
Analyzing the Effectiveness of Multicore Scheduling Using Performance Counters ∗

Stephen Ziemba, Gautam Upadhyaya, and Vijay S. Pai
Purdue University

West Lafayette, IN 47907
sziemba@purdue.edu, gupadhya@purdue.edu, vpai@purdue.edu

Abstract

This paper analyzes the impact of scheduling decisions on
dynamic task performance. Performance behavior is analyzed
utilizing support workloads from SPECWeb 2005 on a multi-
core hardware platform with an Apache web server. Hardware
performance counter data is collected via extending the Linux
scheduler and analysis is then performed by core, by task, and
by various metrics. The results show that considering a sin-
gle per-core metric (such as IPC or cache miss rate) is not
sufficient to categorize application behavior, since different
thread types often have highly varying characteristics. Addi-
tionally, threads behave differently based on what thread was
scheduled beforehand (seeing as much as 50% performance
degradation when HTTP processing threads are preceded by
long-running dynamic content PHP threads) or based on the
length of their time slices (with longer-running PHP threads
achieving 3 times the IPC of short-running ones on average).

1 Introduction

Multicore processors are now universal. The number of
cores is experiencing exponential growth with only slow in-
creases in frequency. Consequently, future increases in pro-
ductivity and performance will arise primarily through ex-
ploiting parallelism with more aggressively multithreaded ap-
plications.

As with previous generations of general-purpose machines,
all resources in a multicore chip are controlled by the operat-
ing system. In general, operating system design for multipro-
cessors is complicated by issues such as load-balancing and
locality [17, 18, 19]. Multicore chips further introduce issues
related to resource sharing [6]. As the number of threads in-
crease, inter-thread communication becomes more significant;
even some servers today have substantial inter-thread commu-
nication for purposes such as dynamic content generation.

The OS scheduler is particularly critical to the performance
of multicore systems. It is responsible for balancing load
across cores, selecting which thread to run on each core at

∗This work is supported in part by the National Science Foundation under
Grant No. CCF-0532448.

any given time, and deciding how much time to give a run-
ning thread before preempting it. Scheduling decisions are
fairly straightforward when only one application runs with just
one long-running compute-bound thread per core, but become
much more complex when multiple threads are used on each
core to tolerate I/O latencies, when different types of threads
communicate to yield a final result, or when the workload of
each thread is highly variable over time.

Optimal scheduling of multiprocessor systems in general is
an NP-hard problem; even an extremely restricted case such as
offline load-balancing of independent tasks with known run-
times on two processors is equivalent to the partition problem,
which is NP-complete [11]. Consequently, schedulers use
heuristics to guide their decisions, based on notions of load
balance and task priority. However, these heuristics can lead
to poor performance for workloads that do not match their as-
sumptions. This paper analyzes the impact of scheduling deci-
sions on the dynamic performance of tasks for the SPECWeb
2005 benchmark. The workloads are run on an Apache web
server, which uses a combination of threads, events, and pro-
cesses to achieve concurrency. The Linux scheduler is instru-
mented to collect data from the hardware performance coun-
ters, which track dynamic events at each core such as retired
instructions or L2 cache misses [2, 7]. The paper then ana-
lyzes the data by core, by task, and by various thread schedul-
ings and time slicings to show which counters matter the most
and which sorts of schedules can lead to degraded perfor-
mance.

2 Background

This work builds upon the existing Linux scheduler and re-
lates to other research results on scheduling. This section pro-
vides the background needed to understand this paper. Sec-
tion 5 covers other related work.

Terminology. Various systems use different terminology
for tasks commonly associated with the scheduler. This pa-
per will consistently use the POSIX terminology for processes
and threads: a process is a single running executable with a
single memory space and one or more threads; each thread
has its own PC, register set, and stack. The scheduler operates
on threads. (Linux internally uses the term “thread group” for



the former and “process” for the latter, but most systems and
most application programmers use the POSIX terms.)

In a multicore environment the scheduler is responsible
for partitioning threads among individual cores, for selecting
which of the runnable threads on a core should actually be ex-
ecuted at any given time, and for selecting how much time to
allow that thread to run before forcing a preemption. We will
refer to these components as load-balancing, task selection,
and time-slicing, respectively. All are integral components of
scheduling.

