an embedded system. At this frequency, if the cores op-
erate at 100% efficiency, 4 cores and 2 scratchpad banks
could meet the computation and control data bandwidth de-
mands described in Section 2.1. To provide sufficient band-
width for bidirectional 10 Gb/s data streams, the external
memory bus is isolated from the rest of the system since it
must operate significantly faster than the CPU cores. It is



not desirable to force the cores to operate faster (thus dis-
sipating more power) just so the external memory can pro-
vide enough bandwidth for frame data. The PCI interface
and MAC unit share a 128-bit bus to access the 64-bit wide
external DDR SDRAM. At the same operating frequency,
both the bus and the DDR SDRAM have the same peak
transfer rate, since the SDRAM can transfer two 64-bit val-
ues in a single cycle. If the bus and SDRAM are able to op-
erate at 100% efficiency, then they can achieve 40 Gb/s of
bandwidth at 312.5 MHz. However, transmit traffic intro-
duces significant inefficiency because it requires two trans-
fers per frame (header and data), where the header is only 42
bytes. A 64-bit wide GDDR SDRAM operating at 500 MHz
provides a peak bandwidth of 64 Gb/s, and is able to sustain
40 Gb/s of bandwidth for network traffic.

Since the PCI bus, the MAC interface, and the exter-
nal DDR SDRAM all operate at different clock frequen-
cies, there must be four clock domains on the chip. The dif-
ferent clock domains are shown with different shadings in
Figure 6.

5. Experimental Methodology

The proposed 10 Gigabit Ethernet controller architec-
ture is evaluated using Spinach, a library for simulating
programmable network interfaces using the Liberty Simu-
lation Environment (LSE) [22, 24]. LSE allows a simula-
tor to be expressed as a configuration of modules, which
can be composed hierarchically at various levels of abstrac-
tion and which communicate exclusively through ports.
Spinach includes modules applicable to general-purpose
programmable systems and modules that are specific to
embedded systems and network interfaces. The general-
purpose modules include memory controllers, cache con-
trollers, memory contents, and bus arbiters. The embedded-
systems modules include DMA and MAC assist units, and
a network interface test harness. Spinach accurately models
multiple clock domains across different hierarchies of mod-
ules.

Because Spinach modules use the LSE port abstrac-
tion for communication, and because ports are evaluated
on a cycle-by-cycle basis, Spinach simulators model band-
width precisely. Spinach module instances maintain ar-
chitectural state and timing information; each instance is
evaluated every cycle and determines its behavior accord-
ing to user-specified parameters. Since the LSE framework
schedules module activation, evaluation, and communica-
tion each cycle, the resultant Spinach simulator represents
a cycle-accurate, precise model of the system under study.
Spinach has been used to accurately model the Tigon-II pro-
grammable multiprocessor NIC [24].

The architecture described in Figure 6 is expressed in
terms of Spinach modules by instantiating the correspond-
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of Processors.

ing architectural structures, by specifying the port connec-
tions between the instances, and by specifying each in-
stance’s parameters (latency, arbitration schemes, etc).All
inter-module communication follows the paths represented
in the figure.

The simulator also models the behavior of the host and
the network. The host model emulates the real device driver,
while the network model times packet transmission or re-
ception based on the Ethernet clock, interframe gaps, and
preambles. At the same time, some features of the actual
environment are not modeled; in a real system, sends and
receives would actually be correlated (e.g., TCP data trans-
missions and acknowledgments), but this behavior is not di-
rectly exploited by the Ethernet layer and is not captured by
the simulation system. Since server I/O interconnect stan-
dards are continually evolving (from PCI to PCI-X to PCI-
Express and beyond), the bandwidth and latency of the I/O
interconnect are not modeled. Finally, the proposed archi-
tecture is tested under various configurations by simulta-
neously sending and receiving Ethernet frames of various
sizes.

6. Experimental Results and Discussion

6.1. Parallelism

Figure 7 shows the overall performance of the pro-
posed architecture for streams of maximum-sized UDP
packets (1472 bytes), which lead to maximum-sized Eth-
ernet frames (1518 bytes). The figure shows the achieved
UDP throughput as the processor frequency and number
of processors in the architecture are varied. All configura-
tions use four scratch-pad banks, an 8 KB 2-way set as-
sociative instruction cache with 32 byte lines per processor,



Component IPC Contribution
Execution 0.72
Instruction miss stalls 0.01
Load stalls 0.12
Scratchpad conflict stalls 0.05
Pipeline Stalls 0.10

Total 1.00

Table 3. Breakdown of computation bandwidth in
instructions per cycle per core.

external SDRAM operating at 500 MHz, and a physical net-
work link operating at 10 Gb/s for both transmit and receive
traffic. The figure shows that the architectural and software
mechanisms enable parallel cores to achieve the peak band-
width of the network. At 175 MHz, six cores achieve 96.3%
of line rate and eight cores achieve 98.7% of line rate. At
200 MHz, both six and eight cores achieve within 1% of line
rate. In contrast, simulation data (not shown in the figure)
shows that a single core would have to operate at 800 MHz
to achieve line rate.