Current Linux scheduler. The most commonly used and
stable scheduler for the Linux operating system is the O(1)
scheduler. This process scheduler has been used since Linux
version 2.6 [10]. A new scheduler, called the Completely
Fair Scheduler (CFS), was introduced into the Linux kernel
in version 2.6.23. CFS enforces fairness by using a time-
ordered red-black tree to create an execution timeline. How-
ever, scheduling for fairness does not necessarily yield the best
performance [4]. Consequently, CFS has been targeted pri-
marily for interactive (typically desktop) environments rather
than servers. Our workloads of interest are server-based, so
the O(1) scheduler is used as our base. Other schedulers target
specific environments such as real-time or embedded systems
and are not considered further here.

The O(1) scheduler includes per-core structures called run
queues, which contain the set of runnable threads assigned to
that core. A run queue is split into two different arrays: the
active array for threads that have not yet used their full times-
lices, and the expired array for threads that have. Every task
has a static priority defined at task creation. Static priority is
modified positively or negatively based on the amount of time
the task sleeps versus runs. Priority is recalculated at timer
ticks, when a thread wakes up, or if a priority recalculation
function is called. A task which spends more time sleeping is
typically I/O bound and will see an improved priority, since
such tasks are likely to need quick service when they awaken
again. A task that uses most of its time slice running is typi-
cally CPU bound and will see its priority degrade. The time
slice given to a task is a function of the priority. If a task
does not use its entire time slice or if it runs too long while a
runnable task of the same priority is waiting, it is put back on
the active array at the end of the list rather than being moved
to the expired array. Within a core, tasks are selected in pri-
ority order, with FIFO ordering among tasks with the same
priority. Tasks in the expired array will typically have less
immediate need for CPU time than those in the active array
since they have already consumed their full time slice. Tasks
in the expired array also should not run to provide tasks in the
active array a fair share of CPU. When the active array be-
comes empty the active and expired arrays are swapped and
the process repeats.

The O(1) scheduler includes load balancing to efficiently
utilize all available cores. The scheduler generally follows
affinity scheduling, in which threads prefer to remain on the
same core in order to improve cache locality [17, 18, 19]. Ev-

ery 200 ms, load balancing is triggered on a core to steal tasks
from the busiest core to bring the cores into closer balance.
Some tasks cannot be migrated, either because they are not
runnable on all cores, or because they have recently run and
are still considered to have useful data in the cache at their
core (known as cache hot status). However, threads can be
forced to move regardless of cache hot behavior if load bal-
ancing fails a sufficient number of times. Further, a core in-
vokes idle balancing at any time before going idle, thus trying
to find work for it to perform even though its own queues are
empty. Like load balancing, idle balancing attempts to steal
tasks from the currently busiest core to bring the run queues
into a rough balance.

Decisions regarding load balancing, task selection, and
time slicing are all based on heuristics regarding system
load, expected system performance, and past task behavior.
Such heuristics use minimal information to facilitate quick
decision-making in the scheduler, though it is possible that
using more detailed information would allow the actual appli-
cation of interest to achieve higher performance.

Performance counters. All modern microprocessors ex-
pose information about their dynamic performance through
performance counters. Typical performance counters include
information such as the number of instructions retired, the
number of cache misses at each level, the number of mispre-
dictions, and the number of interrupts. Despite having a large
number of events that may be monitored, typical processors
only allow for a small number of performance counters to be
tracked at a time [2, 7]. Tools such as Perfmon, HPCView, and
VTUNE provide convenient interfaces to these performance
counters [3, 13, 8].

In general, performance effects are difficult to attribute to
specific instructions in processors with out-of-order instruc-
tion issue. The performance counters themselves are often
speculative. Even effects such as cache misses do not increase
execution time if they can be overlapped fully behind other
cache misses or computation [14, 15]. Similarly, IPC may not
be a meaningful measure of performance in multiprocessor
codes if they use spin-locks or simple busy loops. Neverthe-
less, metrics such as IPC and L2 cache misses are typically
correlated to application performance.

Research results targeted toward multicores. Fedorova
et al. promote performance isolation of threads running on
multicore processors by increasing CPU timeslices when-
ever threads in the system affect each others’ cache perfor-
mance [6]. In an earlier work, the above authors use perfor-
mance counter information related to L2 cache miss rate com-
bined with an analytical model to guide an SMT scheduling
policy that leaves hardware contexts idle when using all of
them would hurt performance by thrashing the L2 cache [5].
Each of the above works uses a synthetic workload consist-
ing of multiple single-threaded applications. Using a standard
benchmark workload would also help to characterize real be-
haviors that can arise in server systems (e.g., dynamic content
generation, filesystem access, and network I/O). Additionally,



Figure 1. Instrumentation hooks added to Linux
scheduler.

investigating multi-threaded and communicating applications
may expose additional ways in which scheduling may impact
performance since tasks can use shared resources construc-
tively rather than just destructively.

3 Tracking the Effectiveness of a Multicore
Scheduler

This paper gauges the effectiveness of scheduling poli-
cies by using feedback from performance counters. This re-
quires instrumenting the Linux scheduler to collect and store
performance counter information. Although there are tools
available to provide access to and configure the performance
counters, nothing fit our requirements for fast, flexible, and
non-intrusive data tracking. Our utility operates at the kernel
level with very little overhead. Interaction with userspace is
avoided except for debugging purposes or for exporting data
for offline analysis.

Scheduler instrumentation. The scheduler is extended to
take performance counter samples at each context switch us-
ing the rdmsrl and wrmsrl instructions (read/write model-
specific register). This approach is lightweight and allows
precise per-thread samples to be collected. Other tools pro-
vide strategies such as monitoring time intervals or counter
overflows (which is impractical in kernel space). The cores
used in this study can monitor up to four separate performance
counters simultaneously. The counters are set to monitor re-
tired instructions, L2 cache data misses, L2 cache instruction
misses, and L2 cache data accesses.

Figure 1 shows an abbreviated flow diagram of the sched-
uler. The instrumentation code is inserted via function point-
ers (which add minimal overhead) which can be enabled, dis-

Figure 2. Experimental testbed configuration.

abled, and modified with ease. The majority of the instrumen-
tation code is within the sample hook located just before the
existing switch to function within context switch. Due to
the location of this hook, this code is run after the scheduler
has selected the next thread. The switch to function is only
called if the current thread is different than the previous, so
no sample is taken unless a context switch actually occurs. If
desired, the task hook could be configured to count this event.
In the sample hook, the module collects data from the perfor-
mance counters, the threads process group and the processor’s
standard cycle counter on every context switch. The hook
can also collect, calculate and store at desired intervals global
statistics such as per-core IPC and miss rates. This informa-
tion is then appended to the end of a circular array added to the
task structure of each thread. The above information can op-
tionally be exported to a large buffer within the module itself
for later export and analysis. This sampling adds only very
minor overhead to every context switch. The “task hook” and
“cleanup hook” shown are responsible for setting up, storing
and cleaning up values necessary for the proper operation of
the sample hook. Some values must be calculated outside of
sample hook due to the unlikely possibility that the schedule
function must loop.

Experimental Methodology. The instrumented scheduler
is tested using the Apache web server version 2.2.6 running
the SPECWeb 2005 “Support” benchmark as an experimen-
tal workload. The server is compiled with all modules and
shared modules, in addition to cgi and ssl support. External
PHP threads are used for dynamic content generation. (These
are called PHP threads throughout the results, whereas the
Apache threads are called HTTP threads.) The tests are run on
SunFire v40z systems that include 2 dual-core AMD Opteron
processors (four core total) with 4 GB of RAM and 8 identi-
cal SATA hard drives. Web server data is distributed evenly



Figure 3. Average per CPU performance of Sup-
port run.

across 8 identical drives, and one drive also contains the PHP
and operating system files.