Table 3 shows a breakdown of the computation resources
for six cores operating at 200 MHz each, as that is the small-
est number of cores at the lowest frequency that achieve
line rate. Each core has a maximum instruction rate of one
instruction per cycle. The cores actually achieve an aver-
age of 0.72 instructions per cycle because of instruction
misses, scratch pad latency, and pipeline hazards. Instruc-
tion misses only account for 0.01 lost instructions per cycle.
This shows that the small instruction caches are extremely
effective at capturing code locality even though tasks mi-
grate from core to core. The six cores combined execute
142.8 million scratchpad loads per second and 107.8 mil-
lion scratch pad stores per second. Recall from Section 4
that a scratchpad access takes a minimum of two cycles,
but that each core may buffer up to one store. If there are
no conflicts, then a scratchpad load forces a single cycle
pipeline load stall, and a scratchpad store causes no stalls.
So, scratchpad loads account for 0.12 lost instructions per
cycle. While splitting the MEM stage into multiple stages
could eliminate some of these stalls, 50% of all loads in this
firmware cause load-to-use dependences that always incur a
stall for the dependent instruction and thus would not ben-
efit from lengthening the pipeline. In addition to scratchpad
load stalls, scratchpad bank conflicts account for another
0.05 lost instructions per cycle. The remaining 0.10 instruc-
tion issue slots per cycle are lost to pipeline stalls due to
hazards. Cycles are lost to stalls in this pipeline when the re-
sult of a load is used by the subsequent instruction and when
the branch condition is not computed early enough. Instruc-
tions that are annulled by statically mispredicted branches
are also included in this category. These lost cycles cannot
be avoided without complicating the pipeline. While many
solutions exist, they would all increase the power and area

Required Peak Consumed
Instruction Memory (Gb/s) N/A 25.6 0.9
Scratchpads (Gb/s) 4.8 25.6 9.4
Frame Memory (Gb/s) 39.5 64 39.7

Table 4. Bandwidth consumed by the six 200 MHz
core configuration.

of the core, which is not desirable in such an embedded sys-
tem.

In all, these very simple pipelined cores are able to
achieve a respectable level of sustained IPC. In fact, they
sustain 83% of the theoretical peak IPC of in-order cores
with no branch prediction, as presented in Section 2.2. As
the table shows, a significant amount of the difference arises
from memory stalls.

6.2. Memory Efficiency

Table 4 shows the amount of instruction and data band-
width that is needed to saturate the Ethernet link. The ta-
ble also includes the minimum requirements to achieve line
rate, as discussed in Section 2.1. For reference, the table
shows the peak rates possible on the six core architecture,
which clearly indicates that memory bandwidth must be
overprovisioned in order to achieve line rate. For example,
instruction misses rarely occur because of the firmware’s
small code footprint. The 128-bit interface to the instruc-
tion memory is available to fill cache lines as needed, but it
is unused almost 97% of the time.

Table 4 also highlights the data bandwidth consumed by
this architecture. The processing cores make 250.6 million
accesses to the scratchpad per second, and the hardware as-
sists make an additional 41.7 million accesses per second.
This results in 9.4 Gb/s of scratchpad bandwidth. As dis-
cussed previously, these scratchpad accesses and the asso-
ciated conflicts already account for 17% of the lost compu-
tation resources. Furthermore, the hardware assists are also
sensitive to the latency of scratchpad accesses. Because in-
creased latency (in the form of increased bank conflicts)
would reduce performance, the aggregate bank bandwidth
must be overprovisioned to ensure low latency.

The external SDRAM is used only for frame data. Both
incoming and outgoing data is stored once and retrieved
once in this memory. This leads to 39.7 Gb/s of consumed
bandwidth. This is higher than the strictly required band-
width only because of misaligned accesses. Frames fre-
quently are not stored in the transmit and receive buffers
such that they start and/or end on even 8-byte boundaries.
Even though the unused bytes are not used when read and
are masked off when written, this is lost SDRAM bandwidth
that cannot be recovered, so it is counted in the totals. The
high latency of this memory (up to 27 cycles when there
are SDRAM bank conflicts) does not affect performance



Function Instructions per Packet Memory Accesses per Packet
Ideal Software-only RMW-enhanced Ideal Software-only RMW-enhanced