The SPECWeb benchmark is run on seven different ma-
chines connected via Gigabit Ethernet to a switch. The ma-
chine types can be broken into four categories: the web server,
the primary client, the back-end simulator (Besim), and the
secondary clients. The web server runs on its own machine
with four 1 Gbps NICs. These interfaces are on separate sub-
nets in order to control network communication and promote
balancing of network traffic with the secondary clients. The
primary client runs on its own machine with one 1 Gbps NIC.
The Besim runs on an Apache web server of its own with
one 1 Gbps NIC. The remaining four machines run as sec-
ondary clients and each get their own 1 Gbps NIC. These ma-
chines are each put on a different subnet so that communica-
tion is distributed between the four Ethernet ports of the web
server. All SPECWeb tests are run using 3350 client connec-
tions. SPECWeb reports the percentage of connections that
meet “good” and “tolerable” quality of service constraints.

4 Results and Discussion

Figure 3 shows the per CPU performance for an execu-
tion of the SPECWeb 2005 support benchmark. Each set of
bars represents performance counter measures from a differ-
ent core. Within a set, the first bar represents the retired in-
structions per cycle (IPC); the second shows the number of L2
cache misses caused by instruction fetching for every 100 re-
tired instructions (I-miss rate1); and the third shows the num-
ber of L2 cache misses caused by data operations for every
100 retired instructions (D-miss rate). CPU 3 has the poorest
IPC of these cores, yet it has among the best I-miss and D-miss
rates. This result seems counter-intuitive since IPC normally

1Although the term miss rate is commonly used to refer to the percentage
of cache accesses that miss (more properly termed miss ratio), we normalize
misses by retired instructions so as to get a more direct measure of the impact
of those misses.

should be correlated with miss rate and the CPUs should per-
form similarly. The cache behavior of CPU 2 is quite differ-
ent from that of CPU 0 or CPU 1, yet the IPC performance is
roughly the same. Figure 4 shows the percentage of threads
of each type (idle, OS, PHP, and HTTP) scheduled on each of
the cores. There is no apparent direct link between thread dis-
tribution on a core and the core’s performance. CPU 0 sched-
ules the most PHP threads and the fewest HTTP threads, while
CPU 3 schedules the fewest PHP threads (a factor of 3 fewer
than CPU 0) and the most HTTP threads. CPUs 1 and 2 sched-
ule more HTTP threads than CPU 0 yet have very similar IPC
to CPU 0. This shows that while overall core performance is a
good method of benchmarking core performance, it provides
little insight to why the core behaves the way it does.

Figure 5 shows the break down of execution time spent at
each core core on the various types of tasks. All of the cores
except for CPU 3 spend a majority of execution time on PHP
tasks. Although CPU 3 spends less time on PHP than CPU 0,
the difference is less than a factor of 2 despite the fact that
the number of PHP threads scheduled is lower by a factor of
3. Based on the execution time breakdown of CPU 3, PHP
tasks on average must run twice as long on CPU 3 as they
do on any other CPU. It is not likely that this discrepancy is
the result of individual PHP tasks behaving differently, since
95% of PHP tasks are scheduled at least once on each CPU
and 99% of PHP tasks are scheduled on at least 3 CPUs. (As
discussed in Section 2, migration takes place despite a pref-
erence for affinity.) However, HTTP threads migrate much
less frequently across all CPUs with only 37% of all HTTP
threads ever being scheduled on CPU 0, compared to 59% for
CPU 3. This uneven distribution of processes makes for an
inconsistent environment for threads to execute on when they
are migrated. The average execution length of HTTP threads
is short enough for the environment to have a notable impact
on their performance at any CPU. However, given the average
length of a PHP thread on CPU 3 (4.4 ms), the environment
can only impact the thread for a short time before the previous
cache state becomes irrelevant (the task “warms up”). The re-
sults seem counter-intuitive since the environment differences
seen in Figure 5 are in no way correlated to the IPC/cache
performance seen in Figure 3.

Figure 6 details the performance of the two most heavily
scheduled PHP tasks as they migrate across cores. In addition
to the 3 previous performance counter bars, each set of bars
also includes information about the average run time for that
task on that core (with a Y-axis scale on the right hand side).
The threads’ behavior across cores is sporadic with average
run time varying by as much as a factor of 19. These threads
also exhibit much poorer IPCs on CPUs 1 and 2 than on the
other cores, an effect which was not visible in the per-core
aggregate statistics shown in Figure 3. This effect seems cor-
related to the short runtimes when these threads are scheduled
on these cores.