Fetch Send BD 24.5 39.1 38.5 10.6 14.4 14.4
Send Frame 256.9 317.3 311.5 90.0 102.5 92.4
Send Dispatch and Ordering - 292.1 141.7 - 94.0 32.9
Send Locking - 2.6 10.6 - 0.9 2.7

Fetch Receive BD 12.1 12.4 12.2 4.1 5.3 4.2
Receive Frame 241 292.1 335.5 80.8 135.4 126.2
Receive Dispatch and Ordering - 202.5 140.7 - 66.2 42.9
Receive Locking - 20.5 34.4 - 5.1 8.6

Table 5. Execution profiles comparing frame-ordering methods.

adversely. In contrast to the scratchpads, bandwidth is far
more important than latency for frame data. This bandwidth
exceeds the capabilities of the scratchpads, further validat-
ing the partitioned memory architecture.

6.3. Firmware

Table 5 highlights the effectiveness of the proposedset
andupdate RMW instructions as described in Section 4.
The table shows the execution profile of six cores process-
ing maximum-sized frames. The RMW-enhanced configu-
ration uses the atomicset and update RMW instruc-
tions to manage frame ordering and hardware pointer up-
dates, but the software-only approach uses basic lock-based
synchronization to manage status flags. The ideal require-
ments established in Table 1 are provided as reference. The
addition of the RMW instructions reduces the per-frame
instruction ordering and dispatch overheads by 51.5% for
sent frames and by 30.8% for received frames. RMW in-
structions replace multiple looping memory accesses in the
firmware’s dispatch and ordering functions. In the order-
ing and dispatch functions, these replacements reduce the
number of memory accesses by 65.0% and 35.2% for sent
and received frames, respectively. Note, however, that con-
tention among the remaining firmware locks increases. This
problem is particularly troublesome for a lock in the receive
path, which leads to imbalance among the receive functions.
This imbalance causes the per-frame instructions executed
for receive functions to increase slightly.

The reduction in per-frame processing requirements en-
ables a 6-processor NIC configuration to reduce its proces-
sor and scratchpad frequency from 200 MHz to 166 MHz.
Table 6 shows the per-packet cycle requirements for each
portion of NIC processing for the 200 MHz software-only
and 166 MHz RMW-enhanced configurations. Both con-
figurations achieve line rate for full-duplex streams of
maximum-sized packets. The RMW-enhanced configu-
ration reduces send cycles by 28.4% and receive cycles
by 4.7%. The firmware’s dynamic task-queue organiza-
tion exploits these reductions to enable a clock frequency
reduction of 17%.

Finally, Figure 8 shows the performance of both con-
figurations for streams of various frame sizes. The maxi-

mum full-duplex Ethernet bandwidth for each frame size is
shown as reference; because per-frame overheads are con-
stant, payload data throughput decreases as frame sizes de-
crease. The figure shows that both configurations scale sim-
ilarly across frame sizes. As frame sizes reduce, however,
the increased frame rates cause both configurations to be-
come limited by processing resources. Both configurations
saturate at a rate of about 2.2 million frames per second,
though the RMW-enhanced configuration’s peak is slightly
lower due to event-function imbalances caused by lock con-
tention. This lower peak frame rate leads to the performance
gap at 800-byte UDP packets. As the packet size decreases
from 800 bytes, both configurations become saturated at
their peak frame rates, and the decrease in packet size pro-
portionally decreases the gap in performance. Because the
RMW-enhanced system maintains competitive performance
across frame sizes, it provides the opportunity to reduce
power consumption by using lower clock frequencies.

7. Related Work

Intel has prototyped an accelerator for inbound TCP pro-
cessing on a 10 Gigabit Ethernet link [10]. However, the de-
scribed system only has a programmable header process-
ing engine with a special-purpose instruction-set; it does
not provide any solutions for sending TCP data, memory
bandwidth requirements, payload transfer, or DMA support
to transfer data between the host and the system. Conse-
quently, this is a valuable component of a TCP-offloading
network interface but is not a complete solution. The in-
bound processing engine alone requires 6.39 W for 10 Gb/s
line speed, running at a clock rate of 5 GHz. The system de-
scribed in this paper instead uses multiple low-frequency
cores to provide the required performance without consum-
ing excessive power.