Figure 7 breaks down the threads scheduled on CPU 0 in
ranges based on the mean (µ) and standard deviation (σ) of



Figure 4. Schedules by thread type on each
CPU.

Figure 5. CPU time by thread type on each CPU.

each performance counter metric. For example, the IPC bar
for the range labeled µ to σ shows the percentage of threads
for which the mean IPC is at least the mean IPC across all
threads but no more than one standard deviation higher. While
a significant percentage of the tasks fall within a single devia-
tion of the mean IPC, a large fraction (6.8%) of the tasks have
an IPC more than 2 standard deviations greater than the mean.
More tasks fall 2 deviations away than 1 deviation away, and
80% more tasks fall 3 deviations away than 2. This behavior
results in a graph which is slightly bimodal. HTTP threads
account for 86% of schedules yet only get 34% of CPU time.
Since there are much more HTTP schedules, the PHP contri-
bution to the graph is minimized. Since no correlation exists
between number of schedules and CPU time it is necessary to
analyze process groups separately in order to understand the
behavior of either process group.

Figure 8 breaks down HTTP performance on CPU 0 based
on which thread or threads ran previously. HTTP tasks sched-
uled immediately after a different HTTP task on average had
7% better IPC, 7.5% better L2 I-miss rate and 60% better L2

Figure 6. Performance breakdown of most com-
monly scheduled PHP threads.

Figure 7. Categorization of threads on CPU
0 according to the percentage in each range
based on the mean (µ) and standard deviation
(σ) of each performance counter metric.

D-miss rate. IPC and L2 miss rate continue improving as more
sequential HTTP threads schedule until IPC improves 10.5%
versus the average of all HTTP threads. Figure 9 shows the
frequency of the events in Figure 8. About 10% of HTTP
threads are preceded by long-running PHP threads. These
HTTP threads get only 45% of the IPC and thus take twice as
long to complete than an average HTTP thread. When com-
pared to the best case, these threads get 41% of the IPC and
take 2.4 times as long to complete than if they had been sched-
uled more effectively. All in all, about 10% of overall CPU
time is wasted because of an HTTP thread being scheduled
after a long-running PHP thread.

Figure 10 shows the performance of PHP threads with re-
spect to their average run time on CPU 0. PHP tasks which
run for less than 1 ms get on average 52% of the average IPC
of all PHP tasks. By the time a PHP task has run for 4 ms, the



Figure 8. HTTP thread performance on CPU 0
based on previous thread(s) scheduled.

Figure 9. Frequency of thread schedules that
affect HTTP thread performance on CPU 0.

IPC has improved to 154% of average IPC. IPC on CPU 0 can
get as high as 176% of average IPC or 334% better than that
seen when the thread was first scheduled. Scheduling PHP
tasks for a short amount of time is inefficient, and interrupting
long-running tasks will substantially harm overall work per
unit of CPU time (despite being potentially more fair).

Discussion. The results regarding the IPC of HTTP threads
indicate that it might be beneficial to segregate HTTP and PHP
threads. Since HTTP threads need far less CPU time, we ran
an experiment in which HTTP threads were dispatched to only
a single CPU and PHP to the remaining 3. The results showed
a slight drop in performance, with the number of good and tol-
erable connections, as well as the average response time, all
degrading by 3–6%. The HTTP CPU spends 26% to 30% of
the time idle while the PHP CPUs averaged around 4% idle.
Figure 11 shows how saturated the run queue can get due to
bursty request behavior. The worst observed case was 48 tasks
waiting for the HTTP CPU. Assuming best case execution of
.14 ms per thread, it would take 7 ms to empty the queue as-
suming no new threads are queued. This in turn increases the

Figure 10. PHP thread performance on CPU 0
based on thread run time.

Figure 11. Number of runnable threads on
HTTP CPU when HTTP tasks are given their
own CPU. Samples taken every context switch.

response time by 3-6% when average response time is roughly
6 seconds. Although this test sees a slight degradation in per-
formance caused by excess queuing, the amount of CPU time
needed for HTTP threads drops by nearly 47%. Mixing HTTP
and PHP threads reduces effective work per unit of CPU time,
and it can actually thus help overall CPU effectiveness to leave
a CPU idle rather than filling its gaps with the non-preferred
task type.

As a further extension, it would be valuable to have the
scheduler make policy decisions based on the performance
counters. As shown in Figure 10, the scheduler may want
to make decisions based on how the performance counter val-
ues evolve as time slice increases. Such tracking can be added
by, for example, instrumenting the timer tick code. Although
an online decision-making process would have to be more re-
sponsive than offline analysis, techniques such as moving av-
erages and histograms could still be used to get approximate
information quickly. However, policy selection would still be



difficult; as shown in Figure 6, the performance of a thread
even on any specific metric depends heavily on the environ-
ment at a core, making counter-based dynamic load balancing
of individual tasks unlikely to succeed.

5 Related Work

Sections 1 and 2 covered the works most closely related to
the development of this paper. This section discusses other
theoretical and experimental approaches to scheduling prob-
lems.

The use of run-time measurements and there potential for
improving task performance is not new. Before performance
counters became available simpler metrics have been utilized
to guide scheduling decisions [16]. Classification of I/O
bound and interactive threads and control of execution time
yielded positive throughput improvements.

Although most theoretical works on scheduling focus on
cases where each task requires a single processing element,
some consider cases such as “malleable processes” that may
run on one or more cores with time dependent on the num-
ber of allocated processes [9]. Although such an approach
does not directly account for communication, its impact is
implicit through the use of non-linear speedup with the num-
ber of cores. Such works use heuristics known for other NP-
complete or NP-hard problems such as strip packing to derive
approximate schedules. Practical scheduling problems must
also consider issues such as a dynamic number of threads as-
sociated with a task (e.g., PHP or Apache threads being started
and stopped as connections arrive and complete).

Other works have considered more fine-grained problems,
such as the scheduling of loop iterations in a parallel program.
Lo et al. show that loop iteration scheduling should prefer
cyclic distribution rather than block distribution in an SMT
processor, thus encouraging fine-grained cache sharing [12].
Xue et al. describe a strategy for locality-aware loop iteration
distribution in a multicore processor, using a static partition
combined with dynamic load balancing [20]. Chen et al. show
that a new scheduling algorithm called Parallel Depth First
exceeds the performance of traditional Work-Stealing policies
when executing benchmarks with fine-grained partitioning on
a multicore processor with a shared cache [1]. The strategies
used in this paper have many similarities with the latter works
targeting multicores, but the domains are fundamentally dif-
ferent: this paper focuses on server applications where work
arrives dynamically with new connections and the threads are
a mix of I/O-bound network service threads and computation-
bound PHP threads.

6 Conclusions

This paper uses performance counters as a tool to analyze
the impact of scheduling decisions for a multicore system run-
ning a heavily multithreaded dynamic-content web workload.
The results show that considering a single per-core metric

(such as just IPC or cache miss rate) is not sufficient to catego-
rize application behavior, since different types of threads of-
ten have highly different characteristics. Additionally, threads
behave differently based on what other threads are scheduled
beforehand or based on the length of their time slices. Such
observations suggest that under some circumstances, it may
be advisable to segregate thread types even if that ends up cre-
ating some CPU idle time. Although this paper only focuses
on analysis, the results indicate that using performance coun-
ters and thread-specific information in making scheduling de-
cisions could help to improve CPU efficiency and application
performance.

References

[1] S. Chen, P. B. Gibbons, M. Kozuch, V. Liaskovitis, A. Aila-
maki, G. E. Blelloch, B. Falsafi, L. Fix, N. Hardavellas, T. C.
Mowry, and C. Wilkerson. Scheduling Threads for Construc-
tive Cache Sharing on CMPs. In Proceedings of the Symposium
on Parallel Algorithms and Architectures, pages 105–115, June
2007.

[2] P. J. Drongowski. Basic Performance Measurements for AMD
AthlonT M 64 and AMD OpteronT M Processors. AMD Devel-
oper Central, December 2006.

[3] S. Eranian. The perfmon2 interface specification. Technical
Report HPL-2004-200(R.1), HP Laboratories, 2005.