Several companies have also announced 10 Giga-
bit Ethernet NIC products, both programmable and non-
programmable. However, few of these NICs are currently
available to the public, and very little concrete informa-
tion has been made available about their architectures.
Hurwitz and Feng performed an evaluation of the In-
tel PRO/10GbE LR NIC, which does not support TCP
offloading, in commodity systems [11]. Their study re-



Function Software-only RMW-enhanced
Fetch Send BD 62.4 56.3
Send Frame 427.4 407.9
Send Dispatch and Ordering 389.5 159.8
Send Locking 6.7 19.4

Send Total 886.0 643.4

Fetch Receive BD 17.5 16.1
Receive Frame 401.4 438.8
Receive Dispatch and Ordering 281.9 192.9
Receive Locking 44.2 62.5

Receive Total 745.0 710.3

Table 6. Cycles spent in each function per packet
for each frame-ordering method.

ports the achievable bandwidth between systems us-
ing these NICs under varying circumstances. However, the
lack of both architectural information and an isolated per-
formance evaluation prevents direct comparisons to the
architecture proposed here.

In contrast, multi-core network processors have been
widely investigated for router line card applications [6, 7,
8, 14]. Two primary packet processing parallelization mod-
els exist for such systems: threaded and pipelined. In the
threaded model, a different hardware context is used for
each packet being processed [8]. In the pipelined model,
the cores support task-level concurrency with packets flow-
ing from one core to the next during processing [7]. Both
types of systems often use multithreaded cores to tolerate
latencies. However, the latencies they tolerate are for ac-
cesses to their local memories and off-chip SDRAMs as
they perform tasks such as table lookups. These systems
are not directly applicable to server network interfaces be-
cause frame processing requires the network interface to
access the host’s memory through DMA. The latencies of
such DMA accesses are significantly higher because they
must traverse the local interconnect to get to memory rather
than accessing memory directly connected to the proces-
sors. Furthermore, arbitration, addressing, and stalls onthe
local interconnect incur additional latency. Consequently,
a network processor using either the threaded or pipelined
model would require an excessive number of contexts to tol-
erate DMA latencies; for example, the proposed 10 Gigabit
NIC in this paper has several hundred outstanding frames in
various stages of processing at any given time.

Additionally, the longer latencies of DMAs would likely
lead to imbalances among the stages in a pipelined system.
For example, Mackenzie et al. found such mismatches when
using the Intel IXP network processor for network interface
processing [15]. Their system used an Intel IXP 1200 op-
erating at 232 MHz and used about 40% of its processing
power to achieve 400 Mb/s of peak throughput, suggest-
ing a peak throughput of 1 Gb/s. Though the IXP 1200 fea-
tures six multithreaded cores and a StrongARM processor,
the much older Tigon-II programmable NIC achieves Giga-
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Figure 8. Full-duplex throughput for various UDP
datagram sizes.

bit speeds with only two simple 88 MHz cores. This sug-
gests that network processor-based solutions are not as ef-
ficient at handling a network interface workload as a sys-
tem designed explicitly as a network interface controller.
Finally, the multi-gigahertz cores found in router line cards
dissipate far more power than is allowed of a PCI card in a
network server.

The proposed network interface architecture exploits the
principle that parallel processing cores provide higher per-
formance at lower complexity than either a high-frequency
or wide-issue core. Similar observations have been made
before in the context of general-purpose processors through
research on multiscalar processors, trace processors, and
chip multiprocessors [9, 19, 21]. These schemes also fa-
cilitate speculative code parallelization. In contrast, the ar-
chitecture proposed here targets a special-purpose workload
that is inherently parallelizable and focuses instead on the
memory system and software structure required to exploit
that parallelism across a large number of processing cores.

8. Conclusions

This paper proposes and evaluates an architecture for
an efficient programmable 10 Gigabit Ethernet controller.
The processing characteristics and power budgets of net-
work interfaces prohibit the use of high clock frequencies,
wide-issue superscalar processors, and complex cache hi-
erarchies. Furthermore, network interfaces must handle a
large volume of frame data, provide low-latency access to
frame metadata, and meet the high computational require-
ments of frame processing. The proposed architecture effi-
ciently achieves the required performance through a com-
bination of a heterogeneous and partitioned memory sys-



tem, an event-queue mechanism, parallel scalar processors,
and decoupled clock domains. A controller operating at
166 MHz with 6 simple pipelined cores, private 8 KB 2-way
set associative instruction caches, a 4-way banked scratch-
pad, and 64-bit 500 MHz GDDR SDRAM can achieve 99%
of theoretical peak throughput of 10 Gb/s full-duplex Ether-
net bandwidth on a bidirectional stream of maximum-sized
Ethernet frames.

Ethernet processing has substantial architectural and
software challenges related to the efficient manage-
ment and transfer of large volumes of frame data and
metadata. The use of a programmable interface with sub-
stantial computational and memory resources, however, is
motivated primarily by the ability to extend beyond Ether-
net processing. Proposed uses for programmable network
interfaces include full and partial TCP offload, mes-
sage passing, iSCSI, file caching on the network interface,
and intrusion detection [4, 5, 10, 12, 16, 18, 20]. The pro-
posed architecture provides a solid base for implementing
such services.
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