[4] A. Fedorova, M. Seltzer, C.Small, and D. Nussbaum.
Throughput-oriented scheduling on chip multithreading sys-
tems. Technical Report TR-17-04, Division of Engineering
and Applied Sciences, Harvard University, August 2004.

[5] A. Fedorova, M. Seltzer, and M. D. Smith. A Non-Work-
Conserving Operating System Scheduler for SMT Processors.
In Proceedings of the 2nd Annual Workshop on the Interac-
tion Between Operating Systems and Computer Architecture
(WIOSCA), pages 10–17, June 2006.

[6] A. Fedorova, M. Seltzer, and M. D. Smith. Improving Per-
formance Isolation on Chip Multiprocessors via an Operating
System Scheduler. In Proceedings of the 16th International
Conference on Parallel Architecture and Compilation Tech-
niques, April 2007.

[7] Intel Corporation. Intel(R) 64 and IA-32 Architectures Opti-
mization Reference Manual. 2007.

[8] Intel Corporation. VTune(TM) Performance Environment
User’s Guide. Number 310866-001. 2007.

[9] K. Jansen. Scheduling Malleable Parallel Tasks: An Asymp-
totic Fully Polynomial Time Approximation Scheme. Algo-
rithmica, 39(1):59–81, January 2004.

[10] M. T. Jones. Inside the Linux scheduler. IBM DeveloperWorks,
June 2006.

[11] R. M. Karp. Reducibility Among Combinatorial Problems. In
R. E. Miller and J. W. Thatcher, editors, Complexity of Com-
puter Computations, pages 85–103. Plenum Press, 1972.

[12] J. L. Lo, S. J. Eggers, H. M. Levy, S. S. Parek, and D. M.
Tullsen. Tuning Compiler Optimizations for Simultaneous
Multithreading. In Proceedings of the 30th Annual Interna-
tional Symposium on Microarchitecture, pages 114–124, De-
cember 1997.

[13] J. Mellor-Crummey, R. Fowler, and G. Marin. HPCView: A
Tool for Top-down Analysis of Node Performance. In Pro-
ceedings of the Second Annual Los Alamos Computer Science
Institute Symposium, October 2001.



[14] K. Oner and M. Dubois. Effects of Memory Latencies on Non-
Blocking Processor/Cache Architectures. In Proceedings of
the International Conference on Supercomputing, 1993.

[15] V. S. Pai, P. Ranganathan, and S. V. Adve. The Impact of
Instruction Level Parallelism on Multiprocessor Performance
and Simulation Methodology. In Proceedings of the 3rd Inter-
national Symposium on High Performance Computer Architec-
ture, pages 72–83, February 1997.

[16] F. Silva and I. Scherson. In Improving Parallel Job Schedul-
ing Using Runtime Measurements. In Proceedings of the 6th
Workshop on Job Scheduling Strategies for Parallel Process-
ing, 2000.

[17] M. Squillante and E. Lazowska. Using Processor-Cache
Affinity in Shared-Memory Multiprocessor Scheduling. IEEE
Transactions on Parallel and Distributed Systems, 4(2):131–
143, February 1993.

[18] J. Torrellas, A. Tucker, and A. Gupta. Evaluating the Perfor-
mance of Cache-Affinity Scheduling in Shared-Memory Mul-
tiprocessors. Journal of Parallel and Distributed Computing,
24(2):139–151, February 1995.

[19] R. Vaswani and J. Zahorjan. The Implications of Cache Affin-
ity on Processor Scheduling on Multiprogrammed, Shared
Memory Multiprocessors. In Proceedings of the 13th Sympo-
sium on Operating Systems Principles, pages 26–40, October
1991.

[20] L. Xue, M. Kandemir, G. Chen, F. Li, O. Ozturk, R. Rama-
narayanan, and B. Vaidyanathan. Locality-Aware Distributed
Loop Scheduling for Chip Multiprocessors. In Proceedings of
the 20th International Conference on VLSI Design, pages 251–
258, January 2007.


	Introduction
	Background
	Tracking the Effectiveness of a Multicore Scheduler
	Results and Discussion
	Related Work
	Conclusions

